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Alzheimer disease (AD) is the most common cause of dementia in geriatric
population. At present, no effective treatments exist to reverse the progress of AD,
however, early diagnosis and intervention might delay its progression. The search for
biomarkers with good safety, repeatable detection, reliable sensitivity and community
application is necessary for AD screening and early diagnosis and timely intervention.
Electroencephalogram (EEG) examination is a non-invasive, quantitative, reproducible,
and cost-effective technique which is suitable for screening large population for possible
AD. The power spectrum, complexity and synchronization characteristics of EEG
waveforms in AD patients have distinct deviation from normal elderly, indicating these
EEG features can be a promising candidate biomarker of AD. However, current reported
deviation results are inconsistent, possibly due to multiple factors such as diagnostic
criteria, sample sizes and the use of different computational measures. In this study, we
collected two neurological tests scores (MMSE and MoCA) and the resting-state EEG of
30 normal control elderly subjects (NC group) and 30 probable AD patients confirmed by
Pittsburgh compound B positron emission tomography (PiB-PET) inspection (AD group).
We calculated the power spectrum, spectral entropy and phase synchronization index
features of these two groups’ EEG at left/right frontal, temporal, central and occipital
brain regions in 4 frequency bands: δ oscillation (1–4 Hz), θ oscillation (4–8 Hz), α
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oscillation (8–13 Hz), and β oscillation (13–30 Hz). In most brain areas, we found that the
AD group had significant differences compared to NC group: (1) decreased α oscillation
power and increased θ oscillation power; (2) decreased spectral entropy in α oscillation
and elevated spectral entropy in β oscillation; and (3) decrease phase synchronization
index in δ, θ, and β oscillation. We also found that α oscillation spectral power and
β oscillation phase synchronization index correlated well with the MMSE/MoCA test
scores in AD groups. Our study suggests that these two EEG features might be useful
metrics for population screening of probable AD patients.

Keywords: Alzheimer disease, electroencephalogram (EEG), power spectrum, spectral entropy (SE), phase
synchronization index

INTRODUCTION

Alzheimer disease (AD) is the most common cause of dementia,
accounting for an estimated 60–80% of cases (Garre-Olmo,
2018). It is characterized by progressive decline in memory,
language function, orientation, and executive function, etc. AD is
a continuous disease process, divided into preclinical, prodromal,
and overt dementia (Babiloni et al., 2020a). Besides seriously
affecting patients’ own quality of life, AD also brings heavy
economic and psychological burdens to family members and
caregivers, and has become one of the serious public health
problems. The exact pathogenesis of AD is unclear yet; its
related pathological hypotheses may involve synapse damage and
loss, amyloid plaques and neurofibrillary tangles (Colom-Cadena
et al., 2020). The pathophysiological process of AD is thought to
start up to 20 years before clinical symptoms can be detectable
(Sperling et al., 2014). At present, no effective medication
exist for curing this pathology and reversing the course of
AD (Cassani et al., 2018). Current therapeutic treatments at
the early stage might improve the symptoms and delay the
evolution of the disease (Houmani et al., 2018). Therefore, early
diagnosis and active intervention are of great significance for
mitigating the epidemic.

Current diagnosis of AD usually depends on the biomarkers
in cerebrospinal fluid (CSF), neuropsychological tests, and
neuroimaging, neurophysiological examinations (Maestu et al.,
2019). The CSF biomarker like amyloid-β (Aβ) or tau protein
level has high sensitivity and specificity in diagnosing probable
AD (Lim et al., 2016). But the CSF biomarker is obtained from
invasive lumber puncture operation, which is not easy to be
accepted by patients and their families. Neuroimaging biomarker
like the Pittsburgh compound B positron emission tomography
(PiB-PET) inspection is highly specific in detecting the
accumulation of in vivo amyloid-β, making it almost comparable
to the golden standard of autopsy (Cohen et al., 2019).
However, the PET inspection is very expensive, and it requires
complex hardware equipment, inspection environment, and
repeat exposure to radiation. Therefore, the above-mentioned
two well-established biomarkers are not suitable for large-scale
population screening. On the other hand, the neuropsychological
test like the Mini-Mental Status Exam (MMSE) and Montreal
Cognitive Assessment (MoCA) is easy to perform and can
quickly evaluate a patient’s cognitive function. Therefore, these

neurological tests are frequently used in clinical practice for
screening large populations of possible AD. However, performing
these tests is time-consuming, requires well-cooperated subjects
and experienced clinicians (Cassani et al., 2018). Even though,
the test scores are very subjective, and usually affected by the
educational background of subjects.

