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Background
In the past decades, many RNAi therapeutic programs focusing on cancer, metabolic 
diseases, respiratory disorders, retinal degeneration, dominantly inherited brain, skin 
diseases and infectious diseases had entered the clinical practice [1, 2], several RNAi 
based antiviral therapeutic projects had also reached at clinical trial stages [3, 4]. More 
recently, some researchers reported the identification of a group of endogenous siRNAs 
that played a part in enhancing environmental stress responses by repressing translation 
[5, 6]. However, the gene silencing effectiveness of RNAi relied on the siRNA efficacy in 
targeting a specific gene, so the efficacy prediction method constituted a huge challenge 
in selecting the potent siRNAs [7]. In general, researchers mainly used the machine-
learning algorithms to design potent siRNAs [8–10], and focused on these features that 

Abstract 

Background:  In siRNA based antiviral therapeutics, selection of potent siRNAs is an 
indispensable step, but these commonly used features are unable to construct the 
boundary between potent and ineffective siRNAs.

Results:  Here, we select potent siRNAs by removing ineffective ones, where these 
conditions for removals are constructed by C-features of siRNAs, C-features are gener-
ated by MG-algorithm, Icc-cluster and the different combinations of some commonly 
used features, MG-algorithm and Icc-cluster are two different algorithms to search the 
nearest siRNA neighbors. For the ineffective siRNAs in test data, they are removed from 
test data by I-iteration, where I-iteration continually updates training data by adding 
these successively removed siRNAs. Furthermore, the efficacy of siRNAs of test data is 
predicted by their nearest neighbors of training data.

Conclusions:  By siRNAs of Hencken dataset, results show that our algorithm removes 
almost ineffective siRNAs from test data, gives the clear boundary between potent and 
ineffective siRNAs, and accurately predicts the efficacy of siRNAs also. We suggest that 
our algorithm can provide new insights for selecting the potent siRNAs.

Keywords:  MG-algorithm, Icc-cluster, C-feature, I-iteration

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Jia et al. BMC Bioinformatics          (2022) 23:337  
https://doi.org/10.1186/s12859-022-04867-9

BMC Bioinformatics

*Correspondence:   
hanqh15@163.com

1 School of Mathematics, 
Southeast University, 
Nanjing 210096, People’s 
Republic of China
2 Department of Mathematics, 
Nanjing Forestry University, 
Nanjing 210037, People’s 
Republic of China
3 State Key Laboratory 
of Bioelectronics, School 
of Biological Science and Medical 
Engineering, Southeast 
University, Nanjing 210096, 
People’s Republic of China

http://orcid.org/0000-0002-6237-0459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04867-9&domain=pdf


Page 2 of 15Jia et al. BMC Bioinformatics          (2022) 23:337 

contained empirical rules [11, 12], nucleotide frequency [10], binary pattern [13, 14], 
thermal stability [13], and many hybridized approaches [10].

However, for these commonly used features [10–14], there were no directly experi-
mental evidences showing that they were able to influence siRNA activity [7], so their 
reliability needed to be validated when they were used to define the similarity of siRNAs. 
Here, MG-algorithm and Icc-cluster were used to verify their reliability, where MG-
algorithm was able to generate such mini-groups that their samples were the nearest 
neighbors with each other [15], and Icc-cluster was able to put the distant samples to the 
different mini-clusters [16]. Results showed that most potent siRNAs of test data were 
unable to search their nearest neighbors from potent ones of training data.

Moreover, for theses commonly used algorithms for selection of potent siRNAs, they 
tried to constructing the overall difference between potent and ineffective siRNAs, such 
as ThermoComposition-21 [17], DSIR11 [18], i-score [19] that were both in the classifi-
cation and regression modes, Biopredsi [20] that tried to combine the features together 
with the rules as input, ANN [20] that used two kinds of siRNA sequence features as fea-
ture set, Linear [21] that was linear regression model that was constructed by nucleotide 
preference scores, and SVM [7, 14, 17] that based on deep learning algorithm. However, 
potent and ineffective siRNAs belonged to a chaotic system when their similarity were 
defined by these commonly used features. Thus, for any of these algorithms, it might 
misidentify many ineffective siRNAs when it tried to searching the majority of potent 
ones.

