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Background: Previous cancer prognostic prediction models often consider only the
most important transcriptomic expressions, and their power is limited. It is unknown
whether prediction power can be further improved when additional transcriptomic
information is incorporated.

Methods: To integrate transcriptomes, four models are compared based on 32 types of
cancer in the Cancer Genome Atlas, including the general Cox model with only clinical
covariates, the Cox model with a lasso penalty (coxlasso), the Cox model with an elastic
net penalty (coxenet), and the mixed-effects Cox model (coxlmm). Furthermore, we
partition the survival variance into the relative contribution of clinical and transcriptomic
components within the framework of coxlmm. Finally, the influence of different numbers
of genes was evaluated in the context of coxlmm.

Results: Compared with the clinical covariates–only Cox model, the average prediction
gain was 2.4% for coxlasso, 4.2% for coxenet, and 7.2% for coxlmm across 16 low-
censored cancers; a significant elevation of prediction power was observed for SARC,
SKCM, LGG, PAAD, and HNSC. Similar findings were observed for all 32 cancers
with the average prediction gain of 2.7, 3.8, and 5.8% for coxlasso, coxenet, and
coxlmm. Coxlmm always had comparable or better prediction performance relative to
coxlasso and coxenet with an average of 2.8% prediction improvement across the 16
low-censored cancers. In addition, it is shown that the predictive accuracy of coxlmm
generally increases with the number of genes included. The survival variance partition
analysis demonstrates that the transcriptomic contribution was higher for some cancers
(e.g., LGG, CESC, PAAD, SKCM, and SARC) and lower for others (e.g., BRCA, COAD,
KIRC, and STAD).
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Conclusion: This study demonstrates that the integration of transcriptomic information
can substantially improve prognostic prediction accuracy, but the prediction
performance is cancer-specific and varies across cancer types. It further reveals that
gene expression exhibits distinct contributions to survival variation across cancers.

Keywords: linear mixed model, regularization method, Cox model, gene expression, prognostic prediction, the
Cancer Genome Atlas

INTRODUCTION

Cancer is one of the primary causes of death worldwide, leading
to a growing severe threat to public health (Kyu et al., 2018;
Roth et al., 2018; Siegel et al., 2019). Developing accurate models
for prognostic prediction has long been an active research
topic in cancer epidemiological study. Traditional prognostic
prediction models consider only clinical and lifestyle information
(e.g., tumor features, patient conditions, a few social and
environmental factors) (Mallett et al., 2010); the predictive power
is, hence, limited. The past few years have witnessed a great
advent of high-throughput biotechnologies, and cancer research
has already entered the era of precision medicine, in which
patients’ individual genomic information is profiled to develop
better diagnoses and treatment strategies that are tailored to their
own tumors (Ashley, 2015; Collins and Varmus, 2015). As one
of the largest genomics programs in the field of cancer biology,
the Cancer Genome Atlas (TCGA) has generated multiple
high-dimensional omic profiles (e.g., genomic, epigenomic, and
transcriptomic biomarkers) on more than 11,000 patients with
various types of cancer, offering an unprecedented opportunity
for designing individualized treatments in terms of omics
information (Weinstein et al., 2013; Tomczak et al., 2015).

Meanwhile, numerous prediction models were established by
efficiently integrating available omics data sets for evaluating the
progress and prognosis of tumors (Zhu et al., 2017), including
head and neck squamous cell carcinoma (Shen et al., 2017a), oral
squamous cell carcinoma (Shen et al., 2017b), and gastric cancer
(Zhou et al., 2017). However, in terms of our literature review,
we find many previous predictions only incorporate a small
set of biomarkers into models in addition to clinical covariates
(Supplementary Table S1); for example, only seven CpG-based
methylation signatures were employed in Shen et al. (2017a), and
alternatively, only some important biomarker information was
extracted with dimensional reduction methods (e.g., principal
component analysis, partial least squares, or variable selection
methods; Zhao et al., 2014; Tang et al., 2017a,b) and was
employed for prediction. This may be due to statistical difficulties
when modeling high-dimensional omic data sets or due to the
consideration of clinical application, in which a small set of
biomarker predictors allow developing an implementable assay
in clinical practice. From a methodological perspective, those

Abbreviations: Coxenet, the Cox model with elastic net penalty; coxlasso, Cox
model with lasso penalty; coxlmm: the mixed Cox model; MCCV, Monte Carlo
Cross Validation; the abbreviations of cancers were summarized in Table 1; PCE,
the proportion of the survival variation explained by the clinical information
alone; PGE, the proportion of the survival variation explained by the transcriptome
information alone; PVE, proportion of the survival variation explained; TCGA, the
Cancer Genome Atlas.

existing approaches can be deemed to be sparse models as they
explicitly assume only a small fraction of omics information is
useful for prognostic prediction.