As a non-invasive, cost-effective electrophysiological
examination technique, electroencephalogram (EEG) can
directly record the neural activity in different brain states. It can
objectively and quantitatively reflect the neurological changes
in pathological conditions with high time resolution, although
its spatial resolution is lower than neuroimaging devices like
magnetic resonance imaging (MRI). EEG has been widely
used in the study of various neurological diseases including
AD. Recently, Babiloni and many researchers have proposed
an international initiative to include the use of EEG/MEG
biomarkers in the regulatory requirements and guidelines for AD
studies (Babiloni et al., 2020a). A variety of quantitative analysis
techniques was used to characterize the EEG changes, looking
for EEG biomarkers suitable for AD diagnosis. Compared to
normal elderly, the resting state EEG activity in AD patients
diffusely slows down, usually manifested by a decrease in the
spectral power of the high frequency (α and/or β) oscillations
and an increase of spectral power of low frequency (θ and/or
δ) oscillations (Jeong, 2004; Cassani et al., 2018; Horvath et al.,
2018; Babiloni et al., 2020a; Benwell et al., 2020; Wicki et al.,
2021). Besides, AD is also characterized as a brain disconnection
syndrome (Delbeuck et al., 2003). The synchronization of
EEG activity is usually perturbed in AD patients, especially
demonstrated by the decreased functional connectivity in
different brain areas (Cassani et al., 2018; Musaeus et al.,
2019a,b; Nunez et al., 2019; Song et al., 2019; Briels et al.,
2020). Furthermore, the decline in the structure and functional
connection of the brain may lead to a reduction in the complexity
of EEG signals in AD patients, as reported in Azami et al. (2017),
Deng et al. (2017), Kulkarni (2017), Simons and Abásolo (2017),
Al-Nuaimi et al. (2018), Cassani et al. (2018), Horvath et al.
(2018), Li et al. (2018), Simons et al. (2018). However, with
respect to specific EEG frequency bands, current studies usually
have inconsistent results, possibly due to multiple factors such
as the severity level of disease, educational background of
subjects, diagnostic criteria, sample sizes and the use of different
computational measures (Briels et al., 2020). For example,
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Babiloni et al. found that subjective memory complaint seniors
with AD neuropathology (amyloid PET-positive) and high
education attainment showed higher temporal α3 power density
and lower posterior α2 power density, suggesting that preclinical
Alzheimer’s neuropathology may interact with education
attainment (Babiloni et al., 2020b). Gaubert and colleagues
found an increase in high frequency oscillations (higher β and
γ power) and a decrease in low frequency oscillations (lower δ

power), higher spectral entropy, higher complexity and increased
functional connectivity in θ band in the frontocentral regions
in preclinical AD patients (Gaubert et al., 2019). They found a
nonlinear relationship between amyloid burden and EEG metrics
in neurodegeneration positive subjects, suggesting the EEG
patterns are modulated differently depending on the degree of
amyloid burden. Briels and colleagues also found that the choice
of functional connectivity measures and frequency bands can
have a large impact on the outcome of EEG studies in AD. Their
results showed that the corrected amplitude envelope correlation
are reproducible in the α and β bands, and phase-based measures
with correction for volume conduction showed reproducible
effects in the θ band (Briels et al., 2020).

Considering the above inconsistent results, in this study we try
to find significant and reliable EEG biomarkers for AD diagnosis.
We collected 30 probable AD patients confirmed by PiB-PET
inspection (AD group) with a wide neurological tests scores
(MMSE and MoCA) range, resulting an AD population with
great varieties of impaired cognitive functions. We calculated
the power spectrum, spectral entropy and phase synchronization
index metrics of their resting-state EEG in four frequency bands,
and compared these metrics with that of 30 normal controlled
elderly subjects (NC group). To investigate whether these EEG
metrics could reflect the impaired cognitive functions in AD
groups, we further calculated the correlation of these EEG metrics
with the MMSE and MoCA test scores.