Here, we firstly constructed C-features of siRNAs by MG-algorithm, Icc-algorithm and 
the hybridized features of these commonly used features, where these hybridized fea-
tures were the different combinations of the frequencies of multi-nucleotides and the 
binary codings of their sequences. Then, for these ineffective siRNAs of test data, they 
were continually removed from test data and put to training data by I-iteration, where 
I-iteration continually updated training data by these successively removed siRNAs. In 
this study, for any removed siRNA of test data, its overall similarity with ineffective siR-
NAs of training data exceeded all potent siRNAs of training data. Moreover, we used 
Hencken dataset [7] to validate the reliability of our algorithm. For siRNAs of test data, 
results showed that our algorithm was able to remove the ineffective siRNAs from test 
data, gave the clear boundary between their potent and ineffective ones, and also accu-
rately predicted their efficacy. We hoped our algorithm was able to help the researchers 
to select the best effective siRNAs for use as potential therapeutics against important 
human viruses.

Results
Constructing training and test data

Hencken dataset contained over 1358 siRNA sequences targeting different human 
viruses and HIV siRNA database [5], where the experimental indicators of siRNAs were 
provided, the lengths of siRNAs were 19 bp, and 70% targeted gene knockdown was con-
sidered as the threshold to define potent and ineffective siRNAs.

In this paper, siRNAs of the data set were reordered by their observed inhibitions, and 
then these 20% siRNAs whose new serial numbers were multiple of 5 were selected to 
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construct test data. That is, we selected 103 potent and 242 ineffective siRNAs to con-
struct test data, and other 1380 siRNAs to construct training data.

Moreover, 20 test sets were randomly generated from Hencken dataset also, where we 
used test-i to denote the i-th test set, and test-i contain 103 potent and 242 ineffective 
siRNAs also. Here, the average identification results of these 20 test-i sets were used to 
compare the different algorithms, and the results of test data to show the details of our 
algorithm.

Comparison of different Ck‑features

Here, for siRNAs of training and test data, their C15-features and C31-features were dis-
played on t-SNE maps (Fig. 1) respectively, where t-SNE(t-statistic stochastic neighbor 
embedding) was a non-linear dimension reduction method which had been used to pre-
serve local structure in the data [22], C15-feature was the combination of 4 Fm-features, 
and C31-feature was the combination of 4 Fm-features and B-feature. From Fig.  1, the 
potent and ineffective siRNAs were significantly intermixed with any Ck-features. That 
is, potent and ineffective siRNAs belonged to a chaotic system when their similarity 
were defined by Ck-features.

In fact, none of the commonly used features was able to give the clear boundary 
between potent and ineffective siRNAs, such as empirical rules [11, 12], nucleotide 
frequency [10], binary pattern [13, 14], thermal stability [13], and many hybridized 
approaches [10]. However, when we enlarged Fig. 1, we was able to find that some inef-
fective siRNAs were the nearest neighbors with each other. Thus, MG-algorithm(or Icc-
cluster) with Ck-features was able to generate such mini-groups(or mini-clusters) that 
did not contain potent siRNAs of training data.

Fig. 1  The t-SNE maps of siRNAs of training and test data, where potent and ineffective siRNAs were 
coloured according to their memberships. The X-axis represented the first projections (1P) of t-SNE. The Y-axis 
represented the second projections (2P) of t-SNE. a The t-SNE maps of C15-features of training data. b The 
t-SNE maps of C31-features of training data. c The t-SNE maps of C15-features of test data. d The t-SNE maps of 
C31-features of test data
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Comparison of Cαs ,t
k

‑features and Dαs ,t
k

‑features

In this study, Cαs ,t
k -features and Dαs ,t

k -features were not used to removed ineffective 
siRNAs from test data. In fact, two elements of any of Cαs ,t

k -features had at most one 
1, and the sum of three elements of any of Dαs ,t

k -features was 1.
However, for the fixing k and αs , Dαs ,t

k (t = 1, 2, 3, 4)-features of R had significant 
difference. The reason was that Ck-features did not follow the normal distribution, 
mini-groups of MG1-algorithm, MG2-algorithm, mini-clusters of Icc1-cluster and Icc2
-cluster had significant difference.