Although it has been shown that sparse models have the ability
to improve the predictive accuracy of patients’ prognoses, we
still have some concerns with regards to their prediction power
due to the following limitations. First, the sparsity is a relatively
strong assumption with little biological support. In practice, the
truly genomic architecture for tumor progress and prognosis is
rarely known in advance and is likely to vary dramatically among
cancers (Zeng and Zhou, 2017; Zhu et al., 2017). Second, the
performance of those prognostic methods generally depends on
the correlation of selected biomarkers (e.g., CpG sites or mRNAs)
with the target cancer. However, the selection of associated genes
with cancer prognosis remains challenging (Chen and Hunter,
2005; Bouvard et al., 2009; El Ghissassi et al., 2009; Secretan et al.,
2009; Plummer et al., 2016); as a consequence, the biomarkers
incorporated into models are not necessarily highly predictive of
tumor prognosis. Third, many potential biomarkers, which are
excluded due to moderate or weak effect sizes, are possibly jointly
important for survival variation (Eskin, 2015) and are actually
useful for prognostic prediction (Yang et al., 2010; Golan and
Rosset, 2011; Zhou et al., 2013). Therefore, the sparse prognostic
prediction methods may be suboptimal.

Indeed, the prediction accuracy for prognostic prediction
was recently shown to increase from 0.58, 0.62 to 0.64 when
integrating 100, 300, or 5000 mRNAs into the model (Zhu
et al., 2017), implying that, to some extent, incorporating more
informative biomarkers can improve prediction performance. In
contrast to sparse models, mixed-effects models, which include all
available biomarkers, have shown promising accuracy in genetic
prediction (Makowsky et al., 2011; Zhou et al., 2013; Zeng
and Zhou, 2017). Therefore, a natural consideration is whether
integrating a large number of biomarkers (e.g., genome-wide
transcriptomic expressions) into prognostic models can further
improve prediction performance. The difficulty is to determine
how many genes should be included. Note that the inclusion
of whole genome-wide transcriptomic expressions is one of the
most commonly representative choices. It is also of great interest
to empirically evaluate and compare the prediction performance
of mixed models with sparse models when a large amount of
omics information is available.

As it has been demonstrated that gene expressions possess
the best predictive power for cancer prognostic assessment
compared with other genomic measurements related to survival
risk (Zhao et al., 2005, 2014; Zhu et al., 2017; Kim et al., 2018),
in the present study, we only focus on this kind of omic
information to explore how transcriptome data can be leveraged
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to improve prediction accuracy relative to prior sparse methods.
First, a general Cox model with only clinical covariates is
considered to be a benchmark. Next, we employ the sparse
Cox model with an elastic net penalty and the linear mixed-
effects Cox model to integrate clinical information as well
as gene-expression levels. Moreover, we quantify the relative
contribution of clinical and transcriptomic information to
survival variance within the framework of a mixed-effects
Cox model. In order to deeply evaluate the four kinds
of Cox prediction models for the survival prognosis of
cancer patients, we empirically apply them to 32 types of
cancer in TCGA. Our results illustrate that the aggregation
of genome-wide transcriptomic information can improve
the prediction power substantially and further reveal that
expression measurements show varying contributions to survival
variation across cancers.

MATERIALS AND METHODS

Overview of Four Prognostic Cox
Prediction Models
We here offer an overview of the four kinds of Cox prognostic
prediction models used in the present study with detailed
descriptions of those models relegated to Supplementary File.
Let Xi be a p-dimensional vector for available clinical covariates
(e.g., disease stage, age, and gender) for individual i in the TCGA
data set (Hoadley et al., 2018) and assume each X is standardized
to have mean zero and variance one. Denote the observed survival
time by ti and the true survival time by Ti with di indicating
the censored status (i.e., di = 1 if Ti = ti, whereas di = 0 if
Ti < ti). We then employ the most widely used Cox model (Cox,
1972) h(ti|Xi) = h0(ti)eXT

i a to link survival risk with clinical
information, where h0(t) is an arbitrary baseline hazard function
and a = (a1, a2,. . ., ap) is a p-dimensional vector of effect
sizes for covariates.