MATERIALS AND METHODS

Participants
In this study, patients who were diagnosed clinically as probable
AD were screened for inclusion from the outpatients in the
Department of Neurology, the Second Medical Center of Chinese
People’s Liberation Army General Hospital from 2016 to 2019.
All patients in AD group meet the core criteria for probable AD
diagnosis developed by the National Institute of Aging and the
Alzheimer’s Disease Society (NIA-AA) in 2011 (McKhann et al.,
2011). Besides, they all underwent the PiB-PET neuroimaging
test and their results are all positive. At the same time, their
family members and volunteers who matched their gender, age
and education level were selected as normal controls (NC).

Thirty AD patients and 30 NC subjects were evaluated by
two or more senior neurological physicians and were included
in this study. The studies involving human participants were
reviewed and approved by the Medical Ethics Committee
of Chinese People’s Liberation Army General Hospital. The
patients/participants provided their written informed consent to
participate in this study.

EEG Acquisition and Processing
EEG Acquisition
The EEG data acquisition of all the participants was completed in
the fixed clinic of the Department of Neurology, Chinese People’s
Liberation Army General Hospital. Before the test, the subjects
were asked whether they took food or beverages containing
stimulants such as nicotine, caffeine, and alcohol on the day, and
the non-users were checked after washing their hair.

Participants sat in a comfortable chair, kept quiet and relaxed,
and kept their bodies as motionless as possible to reduce artifacts.
Because the EEG data collected when the eyes are open has more
eye movement artifacts, the previous literature mostly uses the
EEG data when the eyes are closed for research. Therefore, this
study only records the resting state EEG data when the eyes are
closed. The recording time is 5 min.

The EEG detection equipment used is a portable 8-
channel high-performance EEG signal acquisition instrument
(JL-EEG8w), developed by the State Key Laboratory of Cognition
and Learning of Beijing Normal University, which is designed
for quick EEG examination from outpatients who usually have
very limited time at the clinic. The bandwidth of the EEG
amplifier is 0.1–80 Hz with a sampling frequency of 1,000 Hz.
According to the 10–20 international standard electrode system,
8 electrode position is used, i.e., F3, F4, T3, T4, C3, C4, O1, and
O2. The reference electrode is in Cz, and the ground electrode
is in Fpz (Figure 1). There is no parietal electrode used due to
the recording device’s limitation. The impedance of each active
electrode is controlled below 100 k� before the start of recording
EEG, and further checked after finishing recording. The data is
saved in EDF format for subsequent offline analysis.

EEG Data Preprocessing
Several conventional preprocessing steps are taken following the
recommendations from the OHBM COBIDAS MEEG committee
(Pernet et al., 2020). Firstly, the recorded EEG data is bandpass
filtered to 0.5–45 Hz, using the eegfiltfft function in EEGLab
toolbox. Next, the continuous filtered data of each channel is
divided into 4 s epoch. Then, for each epoch, the automatic
artifact detection algorithm is applied to remove eye movement,
breathing, EMG, 50 Hz power supply interference and outlier
data segments, according to Durka et al. (2003). Finally, the
remaining data epochs are manually checked to remove data
segments that are not automatically eliminated with big artifacts
or drowsy characteristics. The first 30 segments without artifacts
(30 × 4 s = 120 s) of each channel of the participants were
selected for analysis.

Relative Spectral Power of EEG
As mentioned in the above preprocessing section, the EEG signal
has been divided into 30 epochs of 4 s data segment. We further
reduce the sampling rate to 250 Hz, so that there are 1,000 points
of EEG samples in each epoch. A Hamming window of 125 points
(0.5 s) is used to slide over each piece of data in a step of 50
points (0.2 s). The Fourier transform of 1024 points is calculated
to obtain the estimated power spectrum of each piece of data. The
frequency resolution is about 0.25 Hz (1f = Fs/Nfft = 250/1,024).
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FIGURE 1 | The eight electrodes position used in this study (Cz, reference electrode; Fpz, ground electrode).