Furthermore, since the goal of I-iteration was that continually removed ineffective 
siRNAs by αs-parameters, Cαs ,t

k -features were constructed by the first and third ele-
ments of Dαs ,t

k -features only.

Comparison of different Cαs ,t‑features

Here, for siRNAs of training and test data, their C20,1-features and C20,3-features were 
directly mapped on Fig. 2 by their two elements, respectively. Figure 2 showed that 
C20,1-features and C20,3-features were not able to give the clear boundary between 
potent and ineffective siRNAs, but they had a tendency to separate potent and inef-
fective siRNAs. Importantly, for the second elements of C20,1-features and C20,3-fea-
tures of siRNAs, Fig. 2 showed that the largest ones came some ineffective siRNAs of 
training and test data at the same time. Thus, Cαs ,t-features could be used to remove 
some ineffective siRNAs from test data. Moreover, Fig. 2 showed that C20,1-features 
and C20,3-features had significant difference also.

Fig. 2  The Cαs ,t-feature maps of training and test data, where potent and ineffective siRNAs were coloured 
according to their memberships. The X-axis represented c20,t(1)-features of siRNAs. The Y-axis represented 
c
20,t(2)-features of siRNAs. a The map of C20,1-features of siRNAs of training data. b The map of C20,3-features 

siRNAs of training data. c The map of C20,1-features of siRNAs of test data. d The map of C20,3-features siRNAs 
of test data
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The reliability of I‑iteration

Here, for I-iteration with αs-parameters, the cumulative numbers of their removed inef-
fective and potent siRNAs were mapped on Fig. 3a and b, respectively. From Fig. 3a and 
b, when αs-parameter was less than 70%, I-iteration removed few potent siRNAs, and 
almost ineffective ones from test data. However, when αs-parameter was equal to 70%, 
I-iteration removed 10 potent siRNAs from test data. In fact, for some siRNAs that their 
efficacy was from 65 to 75%, their Cαs ,t-features had no significant difference. To prevent 
that I-iteration falsely removed potent siRNAs from test data, 65% was selected as the 
largest αs-parameter.

Moreover, in all removals of I-iteration, we found all βs,1
1 (1)-parameters and βs,2

1 (1)

-parameters were equal to zero, where we only showed βs,t(1)-parameters that were 
the first constructed by αs-parameters. That is, for siRNAs of test data, these ones were 
removed from test data that all their cα,1(1)-features(or cα,2(1)-features) were zero.

Furthermore, all βs,3
1 (1)-parameters and βs,4

1 (1)-parameters were mapped on Fig.  3c, 
respectively, Fig.  3c showed that all βs,3

1 (1)-parameters and βs,4
1 (1)-parameters were 

greater than 10. That is, for these siRNAs of test data that their cα,3(1)-features(or cα,4(1)
-features) were zero, their cα,3(2)-features(or cα,4(2)-features) were greater than 10 might 
be removed from test data.

At last, Fig.  3d showed that βs,t
2 (1)(t = 1, 2)-parameters were greater than 27, while 

β
s,t
2 (1)(t = 3, 4)-parameters were relatively small.
That is, for any removed siRNAs of test data, its overall similarity with ineffective siR-

NAs of training data exceeded all potent siRNAs of training data.

The boundary between potent and ineffective siRNAs

Here, for potent and ineffective siRNAs of test dat, their boundary were constructed by 
Cα10-features( Eq.  7), where their Cα10-features were displayed on t-SNE map(Fig.  4a), 

Fig. 3  a The cumulative number of the removed ineffective siRNAs, where the X-axis represented αs , the 
Y-axis represented the number of the removed siRNAs. b The cumulative number of the removed potent 
siRNAs, where the X-axis represented αs , the Y-axis represented the number of the removed siRNAs. c The 
map of βs,3

1 (1)-parameters and βs,4
1 (1)-parameters. d The map of βs,t

2 (1)-parameters
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and Cα10-features were generated from the updated training data of I-iteration. Fig. 4a 
showed that Cα10-features gave the relatively clear boundary between potent and ineffec-
tive siRNAs of test data.