Let Gi be an m-dimensional vector for a set of expression levels
for individual i and assume each expression is standardized. The
Cox model including both Xi and Gi is written as h(ti|Xi, Gi) =

h0(ti)eXT
i a + GT

i b with b = (b1, b2, . . ., bm) an m-dimensional
vector of effect sizes for expressions. Because of the high
dimension (i.e., m � n, see Table 1), we have to apply
regularization methods for parameter estimation to avoid model
overfitting (Fan and Li, 2001; Zou and Hastie, 2005; Tibshirani,
2011; Hastie et al., 2015) and only focus on the Cox model
with the lasso or elastic net penalty (denoted by coxlasso or
coxenet, respectively) (Zou and Hastie, 2005; Zeng et al., 2017).
We adopt the coordinate descent algorithm (Friedman et al.,
2010) to fit coxenet and select the optimal tuning parameter
via a subsampling strategy (Hastie et al., 2009). Note that, with
a suitable tuning parameter, most of the effect sizes for gene
expressions in coxlasso or coxenet would be shrunk to be exactly
zero, leading to the so-called sparse model. We set α = 0.50 in the
elastic net penalty as done in prior work (Gamazon et al., 2015;
Zeng et al., 2017) and implement model fitting with the R glmnet
(version 2.0-5) package (Friedman et al., 2010).

Unlike coxenet, which assumes only a few of genes
are involved in the survival risk, the linear mixed-effects
Cox model (denoted by coxlmm) explicitly supposes
that all genes may be implicated in cancer progress
and have nonzero effects (Zhou et al., 2013; Ott, 2016)
(i.e., bj ∼ N(0, σ2

b) with σ2
b the variance). We fit

coxlmm with the R coxme (version 2.2-10) package
(Therneau, 2019) via the Laplace approximation method
based on the second order Taylor series expansion
(Therneau et al., 2003).

Relative Overall Importance of Clinical
and Transcriptomic Information
To quantify the relative overall importance/contribution of
clinical and transcriptomic information to survival phenotypes
(Korsgaard et al., 1998; Yazdi et al., 2002; Gorfine et al.,
2017), we first make a log-transformation for the hazard
function and then define two quantities: the proportion of the
survival variation explained by the clinical information (PCE)
and the proportion of the survival variation explained by the
transcriptome information (PGE). The summation of PCE and
PGE is the proportion of the survival variation explained (PVE)
by currently available clinical and transcriptomic information
together. We apply the Jackknife method to yield the confidence
interval for PCE or PGE (Efron and Tibshirani, 1994). Further
computational details for PCE and PGE are described in
Supplementary File.

TCGA Cancer Data Sets and Quality
Control
We now apply these Cox models to cancer data sets publicly
available from TCGA (Hoadley et al., 2018). For those cancers,
we obtained their clinical information and RNAseq expression
levels. Note that, for comparison across all types of cancer in
TCGA, we employed pan-cancer normalized gene expression
RNAseq (IlluminaHiSeq) data sets provided by UCSC Xena1.
We selected overall survival time and status and included
age, gender, and pathologic tumor stage because only these
clinical variables are available for most of the patients. When
the pathologic tumor stage is unavailable, we alternatively
employed the clinical stage (i.e., CESC and OV) or histological
grade (i.e., LGG). All three stage variables are missing for five
cancer data sets (e.g., SARC). Cancer-specific covariates were
also considered for some cancers; for example, two binary
variables (i.e., the status of estrogen or progesterone receptor)
were added to BRCA.

For each cancer, we first merged clinical information and
gene expressions measured from the primary cancer tissue and
then excluded samples soaked in the formalin-fixed paraffin-
embedded tissue. Cancers with a sample size greater than 175
and a proportion of censored event less than 15% were defined
as low-censored data sets. To some extent, these two threshold
values (i.e., the sample size of 175 and the proportion of 15%)
were selected arbitrarily. Testicular germ cell tumor (TGCT) was
excluded as nearly all TGCT patients were alive during follow-up.

1https://xenabrowser.net/
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TABLE 1 | Basic information of the raw data sets and quality control for 32 cancers in TCGA used in the present study.