Then, the power spectrum estimates calculated for all 30
epochs are averaged, and the absolute powers are calculated
in the following 4 canonical frequency bands: δ oscillation (1–
4 Hz), θ oscillation (4–8 Hz), α oscillation (8–13 Hz), and β

oscillation (13–30 Hz). In this study, we did not consider the γ

oscillation as this frequency band EEG is easily contaminated by
muscle artifacts.

Since the absolute power varies greatly among individual
subjects, we further calculated the relative power of each
oscillation for comparison between groups. Use the sum of the
power in the frequency range of 1–45 Hz as the normalization
factor, and define the ratio of each oscillation’s absolute powers to
the normalization factor as the relative power of that oscillation.
The pwelch function in Matlab software is used to estimate the
power spectral density.

Spectral Entropy of EEG
In addition to the power spectrum characteristics of EEG
signals, the complexity of EEG signals is also an important
parameter reflecting the characteristics of EEG. EEG signals are
generally considered to be a chaotic signal between random and
deterministic signals. Entropy values can be used to quantitatively
describe the uncertainty of EEG signals.

Spectral entropy refers to the degree of uncertainty of the
signal power spectrum distribution. It regards the normalized

power distribution of a signal in the frequency domain as
a probability distribution, and then calculates its information
entropy. For a signal x(n), its power spectrum is represented by
S(ω), and the probability distribution p(ω) of the spectrum is
defined as (Wang et al., 2015):

p (ω) =
S(ω)∑
i S(i)

(1)

Then the spectral entropy H is defined as:

H = −

N∑
ω =1

p (ω) log2p(ω) (2)

Here N is the total frequency point. Normalized spectral entropy
is usually used and is defined as:

Hn = −

∑N
m =1 P (m) log2P(m)

log2N
(3)

Here the denominator log2N represents the maximum spectral
entropy of white noise evenly distributed in the frequency
domain. The higher the spectral entropy of a signal, the more
disordered (complex) the signal is. Conversely, the lower the
spectral entropy, the more ordered (simple) the signal is.
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In this study, the 8-s data sampled at 250 Hz is taken as one
segment. There are a total of 15 segments. Calculate the spectral
entropy in δ, θ, α, and β oscillation, and the frequency sampling
points are 1,024 points. Then average the spectral entropy at each
oscillation calculated from 15 data segments to obtain the spectral
entropy value of each subject at each channel.

Phase Synchronization Index of EEG
Because brain information transmission needs to integrate the
functions of various regions and the cooperation of neurons
in multiple brain regions, the EEG in many diseases like AD
are manifested as abnormal synchrony or connectivity between
neurons in different brain regions. According to Dauwels
et al. (2010), many of those synchronization measures are
strongly correlated (or anti-correlated) with the correlation
coefficient, providing little complementary information about
EEG synchrony. While the phase synchrony indices are one of the
metrics that are weakly correlated with the correlation coefficient,
hence, it may capture a specific kind of interdependence of the
EEG time series. The instantaneous phase ϕx of an EEG signal x
is extracted as follows (Dauwels et al., 2010):

ϕx
(
k
)
= arg[x

(
k
)
+ ix̃(k)] (4)

where x̃ is the Hilbert transform of x. The phase synchronization
index is defined as:

γ =

∣∣∣〈ei(nϕx−mϕy)
〉∣∣∣ (5)

where n and m are integers, 〈·〉 denotes time average. If γ

tends to 1 in the above formula, the two signals are in phase
synchronization, and if γ tends to 0, the phase difference of the
two signals is randomly distributed.

In this study, phase synchronization index was used to
investigate the connectivity difference in EEG signals between
AD and NC groups. After pre-processing, the data is resampled
to 250 Hz and divided into 4-s epochs. One-second Hamming
window is used, with a 0.5-second sliding steps. The phase
synchronization index of δ, θ, α, and β oscillation of each subject’s
EEG is calculated.

Neuropsychological Scale Evaluation
Two senior neurological physicians used MMSE and MoCA
to evaluate the participants’ cognitive functions. The test
environment was quiet and the test scale versions were
uniform. Among 60 participants, three AD patients and 7 NC
subjects failed to complete MMSE/MoCA assessment because
of noncooperation.

