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Abstract

methods to calculate TMB.

TMB to variation in sequencing depth and tumour purity.

Background: Tumour mutation burden (TMB), defined as the number of somatic mutations per megabase within
the sequenced region in the tumour sample, has been used as a biomarker for predicting response to immune
therapy. Several studies have been conducted to assess the utility of TMB for various cancer types; however, methods
to measure TMB have not been adequately evaluated. In this study, we identified two sources of bias in current

Methods: We used simulated data to quantify the two sources of bias and their effect on TMB calculation, we
down-sampled sequencing reads from exome sequencing datasets from TCGA to evaluate the consistency in TMB
estimation across different sequencing depths. We analyzed data from ten cancer cohorts to investigate the
relationship between inferred TMB and sequencing depth.

Results: We found that TMB, estimated by counting the number of somatic mutations above a threshold frequency
(typically 0.05), is not robust to sequencing depth. Furthermore, we show that, because only mutations with an
observed frequency greater than the threshold are considered, the observed mutant allele frequency provides a
biased estimate of the true frequency. This can result in substantial over-estimation of the TMB, when the cancer
sample includes a large number of somatic mutations at low frequencies, and exacerbates the lack of robustness of

Conclusion: Our results demonstrate that care needs to be taken in the estimation of TMB to ensure that results are
unbiased and consistent across studies and we suggest that accurate and robust estimation of TMB could be
achieved using statistical models that estimate the full mutant allele frequency spectrum.
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Background

Immunotherapy is an evolving and promising cancer
treatment that works by provoking the patient’s own
immune response to target cancer cells [1]. Several stud-
ies have examined the effectiveness of Immunotherapy
drugs in cancer treatment [2—4]. Although many patients
show a strong and durable response to immune check-
point inhibitors (ICIs), some patients do not respond well
to treatment [5, 6]. Therefore, there is a need for effec-
tive biomarkers to distinguish between patients who are
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more or less likely to benefit from this treatment. Sev-
eral biomarkers have been proposed that correlate well
with the response of immunotherapy in multiple can-
cer types, including tumour mutation burden (TMB),
neoantigen burden, DNA mismatch repair deficiency, and
high microsatellite instability [7-11].

TMB was initially introduced as a biomarker for ICls
in melanoma. Recently the FDA has approved pem-
brolizumab in all cancers with TMB greater than 10 muta-
tions per megabase (MB) as assessed by the targeted Foun-
dationOne CDx assay [12]. Several studies have argued
that patients with high tumor mutation burden (TMB-
H) are more likely to respond to checkpoint inhibitors
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because a higher number of mutations in a tumour cor-
relates with an increase in the number of neoantigens
that can be recognized by T cells [13—15]. However, some
recent studies have shown that TMB-H fails to predict
immune checkpoint blockade response in breast cancer,
prostate cancer and glioma [16, 17]. Despite the low effi-
cacy of TMB in these cancer types, significant correlations
have been reported between TMB-H and response to ICIs
in several other cancer types such as melanoma, lung, and
bladder cancers where CD8 T-cell levels positively corre-
lated with neoantigen load ([16, 18]). TMB-H has been
reported to be the most robust, effective and clinically
verifiable biomarker in these cancer types [19].

Tumour mutation burden is calculated by counting the
number of somatic mutations above a threshold frequency
in data derived from whole genome sequencing, whole
exome sequencing (WES) or panel sequencing and divid-
ing by the size of the target region [20]. Although WES
is frequently used to measure TMB in a research setting,
it can be impractical for clinical use due to its higher
cost, and the low average coverage which could result in
missing rare somatic mutations. To overcome these issues
some studies suggest using panel sequencing [21, 22]. The
US FDA approved two cancer-related gene panels, Foun-
dationOne CDx (F1CDx) and MSK-IMPACT [23, 24].
Also [19, 25] proposed pan-cancer TMB panels that
showed higher correlation with WES than other panels.
Several studies have suggested using various thresholds,
filtering strategies and models to improve the robustness
of TMB measurement for targeted-panel sequencing and
to correct panel design biases in order to avoid over-
estimating TMB [26-29]. To validate the panel-based
sequencing approach, the TMB derived from the target-
panel is compared against TMB measured from WES [30],
which is considered the standard TMB measurement [31].