The distinguishing results of P‑cluster and I‑cluster

For siRNAs of test data, their distinguishing results of P-cluster and I-cluster were sum-
marized in Tables 1 and 2. From Table 2, TN, FN, TP and FP of test data were 228, 14, 
98 and 5 respectively. That is, only 5 potent and 14 ineffective siRNAs of test data were 

Fig. 4  a The t-SNE map of Cα10-features of siRNAs in test data, where the X-axis represented the first 
projections (1P) of t-SNE, the Y-axis represented the second projections (2P) of t-SNE, TN, FN, TP and FP of 
siRNAs were coloured according to their memberships. b The predicted efficacy and observed inhibition 
of siRNAs, where TN, FN, TP and FP of siRNAs were coloured according to their memberships, the X-axis 
represented the observed inhibition of siRNAs, and the Y-axis represented the predicted efficacy of siRNAs

Table 1  The distinguishing results of siRNAs

Column headers are defined as the same paper

*Is the average value of Se(or Sp) of these 20 test-i sets

Data Tool Se (%) Sp (%)

Test data I-iteration 87.5 97.9

20 test-i sets I-iteration 81.5* 96.6*

20 test-i sets Score-Level 63.1* 92.2*

20 test-i sets ThermoComposition-21 51.9* 89.9*

20 test-i sets DSIR 49.2* 88.9*

20 test-i sets i-score 48.2* 88.3*

20 test-i sets Biopredsi 46.9* 87.4*
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misidentified, respectively. Moreover, the distinguishing result of test data was displayed 
on t-SNE map by Cα10-features of siRNAs (Fig. 4a). Furthermore, Fig. 4a was able to help 
us to search these misidentified siRNAs.

Moreover, for TN, FN, TP and FP of 20 test-i sets, their average value were 210.3, 21.7, 
95.5 and 7.5 respectively, and the details were summarized in the second row of Table 2. 
That is, the average distinguishing results of 20 test-i sets were slightly less compared 
to ones of test data. The reason was that some ineffective siRNAs were easier to search 
their neighbors from these ones with similar efficiency. These results demonstrated that 
I-iteration was able to correctly remove ineffective siRNAs from test data.

Predicting efficacy of siRNAs

Here, for siRNAs of test data, their efficacy were predicted by Eq. (10), where the pre-
dicting results were summarized in Fig. 4b and Table 2. Table 2 showed that PCC of the 
predicting efficacy was equal to 0.76 that was calculated by Eq. (12). Moreover, for 20 
test-i sets, the average value of their PCCs was equal to 0.73 (Table 2). That is, the aver-
age PCCs of 20 test-i sets were slightly less than one of test data.

And more importantly, Fig.  4b showed that the efficacy of siRNAs in P-cluster (or 
I-cluster) was greater (or less) than 70%. This was because I-iteration gave the relatively 
clear boundary between P-cluster and I-cluster. That is, for almost potent(or ineffective) 
siRNAs of test data, their predicting efficacy of Eq. (10) were potent (or ineffective) also.

Comparison to existing design algorithms

For the distinguishing results of Score-Level [7], ThermoComposition-21 [17], DSIR11 
[18], i-score [19] and Biopredsi [20], they were summarized in Tables  1 and 2, where 
these results were the average value of these 20 test-i sets, Score-Level used F-score to 
investigate the contribution of each feature and remove the weak relevant features to 
SVM [7], ThermoComposition-21 combined position features and thermodynamic fea-
tures to an artificial neural network model [17], DSIR11 used basic sequence informa-
tion and a simple linear model LASSO [18], i-score utilized linear regression models 
to perform art-of-the-state accuracy rates [19], and Biopredsi applied artificial neural 