Statistical Analysis
Two-sample t-test was used to compare the age differences
between AD and NC groups. Chi-square test was used to compare
their gender differences. Using a two-sample t-test with false
discovery rate (FDR) correction, the differences in the relative
power, spectral entropy and phase synchronization index in δ,
θ, α, and β oscillation of EEG signals between AD patients and
NC subjects are compared. Further, in the AD patient group,
Spearman correlation analysis with FDR correction was used to
calculate the correlation between EEG metrics and the degree of

cognitive impairment (2 neuropsychological evaluation scores).
Subject’s age was used as a control factor to eliminate its effect on
the results. P < 0.05 was considered statistically significant.

RESULTS

Demographic Information and
Neuropsychological Test Comparisons
Between AD and NC Groups
As shown in Table 1, there was no statistical difference in age and
gender between the AD and NC groups (P > 0.05), and there
were statistically significant differences in the neuropsychological
evaluation results (P < 0.001). The MMSE and MoCA scores in
AD group were significantly lower than those in the NC group.

Sex Differences of EEG Metrics in AD or
NC Groups
To evaluation the sex differences in each group, we further
compared the relative spectral power, spectral entropy and phase
synchronization indices between female (n = 18) and male
(n = 12) participants in AD or NC groups. Two-sample t-test with
FDR correction was used for the comparison. Results were shown
in the Supplementary Materials (Supplementary Figure 1).

Differences of EEG Metrics Between AD
and NC Groups
Relative Spectral Power
The comparison of the relative power of each oscillation at each
electrode in the AD and NC groups is shown in Figure 2. The
relative power of the slow wave oscillation (δ and θ oscillation)
at each electrode in the AD group is higher than that in the
NC group, and the relative power of fast-wave oscillation (α
and β oscillation) at each electrode is lower than that in the NC
group, suggesting that the relative power of EEG in AD patients
is widely changed compared with NC subjects. Specifically, the
relative spectral power of α oscillation at all electrodes and θ

oscillation at seven electrodes (F3, T3, T4, C3, C4, O1, and O2)
has significant difference, suggesting a diffuse slowing effect of
the EEG spectrum in AD patients.

Spectral Entropy
In Figure 3, we show the comparison of the spectral entropy
of each oscillation at each electrode of the EEG in AD
and NC groups. For the α oscillation, the spectral entropy
in the frontal, temporal and central regions of the AD

TABLE 1 | Participants demographic information.

AD (n = 30) NC (n = 30) P value

Age(year) 68.83 ± 10.18 64.43 ± 10.55 0.106

Male : Female 12:18 12:18 0.879

MMSEa 12.89 ± 9.98 29.39 ± 0.89 0.000

MoCAa 10.48 ± 7.90 28.22 ± 1.98 0.000

aThree AD patients and 7 NC subjects failed to complete
MMSE/MoCA assessment.
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FIGURE 2 | Comparison of relative spectral power in AD and NC group at each electrode in four frequency bands.

group is significantly decreased compared to NC group,
while in the occipital electrodes the spectral entropy has no
significant difference between groups. For the β oscillation,
the spectral entropy in the temporal, central and occipital
regions of the AD group is significantly higher than that of
the NC group, but in the frontal area the spectral entropy
has no significant difference between groups. The spectral
entropy of the θ oscillation in the occipital areas of AD

group was higher than that of the NC group. However, the
spectral entropy in the δ oscillation does not show statistical
difference between groups.

Phase Synchronization Index
The phase synchronization comparison of each oscillation (δ,
θ, α, and β) at each electrode pairs in the AD and NC groups
is shown in Figure 4. The phase synchronization in AD group
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FIGURE 3 | Comparison of spectral entropy in AD and NC group at each electrode in four frequency bands.

is significantly lower than that of the NC group, specifically in
frontal and temporal related areas in δ, θ, and β oscillations.
While for α oscillation, the phase synchronization index of AD
groups in most areas (apart from T3 and C4 electrode pairs) does
not show statistical significance.