Cancer Initial data After combined (n) After quality control (n and m)

Gene expression (n and m) Clinical (n)

Adrenocortical Carcinoma (ACC) 79 20,530 92 79 77 19,194

Bladder Urothelial Carcinoma (BLCA) 426 20,530 436 425 400 20,164

Breast Invasive Carcinoma (BRCA) 1,218 20,530 1247 1215 901 20,131

Cervical Squamous Cell Carcinoma and
Endocervical Adenocarcinoma (CESC)

308 20,530 313 307 287 19,556

Cholangiocarcinoma (CHOL) 45 20,530 45 45 36 19,352

Colon Adenocarcinoma (COAD) 329 20,530 551 328 270 18,707

Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma (DLBC)

48 20,530 48 48 41 18,125

Esophageal Carcinoma (ESCA) 196 20,530 204 196 159 19,501

Glioblastoma Multiforme (GBM) 172 20,530 629 172 143 17,996

Head and Neck Squamous Cell
Carcinoma (HNSC)

566 20,530 604 566 440 19,526

Kidney Chromophobe (KICH) 91 20,530 91 91 65 18,104

Kidney Renal Clear Cell Carcinoma
(KIRC)

606 20,530 945 606 526 19,212

Kidney Renal Papillary Cell Carcinoma
(KIRP)

323 20,530 352 323 256 19,309

Acute Myeloid Leukemia (LAML) 173 20,530 200 173 161 16,718

Brain Lower Grade Glioma (LGG) 530 20,530 530 530 502 17,308

Liver Hepatocellular Carcinoma (LIHC) 423 20,530 438 422 343 19,382

Lung Adenocarcinoma (LUAD) 576 20,530 706 576 486 20,068

Lung Squamous Cell Carcinoma
(LUSC)

553 20,530 626 552 481 20,004

Mesothelioma (MESO) 87 20,530 87 87 81 19,463

Ovarian Serous Cystadenocarcinoma
(OV)

308 20,530 630 308 290 19,404

Pancreatic Adenocarcinoma (PAAD) 183 20,530 196 183 175 19,609

Pheochromocytoma and
Paraganglioma (PCPG)

187 20,530 187 187 176 17,886

Prostate Adenocarcinoma (PRAD) 550 20,530 566 550 483 18,456

Rectum Adenocarcinoma (READ) 105 20,530 186 105 81 18,316

Sarcoma (SARC) 265 20,530 271 264 258 20,083

Skin Cutaneous Melanoma (SKCM) 474 20,530 477 481 409 19,638

Stomach Adenocarcinoma (STAD) 450 20,530 580 450 379 19,797

Thyroid Carcinoma (THCA) 572 20,530 580 570 497 18,027

Thymoma (THYM) 122 20,530 126 122 117 18,470

Uterine Corpus Endometrial Carcinoma
(UCEC)

201 20,530 596 201 172 19,918

Uterine Carcinosarcoma (UCS) 57 20,530 57 50 50 19,059

Uveal Melanoma (UVM) 80 20,530 80 80 76 17,239

n represents the sample size, m is the number of gene expressions used in our final analysis.

Therefore, among the 33 publicly available types of TCGA cancer,
we reserved 32 cancer data sets in the subsequent prediction
analysis and divided them into 16 low-censored and 16 high-
censored cancer data sets according to our criterion above. In
addition, we removed genes with more than 50% zero expressions
and variances smaller than 20% quantile of expressions (Tang
et al., 2017a; Yu et al., 2019). Finally, we standardized the
remaining gene-expression levels and clinical covariates. The data
sets used in this study are summarized in Table 2.

Model Comparison and Implementation
Following prior work (Zeng and Zhou, 2017), we conducted
a subsampling strategy to evaluate prediction performance.
We performed 100 Monte Carlo cross-validations (MCCVs)
by randomly dividing the total cancer data set into two
parts with 80% of the samples as training data and the
remaining 20% as test data. Then, we fitted prediction models
in the training data and calculated Harrell’s concordance index
(C-index) to measure the prediction accuracy in the test data
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TABLE 2 | Summary information of 32 types of cancer in TCGA.

Cancer Age Female/Male Median survival time Stage or grade (1/2/3/4/5)