Although TMB is an effective biomarker in several can-
cer types and the efficacy of panel based sequencing in
TMB estimation has been shown in several studies as an
alternative to WES sequencing for clinical use, there is still
no standard method to determine the genes to include in
the panel, the type of mutation or the cut-off to distinguish
between high and low TMB values [32, 33]. Apart from
the lack of a standardization method which is essential
in order to be able to compare the different TMB values
estimated from different gene panels, there are some fac-
tors that could influence TMB estimation regardless of the
NGS platform used. These factors could be categorized
into two groups, patient and sample-specific factors, such
as the site of biopsy, sample type, sample purity and tech-
nical factors, such as sequencing depth and bioinformatics
pipeline [34-39].

The first step in a TMB estimation pipeline is to detect
somatic mutations. Many mutation calling tools have been
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introduced to call somatic single nucleotide variants and
the performance of these tools has been evaluated exten-
sively [40-42]. In particular, [43] showed that Mutect2,
developed by the Broad Institute, EBCall [44], Virmid [45]
and Strelka [46] are the most reliable tools, with simi-
lar performance. Several studies have also evaluated the
effect of sequencing depth in detecting somatic mutations
by different mutation callers. In these studies, in particular
[47], it has been shown that a sequencing depth > 200X
is sufficient for calling 95% of mutations with mutation
frequency (> 20%); for mutations at lower frequencies,
it has been recommended to increase the sequencing
depth or improve the experimental method. Therefore
in the absence of sufficient coverage depth, detecting
somatic variant with low frequency is still a major chal-
lenge. Insufficient sequencing depth could also impact on
TMB estimation by reducing the accuracy of mutation fre-
quency estimates as the mutation frequency is required
in order to determine the number of mutations exceeding
the threshold frequency.

In this study, we investigate statistical biases affect-
ing TMB estimation. We explore the impact of these
biases on TMB estimates using simulations with parame-
ters informed by real cancer sequencing studies. We also
investigate the relationship between inferred TMB and
sequencing depth, both by down-sampling sequencing
reads from exome sequencing datasets from TCGA and
by assessing the relationships between inferred TMB and
sequencing depth across TCGA cohorts. The relationship
between sequencing depth and inferred TMB is likely to
reflect both the power to detect somatic mutations [47] as
well as bias in the TMB estimates, which is also a func-
tion of sequencing depth. We suggest that a statistical
modelling approach that estimates the parameters of the
entire mutation frequency spectrum, rather than count-
ing mutations above a fixed threshold, is likely to provide
a more robust means of estimating TMB.

Methods

Simulations

We used simulations to investigate the extent of the bias
in the estimate of mutant allele frequencies resulting from
neglecting mutations for which the empirical frequency
was below a threshold, 7. The simulations consisted of 200
loci, each covered by 100 reads. True values of the mutant
allele frequency were considered, over the range shown
in Fig. 1. For each true frequency, f, we obtained 1,000
random samples from a binomial random variable, with
parameter, f and size 100, using R. Two estimates were
then returned for the mutant allele frequency, one derived
from all of the samples and a second, following trunca-
tion (i.e. using only the samples in which the proportion
of mutant alleles was at least 7).
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Theoretical derivation of the relative error in the TMB
estimates

Here we provide a theoretical derivation of the extent of
the bias in TMB corresponding to subclonal mutations
with beta-distributed mutant allele frequency spectrum,
with parameters « and S, as illustrated in Fig. 2. The true
number of somatic mutations with frequency above 7 is

T=@1-Fp(r;a, p)) x S. (1)

where Fp is the cumulative distribution function of a beta
random variable and S is the total number of somatic
mutations.

Let d; be the sequencing depth at a site i at which a
somatic mutation has occurred. The number of reads car-
rying the mutant allele at site i is a beta-binomial random
variable with size d; and parameters « and S and the
expected number of somatic mutations with frequency
> tis:

S
E=Y "(1-Fg(div;di, ). 2)
i=1
where Fpgp is the cumulative distribution function of

the beta-binomial random variable. The relative error
(depicted in Fig. 2) is (E — T)/T.

Down-sampling TCGA data and TMB calculation

Whole exome sequencing data (in BAM format) was
downloaded for four lung adenocarcenoma (LUAD)
TCGA samples from cBioPortal ([48]); TCGA-55-8205,

TCGA-78-7159, TCGA-78-7161 and TCGA-78-7162).
We used samtools to downsample each BAM file progres-
sively to 50%. We used Mutect2, GATK4 with the default
options to infer somatic mutations and their frequencies.
To estimate TMB we determined the number of PASS
somatic mutations with estimated frequencies above 0.05.