Association Between EEG Metrics and
Neuropsychological Test Scores in AD
Group
The Spearman correlation analysis with FDR correction was
performed to investigate whether these EEG metrics could
reflect the impaired cognitive functions in AD patients.
Here we only demonstrate the association between EEG
metrics and neuropsychological test scores in AD group. The
neuropsychological tests and EEG correlation analysis in NC

group and in both groups is listed in Supplementary Materials
(Supplementary Tables 1–6).

Association Between Relative Spectral Power and
MMSE/MoCA Scores
The correlation analysis between relative spectral power of
each oscillation at each electrode of the EEG and the
neuropsychological test scores in AD groups were calculated.
As shown in Table 2, the relative power of δ and θ oscillations
in AD patients is negatively correlated with the MMSE score,
while the relative power of α and β oscillations is positively
correlated with the MMSE score. Among them, the correlation of
the relative power of α oscillation at bilateral frontal and central
electrodes and the MMSE score is beyond statistical significance.
The correlation between the power of each oscillation and the
MoCA score has similar trend. The relative power of α oscillation
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FIGURE 4 | Differences of phase synchronization indices between AD and NC group in four frequency bands. Values beyond statistical significance after FDR
correction is demonstrated, and the color bar denotes the t-value.

TABLE 2 | Relationship between relative spectral power and MMSE/MoCA scores.

Electrode Position MMSE MoCA

ρδ_power ρθ_power ρα_power ρβ_power ρδ_power ρθ_power ρα_power ρβ_power

F3 0.0376 –0.3085 0.3736 0.2806 0.0523 –0.2197 0.4711 0.2207

F4 –0.1044 –0.2596 0.3267 0.4013 –0.0886 –0.1642 0.4369 0.3361

T3 –0.2575 –0.1636 0.6540** 0.1698 –0.2813 –0.2107 0.7103** 0.2199

T4 –0.2596 –0.4019 0.5671* 0.4610 –0.2704 –0.3270 0.5871* 0.3999

C3 –0.1034 –0.4856 0.5972* 0.3485 –0.0667 –0.4643 0.6320** 0.2894

C4 –0.2275 –0.3480 0.5753* 0.0229 –0.2838 –0.3685 0.6470** 0.0838

O1 –0.3660 –0.3205 0.4334 0.3962 –0.3380 –0.3951 0.4722 0.4280

O2 –0.4541 –0.2908 0.4717 0.3719 –0.3953* –0.3696 0.5315* 0.3902

*P < 0.05; **P < 0.01.

at bilateral frontal-central and right occipital electrodes is
significantly positively correlated with the MoCA score.

Association Between Spectral Entropy and
MMSE/MoCA Scores
We examined the correlation between δ, θ, α, and β oscillation
spectrum entropy and the degree of cognitive impairment in the
AD group. As shown in Table 3, the spectral entropy does not
exhibit significant correlation to the MMSE and MoCA scores.

Association Between Phase Synchronization and
MMSE/MoCA Scores
We further investigated the association between δ, θ, α, and
β oscillation phase synchronization indices and the degree of
cognitive impairment in the AD group. From Table 4, we can see
the phase synchronization index of β oscillation is significantly
correlated with MoCA scores, specifically at left frontal-central
and temporal-central electrode pairs. Besides, the correlation of
phase synchronization index of θ oscillation at left central to right
frontal and right temporal electrode pairs to MoCA scores also
beyond statistical significance after FDR correction.

DISCUSSION

In this study, we found that, almost in the whole brain regions,
the AD group had higher θ oscillation spectral power and
lower α oscillation spectral power than that in the NC group,
which is consistent with many former studies as reviewed in
Jeong (2004); Engels et al. (2017), Malek et al. (2017); Cassani

et al. (2018), Horvath et al. (2018), and Babiloni et al. (2020a).
We further found that in the AD group the α oscillation spectral
power was positively correlated with the MMSE and MoCA
scores. Basar and colleagues has suggested α oscillations have
multifold functional correlates including sensory, motor and
memory functions (Basar and Guntekin, 2012). As a universal
code or universal operator, α oscillations serve as building blocks
in several functions and can be used as clinical biomarkers
of cognitive impairment in schizophrenia, Alzheimer’s disease
and bipolar disorders (Basar and Guntekin, 2012). Our results
showed that α oscillation spectral power could be a significant
EEG biomarker for differentiating probable AD patients from
normal elderly, and could also indirectly reflect the severity and
prognosis of disease.