Table 2  The results of TN,FN, TP and FP of different test sets

Column headers are defined as the same paper

*Are the average value of TN,FN, TP and FP of these 20 test-i sets, respectively

Data Algorithm TN FN TP FP

Test data I-iteration 228 14 98 5

20 test-i sets I-iteration 210.3* 21.7* 95.5* 7.5*

20 test-i sets Score-Level 180.7* 51.3* 87.7* 15.3*

20 test-i sets ThermoComposition-21 152.4* 79.6* 85.8* 17.2*

20 test-i sets DSIR 145.8* 86.2* 83.5* 19.5*

20 test-i sets i-score 141.3* 90.7* 84.3* 18.7*

20 test-i sets Biopredsi 137.9* 94.1* 83.2* 19.8*

test-a data I-iteration 231 11 99 4

test-b data I-iteration 235 7 96 7

test-c data I-iteration 218 24 100 3

test-d data I-iteration 224 18 97 6
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networks to predict siRNA efficacy [20]. Table 1 showed that the highest sensitivity of 
those servers came from Score-Level [7] that was 63.1% only. Moreover, Table 2 showed 
that the poor sensitivity of those servers was generated from the large FN. For instance, 
for DSIR11, i-score and Biopredsi, their FN were greater than their TP. That is, the num-
bers of their misidentified ineffective siRNAs were greater than their correctly identi-
fied potent ones. In fact, these algorithms tried to constructing the overall difference 
between potent and ineffective siRNAs, but siRNAs belonged to a chaotic system when 
their similarity were defined by these commonly used features. Thus, for any of these 
algorithms, it might misidentify many ineffective siRNAs when it tried to searching the 
majority of potent ones. Furthermore, Tables  1 and 2 showed that the distinguishing 
results of hybridized features (Score-Level and ThermoComposition-21) were superior 
to ones of relatively simple features(DSIR11), and the nonlinear results(Score-Level [7] 
and ThermoComposition-21) were superior to linear ones also(DSIR11 and i-score). 
In total, these results verified that these algorithms were unable to construct the clear 
boundary between potent and ineffective siRNAs.

Compared to above algorithms, the sensitivity of I-iteration(81.5%) was far more than 
any one of them. The reason was that FN of P-cluster and I-cluster was far less than ones 
of other algorithms. In fact, I-iteration was used to remove ineffective siRNA from test 
data, and only these ones that their overall similarity with ineffective siRNAs of train-
ing data exceeded all potent siRNAs of training data were removed from test data. And 
more importantly, I-iteration did not construct the overall difference between potent 
and ineffective siRNAs, it only continually updated training data by these successively 
removed siRNAs.

Here, the efficacy predicting results of ANN [20], Linear [21] and SVM [7, 14, 17] 
were summarized in Table 3, where ANN used the artificial neural network to train on a 
complementary 21-nucleotide guide sequence [20], Linear used support vector machine 
regression by combining and filtering features [21], SVM [14] used various characteristic 
methods, and SVM [17] used thermodynamic and composition features. From Table 3, 
the highest PCC of these servers came from Score-Level and ThermoComposition-
21(SVM [14]) also. That is, the better efficacy prediction was generated from the better 
classification.

Compared to above algorithms, the efficacy prediction of Eq. (10) was nearly equal 
to Score-Level, but the classification of I-iteration was far more than Score-Level. The 

Table 3  The efficacy prediction results of siRNAs

Column headers are defined as the same paper

*Is the average value of PCCs value of these 20 test-i sets

Data Tool Algorithm PCC

Test data Eq. (12) Eq. (12) 0.76

20 test-i sets Eq. (12) Eq. (12) 0.73*

20 test-i sets Biopredsi [20] ANN 0.62*

20 test-i sets [21] Linear 0.58*

20 test-i sets ThermoComposition-21 [17] SVM 0.71*

20 test-i sets [14] SVM 0.55*

20 test-i sets Score-Level [7] SVM 0.73*
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reason was that Cα10-features only constructed the overall difference between potent and 
ineffective siRNAs.

The sensitivity analysis of our algorithm

In the process of constructing features, αs-parameters were beginning with 20%, and 
ending with 65%. Naturally, this begged a follow-up question, that is, whether similar 
distinguishing results of our algorithm could be constructed by other initial and final 
values. In fact, for αs-parameters that were beginning with 10% and ending with 65%, 
their distinguishing results had no difference compared to our used values. That is, 
P-cluster and I-cluster were not sensitive to the initial values of αs-parameters.