Correlation between sequencing depth and TMB

We analyzed paired tumour-normal whole-exome
sequencing data from 4,850 TCGA samples from ten
primary tumour types (bladder urothelial carcinoma;
N = 411 sample pairs, breast invasive carcinoma;
N = 1,043, colon adenocarcinoma; N = 432, kidney
renal clear cell carcinoma; N = 338, brain lower grade
glioma; N = 511, lung adenocarcinoma; N = 569, lung
squamous cell carcinoma; N = 496, ovarian serous cys-
tadenocarcinoma; N = 440, prostate adenocarcinoma;
N = 496 and skin cutaneous melanoma; N = 104). The
number of mapped reads from the tumour BAM for
each donor was used as a proxy for sequencing depth.
In order to observe how tumour heterogeneity affects
the relationship between sequencing depth and TMB,
we used TCGA samples from all cancer groups that are
present within PCAWG data, for which the proportion
of clonal mutations in each sample is known. These
files were downloaded from ICGC ([49]) and access was
granted through DACO-5661 and dbGAP Project 21959.
In each cancer cohort we calculated the proportion of
samples with high clonal fraction (i.e. the proportion of
the samples with clonal fraction greater than 50%).
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Results

The proportion of reads corresponding to a somatic
mutation is a biased estimator of mutation frequency

To calculate the TMB a tumour sample is obtained and the
genome (or a targeted subset of the genome, such as the
exome or a gene panel) is sequenced, usually to a relatively
high-depth. In the first instance, we make the simplify-
ing assumptions that all somatic mutations present in the
sequence reads can be detected with perfect efficiency
(i.e. we neglect the effects of sequencing and mapping
errors and any other artefacts) and that a sample con-
sisting only of cancer cells has been sequenced to depth
of N reads (constant across sites). We wish to obtain an
estimate of the TMB, defined as the number of somatic
mutations per megabase whose true frequencies are above
a threshold, 7. This is estimated by counting the muta-
tions with frequency above t and dividing by the size
of the target region. This approach requires the mutant

allele frequency to be estimated (to determine whether it
exceeds 7). The proportion of reads containing the mutant
allele is used as an estimate of the true mutation fre-
quency, f ([50]); however, in this case the proportion of
reads containing the mutant allele is a biased estimator
of f. This bias results from the fact that the proportion
is calculated only for sites at which at least one mutant
allele is observed, whereas the true set of sites at which a
somatic mutation has occurred is unknown (and may be
much larger [47]). The number of mutant alleles observed
among the sequence reads at a site is, therefore, a sam-
ple from a zero-truncated binomial random variable [51].
The expected value of the proportion of successes from
a zero-truncated binomial random variable is
which exceeds f (Fig. S1).

Fisher derived a maximum likelihood procedure to esti-
mate the parameter f in a singly truncated binomial

f
==’
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distribution [51]. The extent of the bias resulting from
zero-truncation depends on the true (but unknown) fre-
quency spectrum of the somatic mutations in the sample
and is largest when there are many low-frequency somatic
mutations. In practice, the bias is much larger than shown
in Fig. S1, because in the calculation of TMB, typically
only sites at which the observed proportion of reads con-
taining the mutant allele is greater than the threshold ¢
(often set at 0.05) are considered. The number of reads
with the alternative allele is therefore a sample from an
TN-truncated binomial random variable and the upward
bias in the estimate of the true mutation frequency has the
potential to be substantial (Fig. 1).

Bias in TMB resulting from uncertainty in frequency
estimates

Even if the complete set of sites at which a somatic
mutation has occurred were known, so that the mutation
frequencies were not affected by truncation bias, the num-
ber of mutations above the frequency threshold is likely
to be a biased estimate of the TMB. This is because in
addition to bias, the mutation frequency estimates include
uncertainty. If we count the number of mutations with
empirical proportions greater than t and if the mutation
frequency spectrum has a strongly negative slope at 7 then
the number of mutations with true frequency below t
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but empirical proportion above t (i.e. moving from left
to right across the yellow line in Fig. 3, Fig. S2) may be
much larger than the number passing the threshold in the
other direction, resulting in over-estimation of TMB. As
an example, Fig. S3 shows the points that cross the thresh-
old to the left and right for a simulation using @ = 0.1 and
B = 100.