Previous studies have shown that the EEG complexity of
AD patients is lower than that of NC subjects, which is
manifested by changes in entropy-related parameters such as
spectral entropy, approximate entropy, and sample entropy
(Abasolo et al., 2006; Simons et al., 2018; Tylová et al., 2018),
etc. While on different time scales or frequency bands, the
complexity of EEG signals associated with cognitive impairment
may be inconsistent. When multi-scale entropy analysis is
used, the entropy in the AD group was lower than that in
the NC group on smaller scales, while the AD patients had
higher complexity than NC subjects at larger scales on long
scales (Mizuno et al., 2010; Maturana-Candelas et al., 2019).
The smaller/larger scales can be considered to correspond
to higher/lower frequencies of spectral power, respectively.
Spectral entropy considers the complexity at specific frequency
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TABLE 3 | Relationship between spectral entropy and MMSE/MoCA scores.

Electrode Position MMSE MoCA

ρδ_entropy ρθ_entropy ρα_entropy ρβ_entropy ρδ_entropy ρθ_entropy ρα_entropy ρβ_entropy

F3 –0.3907 0.0542 0.3497 –0.2381 –0.2962 0.1014 0.3191 –0.1973

F4 –0.2999 0.0548 0.3027 0.0034 –0.2310 0.0440 0.2837 –0.0041

T3 –0.1264 0.2411 0.2387 –0.4739 –0.0734 0.1217 0.2947 –0.5415

T4 –0.2981 0.1387 0.3903 –0.3828 –0.2232 0.1133 0.3452 –0.4503

C3 –0.3528 0.0843 0.4075 –0.2785 –0.3027 0.0360 0.4055 –0.3572

C4 –0.4294 0.0854 0.2896 –0.5550 –0.3723 0.0434 0.3380 –0.5788

O1 –0.1919 0.1229 0.1812 –0.1962 –0.2445 0.0599 0.2598 –0.2075

O2 –0.1433 0.0294 0.1976 –0.1833 –0.2279 –0.0177 0.2609 –0.1996

TABLE 4 | Relationship between phase synchronization index and MMSE/MoCA scores.

Electrode pairs MMSE MoCA

ρδ_pha_syn ρθ_pha_syn ρα_pha_syn ρβ_pha_syn ρδ_pha_syn ρθ_pha_syn ρα_pha_syn ρβ_pha_syn