All Event Censor

ACC 46.6 ± 15.8 48/29 38.5 18.5 45.7 9/37/16/15

BLCA 68.1 ± 10.6 105/295 17.6 13.6 20.9 2/129/137/132

BRCA 58.5 ± 13.2 1060/0 27.2 37.9 25.0 178/605/245/19/13

CESC 48.0 ± 13.6 287/287 21.1 20.8 22.8 157/67/43/20

CHOL 63.0 ± 12.9 20/16 21.2 16.4 31.0 19/9/1/7

COAD 65.2 ± 13.3 121/149 21.6 14.5 22.0 45/109/78/38

DLBC 55.1 ± 14.7 22/19 31.1 19.6 31.8 8/17/5/11

ESCA 62.4 ± 11.9 24/135 13.2 12.9 13.4 18/78/55/8

GBM 59.7 ± 13.5 48/95 11.3 12.6 7.9 NA

HNSC 60.9 ± 12.1 120/320 21.4 14.2 27.4 26/70/81/263

KICH 51.2 ± 14.1 27/38 73.9 28.1 89.2 20/25/14/6

KIRC 60.7 ± 12.1 186/340 39.7 27.0 48.2 265/56/122/83

KIRP 61.6 ± 12.0 67/189 24.1 20.5 24.9 170/20/51/15

LAML 55.8 ± 16.3 74/87 11.0 9.0 23.0 NA

LGG 43.0 ± 13.4 224/278 21.6 26.8 20.5 0/241/261/0

LIHC 58.7 ± 13.5 109/234 18.7 12.5 20.9 171/85/82/5

LUAD 65.4 ± 10.0 263/223 21.4 20.1 21.6 263/117/80/26

LUSC 67.2 ± 8.5 126/355 21.3 17.8 24.1 237/154/83/7

MESO 62.9 ± 9.9 16/65 16.4 15.0 38.4 9/15/42/15

OV 59.3 ± 11.0 290/0 31.3 35.0 24.7 1/18/233/38

PAAD 64.6 ± 11.0 79/96 15.2 12.9 16.7 21/147/3/4

PCPG 47.3 ± 15.1 99/77 25.1 14.9 25.4 NA

PRAD 61.0 ± 6.8 0/483 30.3 43.7 30.1 NA

READ 63.2 ± 12.1 37/44 24.6 19.7 25.1 10/26/33/12

SARC 60.7 ± 14.6 140/118 31.3 22.0 35.9 NA

SKCM 58.8 ± 15.6 154/255 32.9 31.6 34.1 77/139/170/23

STAD 65.3 ± 10.6 136/243 14.5 11.5 18.6 53/121/166/39

THCA 47.2 ± 15.8 363/134 31.0 33.6 31.0 282/52/110/53

THYM 58.1 ± 13.1 56/61 40.1 28.0 40.7 35/61/15/6

UCEC 65.6 ± 11.4 172/0 22.1 20.5 22.3 93/24/45/10

UCS 69.7 ± 9.4 50/0 20.0 16.5 26.9 21/4/17/8

UVM 62.8 ± 13.0 35/41 25.0 19.4 26.6 0/37/35/4

(Harrell et al., 1982). The C-index is a measure of goodness of
fit for survival models, which produce risk scores. Specifically,
assume all the subjects under consideration are randomly
paired. In survival analysis, if one of them has a longer
survival time and predicted survival time or predicted survival
probability than the other, it is said that the predicted result
is consistent with the actual result, which is referred to as the
concordance. Then, Harrell’s C-index can be simply calculated
as the proportion of the number of concordant pairs in the
total number of concordant and discordant pairs. A C-index
statistic of 0.5 means complete inconsistency, indicating the
model has little predictive ability, and a C-index statistic of
one represents complete consistency, indicating the prediction
results of the model are completely in line with the actual
situations. To yield the prediction gain of one model (say
M1) relative to another model (say M2), we computed (CM2-
CM1)/CM1 with CM2 and CM1 the C-index statistic values
for the two models.

In our prediction analysis, as is shown, compared with
other models (e.g., coxenet), coxlmm displays a robust
predictive performance by integrating whole gene-expression
profiles. However, it remains unknown whether the improved
performance of coxlmm is due to the incorporation of useful
transcriptomic information or just a consequence of overfitting
owing to more parameters being involved. Therefore, in order
to further validate the prediction performance of coxlmm, for
each cancer, we simultaneously generated a new data set by only
permuting expression levels. Doing this is equivalent to adding
a set of noise expressions into the prediction model. For each
type of cancer, we re-performed coxlmm in terms of MCVC
based on unchanged covariates (and survival time and status)
and permuted expressions. Theoretically, the newly permuted
expression levels are little predictive, and the resulting C-index
statistic is similar to or even lower than that obtained with the
total original data sets because the permuted expressions are
redundant for prediction once they are included into models. In
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order to further validate our assumption that a large number of
weak-effect genes also may be useful in the prediction of cancer
prognoses and to examine whether the whole transcriptome
model is optimal, we compare the accuracy of models with
different sets of genes via coxlmm based on 20 replications of
MCCV. We considered two schemes to select genes: first, genes
were randomly selected; second, genes were selected in terms of
marginal p-values of the univariate Cox model in the training
data. Finally, the prediction accuracy was evaluated in the testing
data set via C-index.