Models of exponential growth and largely neutral
tumour evolution predict a large number of low-
frequency variants [52] and simulations suggest that the
two sources of bias introduced in this and the previous
section can result in substantial bias in TMB estimated
from cancer samples, with the impact on TMB depend-
ing on the shape of the mutant allele frequency spectrum
(Fig. 2 and Fig. S3).

Relationship between coverage and TMB in 10 different
cancer cohorts

The above demonstration assumes perfect power to iden-
tify the somatic mutations on the sequenced reads. In
reality, many of the somatic mutations present on the
sequenced reads may not be identified by somatic muta-
tion calling pipelines. The power to detect a somatic
mutation at a site will depend on the sequencing depth
and depth also influences the extent of the bias result-
ing from 7 N-truncation. The combination of these effects
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Fig. 3 lllustration of how uncertainty in mutation frequency estimates can lead to over-estimation of the number of mutations above the frequency
threshold, even if the estimated frequencies are unbiased. The red and blue shaded areas correspond to mutations for which sampling error could

cause them to cross the frequency threshold (i.e. the estimated frequencies of mutations with true frequencies in the red shaded area may be below
the threshold due to sampling error, while the estimated frequencies of mutations in the blue shared area may be above the threshold). Because the
blue shaded area is much larger than the red area, the number of mutations that pass the threshold from left to right is likely to be much larger than
the number of mutations that pass the threshold in the other direction, leading to over-estimation of the number of mutations above the threshold
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is likely to result in instability in the TMB estimate
as the sampling depth is varied, potentially resulting
from inconsistent results obtained by different experi-
mental protocols. To illustrate this potential instability we
down-sampled the sequencing reads from real data (from
TCGA) to 50% of their sequencing depths and imple-
mented a pipeline to estimate TMB (with a frequency
threshold of 0.05). The TMB estimated in this way was
sensitive to sequencing depth following down sampling
and showed no evidence of having reached a plateaux
by the time the full sample depth was included (Fig. 4).
To investigate the relationship between sequencing depth
and TMB across real exome sequencing data we ana-
lyzed 4,850 TCGA samples from ten cancer types. In
six of the cancer types there was a statistically signifi-
cant positive correlation between sequencing depth and
TMB, although the depth appears to explain only a small
proportion of the variation in TMB (Fig. S5).

Discussion

The number of somatic mutations observed in tumours
has been studied extensively in recent years to understand
its efficacy as a predictive biomarker in different cancer
types as well as the factors that contribute to its variation
between individuals and across cancer types [16, 17, 34—
36]. To estimate TMB mutation callers are used to identify
somatic variants and to estimate their frequencies. The
number of somatic mutations above a specified threshold
frequency per megabase of the genomic region targeted
in the experiment is then reported as the TMB. The per-
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formance of the mutation callers depends on sequencing
depth and mutation frequency and many mutations with
low frequencies (< 10%) may be missed by mutation
callers at moderate sequencing depths [47], potentially
leading to underestimation of TMB. Unbiased estimation
of TMB also requires unbiased frequency estimation. In
this study, we report two sources of bias in TMB esti-
mation that can lead to incorrect TMB estimates and
inconsistency across studies.

The first source of bias results from misestimation of
somatic mutation frequencies. The number of mutant
alleles obtained when a genomic site is sequenced at some
depth is a binomial random variable. However, if only sites
at which a mutation is observed are considered, then this
random variable is zero-truncated. In the early part of
the last century Fisher showed that the proportion of suc-
cesses obtained from a zero-truncated random variable is
a biased estimate of the success probability [51]. This bias
becomes more severe if the distribution is truncated at
a frequency above zero, as is the case in the calculation
of TMB. The second source of bias is due to the uncer-
tainty in the estimated frequency. Even if the frequency
estimate is unbiased, the number of somatic mutations
with estimated frequency above a given threshold may be
a biased estimate of the number of mutations with true
frequencies above the threshold. This is because the num-
ber of somatic mutations with true frequencies to the left
or right of the threshold may be very different, as illus-
trated in Fig. 3. The extent to which these two sources of
bias affect TMB estimates depends on the shape of the
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variant allele frequency spectrum and can be substantial
if there is a high proportion of low-frequency subclonal
variants, with a steep slope in the variant allele frequency
spectrum around the threshold (Fig. 2).