The cross‑validation of our algorithm

Here, we also used these siRNAs whose new serial numbers were multiple of 1 (or 2, 
or 3, or 4) to construct test-a(or test-b, or test-c, or test-d) data, and other siRNAs to 
construct training data. Then, their P-cluster and I-cluster were constructed by Eq. (10), 
and the distinguishing results were summarized in Table 2. Table 2 showed that the dis-
tinguishing result of 5 groups of P-clusters and I-clusters had no difference compared 
to our used test data. These results demonstrated that ineffective siRNAs were easier to 
search their neighbors from these ones with similar efficiency, and our algorithm was 
able to ensure non-randomness of the performance in experiments also.

Discussion
In fact, MG-algorithm (or Icc-cluster) with Ck-features is able to produce some these 
ineffective mini-groups(or mini-clusters) that do not contain potent ones of train-
ing data, where these ineffective mini-groups(or mini-clusters) contain about 20% siR-
NAs of test data. That is, for some ineffective siRNAs of test data, they are relatively 
easy to search their nearest neighbors from ineffective ones of training data. That is, 
some ineffective siRNAs exist local similarity with Ck-features. And more importantly, 
for different Ck-features, their ineffective mini-groups(or mini-clusters) have significant 
difference. Thus, if we construct enough these ineffective mini-groups(or mini-clusters) 
that have significant difference, we are able to remove ineffective siRNAs from test data.

Moreover, for most C65,t-features that are constructed by raw training data, they can 
remove more than 70% ineffective siRNAs from test data, but a penalty to be paid for 
about 20% potent siRNAs of test data are falsely removed also. To remain potent siRNAs 
in test data, I-iteration uses βs,t-parameters that only removed ineffective siRNAs from 
test data. In fact, the conditions of βs,t-parameters for these removal are very harsh. That 
is, for any removed siRNAs of test data, its overall similarity with ineffective siRNAs of 
training data exceeds all potent siRNAs of training data. In fact, we can only remove 
about 35% of ineffective siRNAs of test data at a time, so we use I-iteration to construct 
10 removals.

Since 70% targeted gene knockdown is considered as the threshold to define potent 
and ineffective siRNAs, 65% is selected as the largest αs-parameter. This prevents that 
potent siRNAs are falsely removed from test data by I-iteration. Furthermore, since 
the number of siRNAs in training data is selected as the clustering number of Icc-clus-
ter, Cαs ,3-features and Cαs ,4-features of potent siRNAs in training data have significant 
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advantage compared to ones in test data. This ensures that I-iteration does not remove 
potent siRNAs from test data also.

Conclusion
In fact, the key to success of our algorithm is MG-algorithm, which does not focus on 
searching the overall difference between potent and ineffective siRNAs, but constructs 
the local similarity of ineffective ones. That is, if some ineffective siRNAs are highly cor-
related with some specific features, MG-algorithm can extract their similarity by mini-
groups. In total, we hope our algorithm can be useful in predicting highly potent siRNAs 
to aid therapeutic development.

Methods
Here, for siRNAs of training data, we use X(i) and Y(j) to denote the i-th and j-th potent 
and ineffective ones, respectively. Moreover, we use Z(l) to denote the l-th siRNA of test 
data, where the efficacy of Z(l) is seen as unknown.

Ck‑features of siRNAs

For R that is a random siRNA, its F1-feature, F2-feature, F3-feature and F4-feature are 
constructed by the frequencies of mononucleotide, dinucleotide, trinucleotide and tetra-
nucleotide of the sequence of Rm respectively, where

Moreover, B-feature of R is constructed by its binary codings of nucleotide, where

Furthermore, 31 Ck-features of R are constructed by the different combinations of 4 Fm
-features and 1 B-feature. That is, any Ck-feature contains one or more Fm-features and 
B-feature.

MG‑algorithm and Icc‑cluster

MG-algorithm directly puts the nearest neighbor siRNAs in the same mini-groups [15]. 
That is, when a siRNA belongs to a mini-group, its nearest neighbor is also in the mini-
group, where MG1-algorithm and MG2-algorithm use Euclidean distance and PCC 
(Pearson Correlation Coefficient) to define the similarity of siRNAs, respectively. But 
for Icc-cluster algorithm, its clustering centers are generated from these most distant 
siRNAs with each other, and other siRNAs are put to mini-clusters by searching their 
nearest centers [16], where Icc1-cluster and Icc2-cluster use Euclidean distance and PCC 
to define the similarity of siRNAs, respectively. Moreover, the freely available MATLAB 
implementes  to perform MG-algorithm and Icc-cluster are summarized in  Additional 
file 1.