RESULTS

Evaluation of Prognostic Prediction
A total of 32 TCGA cancers are included in our analysis, and the
summary results of those cancers are displayed in Tables 1, 2.
Here, we mainly consider three covariates (i.e., age, sex, and
stage or grade) if they are available for some cancers and make
a comparison for the four Cox models in terms of the difference
in C-index statistic. We observe that the clinical information
displays varying prognostic prediction ability across cancers.
Specifically, the C-index statistic ranges from 0.54 for PAAD
to 0.81 for KIRP with an average of 0.66 for the low-censored
cancers; the C-index statistic ranges from 0.46 for PRAD to 0.81
for KIRP with an average of 0.66 for all 32 cancers.

Prediction Performance for the 16
Low-Censored TCGA Cancers
We first focus on the performance of 16 special cancers that
have a relatively low-censored rate and, thus, are of our
main interest in prognostic prediction. It is worth noting that,
when gene expressions are incorporated into the model, the
prediction performance is substantially improved for almost all
the cancers (Figure 1). Compared with the Cox model with
clinical information alone, the averages of the prediction gain
for coxlasso, coxenet, and coxlmm are 2.4, 4.2, and 7.2% across
cancers, respectively (Supplementary Table S2).

In particular, a much more significant elevation of C-index
statistic is discovered for several cancers (e.g., SARC, SKCM,
LGG, PAAD, and HNSC) for coxlasso, coxenet, and coxlmm.
For example, compared to the Cox model with only clinical
covariates, coxlasso displays the maximum improvement for
SARC (13.8%), followed by LGG (7.8%), PAAD (6.4%), and
HNSC (6.0%). The corresponding gains are 15.6, 7.6, 7.4, and
6.8% for coxenet and 22.8, 8.9, 14.8, and 10.2% for coxlmm
for these four cancers, respectively. Furthermore, the prediction
improvement for coxlmm is also evident for other cancers,
including CESC (14.3%), LIHC (7.9%), KIRP (6.2%), and BLCA
(6.2%). Nevertheless, relative to the clinical information–only
Cox model, we find there is nearly no remarkable increase in the
prediction accuracy of coxlmm, coxenet, or coxlasso for COAD
and OV after incorporating transcriptomic information.

Finally, we find coxlmm always has a comparable or
the best prediction performance among the methods. For
example, coxlmm demonstrates an average of 2.8% prediction
improvement across all 16 cancers compared with coxenet with

the maximum gain for CESC (9.1%, from 4.8% for coxenet
to 14.3% for coxlmm relative to the clinical information–only
Cox model), followed by PAAD (6.9%, from 7.4% for coxenet
to 14.8% for coxlmm relative to the clinical information–only
Cox model). In addition, coxlmm also displays an obvious
gain in the prediction performance for LIHC and SARC
relative to coxenet with 6.3 and 6.1% increases in the C-index
statistic, respectively. These findings imply that the Cox model
incorporating all the transcriptome information can further
increase prediction ability relative to that including only a small
set of important genes.

Prediction Performance for All 32 TCGA
Cancers
With regards to all 32 cancers, compared with the Cox model
with clinical information alone, the maximum gain is observed
for MESO (35.6% for coxlasso, 39.6% for coxenet, and 50.0%
for coxlmm) (Supplementary Figures S1, S2). The averages
of prediction gain for coxlasso, coxenet, and coxlmm are 2.7,
3.8, and 5.8% across cancers, respectively, and are lower than
performance for those low-censored cancer data sets. Compared
to coxlasso and coxenet, the average gains of coxlmm are 3.0
and 1.3%, which are also lower than performance for those
low-censored cancer data sets.

Prediction Performance of Coxlmm With
Permuted Data Sets
When predicting with the permuted data set, we find that,
compared with coxlmm with permuted expressions, the original
coxlmm model has an average of 4.7% higher C-index
statistics across the 16 low-censored cancers and shows
an average of 9.0% performance gain for the five most
promising cancers with the highest PVE (i.e., CESC, LGG,
PAAD, SARC, and SKCM). As anticipated, coxlmm even
demonstrates slightly worse performance using those permuted
cancer data sets compared with the general Cox model
with only covariates. The detailed performance for each
permuted cancer is showed in Figure 2. These observations
suggest that integrating all the gene expressions into coxlmm
does improve the prediction performance and the predictive
gain of coxlmm relative to other existing models is not
by chance alone.