F3-F4 0.0815 0.1249 –0.0084 0.3389 0.1377 0.1998 0.0650 0.4273

F3-T3 0.2913 0.2540 0.2156 0.4963 0.2882 0.3319 0.2902 0.5567*

F3-C3 0.0091 –0.0461 –0.0222 0.4796 –0.0025 –0.0057 0.0163 0.5542*

F3-C4 0.2166 0.2798 0.2513 0.4190 0.3530 0.3985 0.3314 0.5295

F3-T4 0.1624 0.4192 0.3108 0.4441 0.0978 0.4371 0.3564 0.5225

F3-O1 0.1683 0.3735 0.3115 0.4464 0.1610 0.4383 0.3258 0.5139

F3-O2 0.1017 0.2733 0.2059 0.4327 0.1030 0.3747 0.2548 0.5077

F4-T3 0.2546 0.2519 0.3283 0.3906 0.3551 0.3541 0.4125 0.4913

F4-C3 0.4255 0.5059 0.4528 0.4413 0.4387 0.5941* 0.4808 0.5127

F4-C4 –0.0245 0.0095 0.1032 0.0578 0.0641 0.0736 0.1711 0.1645

F4-T4 0.1470 0.2754 0.2773 0.2804 0.1856 0.2939 0.3197 0.3700

F4-O1 0.2665 0.2875 0.3547 0.4078 0.2822 0.3388 0.3568 0.4835

F4-O2 0.1943 0.1756 0.2995 0.3473 0.2252 0.2208 0.3278 0.4240

T3-C3 0.3450 0.3806 0.2854 0.4770 0.4309 0.4585 0.3698 0.6104*

T3-C4 0.3059 0.3649 0.4134 0.4915 0.3630 0.4391 0.4683 0.5555*

T3-T4 0.1137 0.3751 0.3269 0.3407 0.0761 0.3285 0.2606 0.3260

T3-O1 0.0124 0.2274 0.2194 0.2123 0.0076 0.1793 0.1252 0.2145

T3-O2 0.0426 0.1717 0.1869 0.2107 –0.0014 0.1135 0.0591 0.1840

C3-C4 0.4031 0.3382 0.3449 0.4251 0.4693 0.4209 0.3630 0.5261

C3-T4 0.3343 0.5681 0.4578 0.5410 0.3246 0.5836* 0.4782 0.6553*

C3-O1 0.3655 0.3330 0.2635 0.4735 0.3362 0.3667 0.2670 0.5600*

C3-O2 0.1847 0.2222 0.2591 0.3949 0.1630 0.2534 0.2691 0.5277

C4-T4 –0.0414 0.1907 0.2125 0.3301 0.0520 0.3367 0.3223 0.4557

C4-O1 0.2332 0.2900 0.3895 0.3570 0.2160 0.3039 0.3517 0.4109

C4-O2 0.2106 0.2772 0.2908 0.2874 0.1481 0.2765 0.2575 0.3198

T4-O1 0.0493 0.2618 0.1802 0.2722 0.0244 0.1878 0.0611 0.2347

T4-O2 –0.0439 0.2368 0.2054 0.2378 –0.0782 0.1744 0.1074 0.2288

O1-O2 –0.0826 –0.0150 -0.0980 0.1018 –0.1033 –0.0979 –0.2208 0.0197

*P < 0.05.

bands. Our study found that the spectral entropy of the
α oscillations in the frontal, temporal and central regions
of the AD group was lower than that in the NC group,
which is consistent with former studies (Sun et al., 2020).
On the other hand, we found the β oscillation spectral
entropy in the temporal, central and occipital regions was
higher than that in the NC group. Because the spectral
entropy represents the degree of uncertainty in the power

distribution of EEG signals, our results suggest that the power
fluctuations of the α oscillations of AD patients become
smaller, while the power fluctuations of the β oscillations
become larger. In preclinical amyloid positive patients, Gaubert
and colleagues also found increased spectral entropy, which
is suggested to be related to a compensatory mechanism in
AD patients during memory load and cognitive performance
(Gaubert et al., 2019).
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Many functional connectivity measures has been used in
evaluating the synchronization characteristics in different brain
areas in AD patients, and many of them are correlated
(Dauwels et al., 2010). The phase-based measures are robust
and reproducible, insensitive to volume conduction (Briels et al.,
2020). Our study found the phase synchronization index of
δ, θ, and β oscillations of AD patients was decreased than
that of the NC subjects, especially in the frontal, temporal and
central areas. Further, we found the phase synchronization index
of β oscillations at these brain areas correlated well with the
MoCA scores in AD patients. According to Pini et al. (2016),
cortical atrophy in AD patients affects the medial temporal
lobe very early, then extending to the other parts of the cortex
along a temporal-parietal-frontal trajectory. Due to the recording
device’s limitation, we lack the neural activity in the parietal
electrodes. Instead, our results suggests the neuronal functional
connectivity at the temporal-central-frontal areas in AD patients
is greatly impaired, and the phase synchronization index of
β oscillations might be an indicator of the impairment of
brain functions. However, the phase synchronization index of
α oscillation seemed less damaged and less correlated with the
neurological scores, suggesting the phase synchronization feature
of α oscillations may not reflect the severity of disease.

In conclusion, our study suggest that quantitative EEG
spectral power in α oscillations and phase synchronization
characteristics in β oscillations could reflect the severity of AD
disease and are beneficial to the diagnosis and screening of
probable AD patients. As the PiB-PET examination is rather
expensive, the number of AD patients included in this study is
relatively small. In addition, the parietal neural activity is not
recorded in current study, which hindered us evaluating the
impaired cognitive functions in parietal areas of AD patients.
Further, this study is a retrospective, cross-sectional group
study. In the future we should consider a longitudinal and
individualized study with a larger sample size and with more
electrode sites.
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