(1)
R = X(i), or Y (j), or Z(l)
Rm = Rr1 · · · rm−1, rs is the nucleotide of R in the s-th position

Fm = {fm(1), fm(2), · · · , fm(4
m)}, 4m

l=1 fm(l) = 19

(2)







B = {b(1), b(2), · · · , b(76)}
b(l) = 0, 1, l = 1, 2, · · · , 76
�4t+4

l=4t+1 b(l) = 1, t = 0, 1, · · · , 18,
�76

l=1 bm(l) = 19
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In fact, for many potent siRNAs of test data, their nearest neighbors come from inef-
fective ones of training data. To separate these nearest neighbors that come from dif-
ferent efficient categories, the number of siRNAs of training data is selected as the 
clustering number of Icc-cluster. Results show that some of these nearest neighbor siR-
NAs are put to different mini-clusters by Icc-cluster with the clustering number.

αs‑parameters

Here, siRNAs of training data are specified as 3 E-groups by a αs-parameter, where

Ye(j) is the experimental efficacy of Y(j), and αs-parameter is a artificial efficacy boundary 
between ineffective siRNAs.

D
αs ,t
k

‑features of siRNAs

For siRNAs of training and test data, MG1-algorithm with their Ck-features divides them 
into mini-groups, where Gu

k-group is used to denote the u-th mini-group. For R, if it is 
put to Gp

k-group, its Dαs ,1
k -feature is constructed, where

N {G
p
k

⋂

El} is the siRNA number of the intersection of Gp
k and El(l = 1, 2, 3) , and N {G

p
k } 

is the siRNA number of Gp
k-group.

C
αs ,t
k

‑features of siRNAs

Here, Cαs ,1
k -feature of R is constructed by its Dαs ,1

k  , where

Moreover, Cαs ,2
k -features, Cαs ,3

k -features and Cαs ,4
k -features of siRNAs are constructed by 

MG2-algorithm, Icc1-cluster and Icc2-cluster respectively, where k is from 1 to 31, s is 
from 1 to 11, and t is from 1 to 4.

C
αs ,t‑features of siRNAs

For R, its Cαs ,t-feature is constructed by its 31 Cαs ,t
k  , where

(3)











αs = (20+ 5(s − 1))%, s = 1, 2, · · · , 11
X(i) ∈ E1
Y (j) ∈ E2,αs ≤ Ye(j) < 70%
Y (j) ∈ E3,Ye(j) < αs

(4)































D
αs ,1
k = {d

αs ,1
k (1), d

αs ,1
k (2), d

αs ,1
k (3)}

d
αs ,1
k (1) =

N {G
p
k

�

E1}

N {G
p
k }

d
αs ,1
k (2) =

N {G
p
k

�

E2}

N {G
p
k }

d
αs ,1
k (3) =

N {G
p
k

�

E3}

N {G
p
k }

(5)































C
αs ,1
k = {c

αs ,1
k (1), c

αs ,1
k (2)}

c
αs ,1
k (1) =

�

0, d
αs ,1
k (1) ≤ d

αs ,1
k (3)

1, d
αs ,1
k (1) > d

αs ,1
k (3)

c
αs ,1
k (2) =

�

0, d
αs ,1
k (1) ≥ d

αs ,1
k (3)

1, d
αs ,1
k (1) < d

αs ,1
k (3)
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C
αs‑features of siRNAs

For R, its Cαs-feature is the combination of four types Cαs ,t-features, where

I‑iteration

Here, for ineffective siRNAs of test data, I-iteration uses βs,t-parameters to remove 
them from test data, where βs,t-parameters are constructed by Cαs ,t-features(Eq. 6) of 
X(i), and

Then, for any Z(l) of test data, it is removed from test data if its Cαs ,t-feature satisfies any 
of the conditions of Eq. (9), where Eq. (9) is defined as