Estimates of PCE and PGE
The estimated PCE and PGE are shown in Figure 3 with the
confidence intervals displayed in Supplementary Figure S3
and Supplementary Table S3. Again, here we mainly
discuss the estimates for the 16 low-censored cancers.
Several interesting findings can be observed. First, except
for LUSC (PVE = 4.6%), it is shown that both the clinical
and transcriptomic information plays an important role
in the survival variation of TCGA cancers (e.g., PVE is
greater than 10.0%) with PVE ranging from 10.6% for OV
to 63.0% for LGG. Second, for five cancers (i.e., LGG, CESC,
PAAD, SKCM, and SARC), PGE is 15.3, 12.1, 17.8, 6.3,
and 29.9% higher than PCE (with an average of 16.3%),
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FIGURE 1 | Comparison of predictive performance of four models in 16 low-censored cancers. Performance is measured by C-index difference with respect to Cox
model with only clinical covariates; therefore, a negative value (i.e., values below the horizontal line) indicates worse performance than the Cox model with only
clinical covariates, and the predictive performance was assessed across 100 replicates.

FIGURE 2 | Performance comparison of coxlmm using the original data sets (denoted by coxlmm) and the permuted data sets (denoted by coxlmm-permuted)
across the 32 TCGA cancers. The cancers located to the left of the red dotted line are low-censored, and the cancers on the right side are high-censored.

suggesting the transcriptomic information is relatively more
important than the clinical information for those cancers,
and the prediction performance would improve substantially
if gene-expression levels are included (see results above and
Supplementary Table S1; the average increase in C-index is
3.8% for coxlasso, 8.7% for coxenet, and 14.1% for coxlmm
for the five cancers). On the other hand, PCE is higher
than PGE for four cancers (i.e., BRCA, COAD, KIRC, and
STAD), implying that the prediction performance would
improve little when integrating transcriptomic information
(see results above and Supplementary Table S1; the average
increase in C-index is 1.3% for coxlasso, 1.1% for coxenet,
and 1.7% for coxlmm for the four cancers). Finally, the
remaining cancers (i.e., BLCA, HNSC, KIRP, LIHC, LUAD,
LUSC, and OV) show similar estimates for PCE and PGE.
We also perform coxlmm to estimate the PCE and PGE in
the other 16 high-censored cancers. However, their results
are rather unstable, reflected by the wide confidence intervals
(Supplementary Figure S3).

Influence of Different Numbers of Genes
Included in Coxlmm
It is found that the prediction performance of coxlmm with
different numbers of genes is cancer-specific (Figure 4 and
Supplementary Figure S4). For example, integrating more genes
in several cancers (e.g., LUSC, LGG, and KIRC) does not lead
to the improvement of prediction although doing this indeed
increases the prediction performance for other cancers (e.g.,
CESC, HNSC, and SARC). Generally, no matter how the genes
were selected, the prediction accuracy of the model (denoted
by thick lines in Figure 4) shows a slightly increasing trend
with the included genes and approaches the peak when 3000
genes were employed.

DISCUSSION AND CONCLUSION

In this study, we focused on four Cox prediction approaches
(i.e., the general Cox model, coxlasso, coxenet, coxlmm) and
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FIGURE 3 | Estimated PCE and PGE for the 32 TCGA cancer types. The cancers located to the left of the red dotted line are low-censored, and the cancers on the
right side are high-censored. PCE represents the proportion of the survival variation explained by the clinical information alone. PGE represents the proportion of the
survival variation explained by the transcriptome information alone.

FIGURE 4 | (A) The predictive accuracy with a different number of genes after sorting by importance for 16 low-censored cancers. (B) The predictive accuracy with
a different number of randomly selected genes for 16 low-censored cancers. The thick pink line represents the average C-index of all cancers.

systematically assessed the prognostic values of transcriptomes
with the publicly available TCGA pan-cancer data sets (Hoadley
et al., 2018). It should be first emphasized that prediction
performance is cancer-specific; that is, the prediction accuracy,
quantified by C-index statistic, is substantially different across
cancer types, consistent with the conclusions found in prior
studies (Zhao et al., 2014; Zhu et al., 2017). In particular,
our results indicate that coxlmm holds preferable predictive
performance compared with the other three methods and reveal
that integrating both clinical and transcriptomic information
can elevate the prediction accuracy greatly. Furthermore, it also
implies that incorporating a large number of gene expressions
rather than a small set of selective genes can obtain more gain
in prediction accuracy, which generally continues to improve

with the increasing number of genes included. We further assess
the contributions of clinical covariates and gene expressions to
the survival variation within the framework of coxlmm. We
can expect that PCE and PGE together should capture almost
all the survival variation explained by available information as
it has been illustrated that no significant power gain can be
achieved by combining other omic measurements into clinical
covariates except for gene expression (Zhao et al., 2014).
This result is biologically informative and illustrates that the
performance of prediction models would improve considerably
when transcriptomic information accounts for a large proportion
of the variation as quantified by PGE.