In the results based on simulated data the locations of all
somatic mutations were known. In real data the somatic
mutations must be inferred from mapped sequencing
reads and they are not recovered with perfect efficiency,
so that estimated TMB will be a function of both the
power to detect somatic mutations as well as the biases,
described above, that affect the number of mutations
with observed frequency above the threshold. The down-
sampling experiments we carried out were intended to
assess the combined effects of these factors as a func-
tion of sequencing depth. We observed that the TMB is
not consistent across different sequencing depths (Fig. 4).
We also analyzed 10 TCGA cancer cohorts to assess the
relationship between TMB and sequencing depth in real
cancer samples. Our results showed that, in six out of the
ten cancer types, TMB and sequencing depth are posi-
tively correlated (consistent with Fig. 4). The influence of
tumour purity on mutation detection in mutation caller
tools has been studied previously [53] and it is well known
that the presence of normal cells in tumour samples can
result in underestimation of tumour mutation allele fre-
quencies [50], hence impacting on TMB estimation. A
positive correlation has previously been reported between
sample purity and TMB [36] and methods have been
suggested to account for tumour purity in calculation of
TMB, such as increasing sequencing depth and dividing
variant allele frequency (VAF) by purity and increasing the
threshold [54]. Given that the majority of samples we stud-
ied have high purity (above 50%), our results suggest that
sequencing depth can have an impact on the TMB even in
samples with high purity (Fig. S6).

Although many of the cancer types showed evidence
of correlation between sequencing depth and TMB,
this was not the case for bladder urothelial carcinoma
(BLCA), lung adenocarcinoma (LUAD), prostate adeno-
carcinoma (PRAD), skin cutaneous melanoma (SKCM).
Using PCAWG data in which clonal and subclonal muta-
tions have been distinguished, we found that the lack
of correlation between TMB and coverage in some can-
cer types is likely due to the high clonal proportions in
samples within these cancer types (Fig. S7). Because they
occur at high frequencies (far in excess of the frequency
thresholds used to define TMB), clonal mutations are eas-
ier to detect and contribute unambiguously to the count of
mutations exceeding the frequency threshold. Unsurpris-
ingly, more heterogenous tumours (with high proportions
of subclonal mutations) are more likely to be influenced by
changes in sequencing depth. This is consistent with the
observation of higher TMB in metastatic cancers, which
has been suggested to result from bottlenecks in cell popu-
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lations leading to increased proportions of clonal variants
[55, 56]. Therefore, tumour heterogeneity may impact
TMB estimates and may explain some of the variabil-
ity in estimated TMB values across studies. Interestingly,
tumour heterogeneity has also been suggested as a com-
panion to TMB to achieve better performance in ICI
response prediction ([57]).

Our study demonstrates that there can be substantial
biases in TMB estimates when the mutational burden
includes a large contribution from subclonal mutations.
These biases result from lack of power to detect low-
frequency variants as well as bias and uncertainty in esti-
mated mutation frequencies. There are at least two ways
in which this issue can be addressed. At higher sequenc-
ing depths the power to detect low-frequency variants
increases. Given any TMB threshold it is possible to deter-
mine the sequencing depth that would be required to
achieve higher power to recover somatic mutations at or
above that threshold. Although, the biases we describe
here also decrease with increasing sequencing depth it is
less easy to determine the relationship between sequenc-
ing depth and the bias in TMB resulting from these
effects as they depend on the shape of the mutation fre-
quency spectrum. An alternative approach, which may
provide stable estimates of TMB even for lower sequenc-
ing depths, would be to use all of the data generated to
estimate the shape of the variant allele frequency spec-
trum and, from this, to derive an estimate of the TMB.
Although in-principle this is possible, it will require the
development of sophisticated statistical models that can
account appropriately for all technical factors that can
influence the probability with which somatic mutations
are recovered and their observed frequency in tumour
sequencing data.

Conclusion

We have examined two sources of bias that can affect
current methodologies to estimate TMB. The impact of
these biases depends on the mutant allele frequency spec-
trum and it can be substantial when the TMB includes
a large contribution from subclonal mutations. These
strength of these biases, as well as the power to detect
subclonal mutations, vary with sequencing depth, result-
ing in the potential for inconsistency in TMB estimated
using different sequencing depths. We show through an
analysis of data from TCGA that there is a correlation
between sequencing depth and estimated TMB, except in
the case of tumours with large proportions of clonal vari-
ants. Overall, our findings caution that current methods to
estimate TMB can be biased as well as inconsistent at dif-
ferent sequencing depths and we suggest that accurate and
robust estimation of TMB could be achieved using statis-
tical models to estimate parameters of the mutant allele
frequency spectrum.
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