In details, the iteration process is constructed by the following:
Step 1 Based on α1-parameter and β1,t-parameters that are constructed by Eq. (8), 

these siRNAs of test data are removed from test data if their Cα1,t-features satisfy any 
of the conditions of Eq. (9), where αs of Eq. (9) is α1 . Moreover, the copies of these 
removed siRNAs are put to I-cluster and E3-group(Eq. 3) simultaneously. That is, the 
training data is updated.
Step 2 Based on the updated training data of Step 1, Repeat Step 1 until no Z(l) can 

be removed from test data by new β1,t-parameters, where we obtain new β1,t-param-
eter by the updated training data of Step 1.
Step 3 Repeat Step 1 and 2 until β11,t-parameter does not remove Z(l) from test 

data.
That is, the updated training data stops until α11 = 70 . At last, the remaind siRNAs 

of test data are put to P-cluster. Here, for siRNAs of test data, they are distinguished 
as potent(or ineffective) ones when they belong to P-cluster (or I-cluster).

Predicting efficacy of siRNAs

Here, for siRNAs of P-cluster and potent ones of training data (or siRNAs of I-clus-
ter and ineffective ones of training data), they are divided into mini-groups by MG1

-algorithm with their Cα10-features (Eq. 7), where Cα10-features are generated from the 
updated training data of I-iteration, the efficacy of Z(l) is predicted by Eq. (10),

(6)
{

Cαs ,t = {cαs ,1(t), cαs ,t(2)}, t = 1, 2, 3, 4

cαs ,t(i) =
∑31

k=1 c
αs ,t
k (i), i = 1, 2

(7)Cαs = {Cαs ,1,Cαs ,2,Cαs ,3,Cαs ,4} .

(8)















βs,t = {β
s,t
1 ,βs,t

2 }

β
s,t
1 = min {cαs ,t(1) of X(i)}, t = 1, 2

β
s,t
1 = max {cαs ,t(2) of these X(i) that their cαs ,t(1) is 0 }, t = 3, 4

β
s,t
2 = max {cαs ,t(2) of X(i)}

(9)







cαs ,t(1) ≤ β
s,t
1 , t = 1, 2

cαs ,t(2) ≥ β
s,t
2 , t = 1, 2, 3, 4

cαs ,t(1) = 0, cα1,t(2) ≥ min {β
s,t
1 , 16+ s}, t = 3, 4
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Ẑe(l) is the predicted efficacy of Z(l), Xe(i)(or Ye(j) ) is the experimental indicator of X(i)
(or Y(j)), u(or v) is the number of potent (or ineffective) siRNAs of the mini-group that 
contains Z(l).

Sensitivity and specificity

Here, we use Se(sensitivity) and Sp(specificity) to evaluate the consistency between the 
experiment indicators and clustering results, where the experimental indicators are seen 
as the golden standard of genes, and Se and Sp are defined as

where TN, FN, TP and FP are the number of true negatives, false negatives, true posi-
tives and false positives, respectively.

PCC model

In general, PCC model is used to measure the correlation between the predicted efficacy 
and observed inhibition, where

b is the number of siRNAs of test data, Ẑe(l) and Ze(l) are the predicted value and 
observed label of Z(l), Zp and σZp are the mean and standard deviation of all Ẑe(l) , Ze 
and σZe are the mean and standard deviation of all Ze(l) , respectively.

Abbreviations
Fm(m = 1, 2, 3, 4)-feature	� They are defined by Eq. (1)
B-feature			�   It is defined by Eq.(2)
Ck-features			�   They are constructed by the different combinations of its 4 Fm-features and 1 B-feature
D
αs ,t
k

-feature of R		�  It is defined by Eq. (4)
C
αs ,t
k

-feature of R		�  It is defined by Eq. (5)
C
αs ,t-feature of R		�  It is defined by Eq. (6)

C
αs-feature of R		�  It is defined by Eq. (7)

αs-parameter		�  It is defined by Eq. (3)
β-parameter		�  It is defined by Eq. (8)
{β

s,t
1 ,β

s,t
2 }-parameter	�	  It is defined by Eq. (8)

P-cluster			�   Containing these siRNAs of test data that are distinguished as potent ones
PCC			�   Pearson Correlation Coefficient
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(10)Ẑe(l) =

{

1
u

∑u
i=1 Xe(i),Z(l) ∈ P-cluster

1
v
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∑
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