Note that our main objective here is not to explore how to
efficiently integrate multiple omic profiles into prediction models
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(Zhao et al., 2014; Yang et al., 2016, 2018; Huang et al., 2017;
Zhu et al., 2017) although this is a very interesting and important
research area. Instead, we aim to evaluate how a single omic
profile (i.e., gene expression) can be utilized to achieve better
prognostic prediction in cancers. To the best of our knowledge,
the present study is among the first work to comprehensively
investigate prognostic prediction with the transcriptome profile
on dozens of cancer types (i.e., a total of 32 common complex
cancers). Therefore, our results provide complementary insights
for prior work in which gene expressions were already shown
to be very predictive for cancer prognosis assessment relative
to other omic profiles (Zhao et al., 2014; Zhu et al., 2017). In
addition, the analysis we carried out here also can be applicable
to other types of omic measurements.

We finally highlight some interesting topics for future
exploration. First, as mentioned before, we only consider
transcriptomic information in our analysis and ignore other
omics data sets (e.g., copy number alteration and DNA
methylation), and we also cannot incorporate more useful
clinical covariates (e.g., smoking or drinking history) as that
information is missing during the period of data collection in
TCGA. Thus, the performance of our prediction models may
be underestimated. Integrating multi-omics information into the
model can unquestionably achieve better prediction accuracy
and has the potential to provide a deeper understanding of the
mechanism of tumor progression.

Second, although TCGA includes many cancer types, its
effective sample size is still relatively small, and the censored
proportion is high (Hoadley et al., 2018), which may inevitably
attenuate the prediction accuracy and undermine our ability to
construct prognostic models that can be applicable in practice.
In addition, the small sample size may also lead to unstable
estimation for PCE and PGE. Thus, the external validation of our
models with larger a sample size is warranted.

Third, in the present study, the proposed coxlmm actually
can be treated to be a kernel machine learning–based prediction
method, and only the linear kernel was considered here. The
selection of optimal kernel function to measure the similarity
among transcriptomes and to better improve prognostic
evaluation needs further investigation (Yang et al., 2016, 2018).
In addition, coxlmm also can be viewed as a penalty-type Cox
model with ridge regularization (denoted by coxridge), which
has the square penalty on effect sizes. We compared coxlmm
and coxridge in 16 low-censored cancers and demonstrated
that two methods generally had consistent performance
(Supplementary Figure S5) although sometimes coxlmm
performed slightly better in several cancers.

Fourth, compared with coxlasso and coxenet, we indeed
observed that coxlmm, integrating more genes, had a better
prediction performance. In general, the predictive accuracy of
coxlmm would continue to improve when more genes were
integrated. However, the model with whole transcriptomic
information may be suboptimal for some cancers (e.g., CESC,
HNSC, and SARC) because of the inclusion of redundant genes
that were not useful for prediction. Therefore, exploring adaptive
models that can select optimal genes is an interesting direction
in the future. In addition, following the idea of functional gene

enrichment analysis, we can first classify genes into various
groups in terms of similar function in the same pathway and
then conduct a separate prediction in each group and finally
aggregate the individual predictions into an omnibus prediction
with some reasonable weighted manners. This will probably be a
considerably promising avenue in our further investigation.

Fifth, we find that the mixed-effects Cox model (i.e., coxlmm)
sometimes showed low prediction accuracy for some cancers
(e.g., KIRC) compared with the sparse Cox model (i.e., coxlasso
and coxenet) although it demonstrated promising performance
for most of the TCGA cancer types, indicating the two kinds
of models have their own advantages depending on the omic
architecture of a specific cancer type (Zhou et al., 2013; Tang
et al., 2017a,b; Zeng and Zhou, 2017). A natural extension is to
combine the two models and generate a hybrid of the mixed and
sparse prediction approaches by following prior work in genetic
prediction (Zhou et al., 2013; Zeng and Zhou, 2017). The mixed-
sparse Cox model is anticipated to provide better prognostic
prediction for different cancer types. Simultaneously, this type
of model has the ability to select significant genes that may be
biologically important for cancers.

Overall, the present study demonstrates that the aggregation
of genome-wide transcriptomic information can lead to great
improvement in prediction accuracy, but the prediction
performance is cancer-specific and varies across cancer types. It
further reveals that gene expression shows varying contributions
to survival variation across cancers.
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