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Abstract

We present new results concerning probability distributions of times in the coalescence tree

and expected allele frequencies for coalescent with large sample size. The obtained results

are based on computational methodologies, which involve combining coalescence time

scale changes with techniques of integral transformations and using analytical formulae for

infinite products. We show applications of the proposed methodologies for computing proba-

bility distributions of times in the coalescence tree and their limits, for evaluation of accuracy

of approximate expressions for times in the coalescence tree and expected allele frequen-

cies, and for analysis of large human mitochondrial DNA dataset.

Introduction

Coalescent theory [1, 2], widely used for statistical inference on genetic parameters and struc-

tures of evolving populations is a thoroughly studied area with many results published over

decades. The classical coalescent model concerns a sample drawn from a population which has

evolved with constant size over many generations in the past. For such a model many results

concerning e.g., probability distributions of times in the coalescence tree [3, 4], expected ages

[5, 6] and frequencies of mutations and recombinations [3, 4] were developed. Since majority

of populations undergo changes in their size in the course of their evolution several authors

developed coalescence computations for the case of time dependent population sizes, either by

deriving analytical approaches [5, 7–9] or by using stochastic coalescence simulations [5, 10].

Other directions of developing coalescent modeling involve different scenarios of populations

evolution, constant or undergoing expansions or bottlenecks, combined with possible inho-

mogeneity of their structures [11, 12], as well as different models of mutation, infinite size, infi-

nite alleles, recurrent, stepwise. There are also several studies concerning coalescence

modeling for populations under selection [13–15].

Emergence of large datasets resulting from contemporary sequencing technologies has

drawn attention of researchers to problems in the coalescent theory arising in the situation

where the coalescent sample size becomes large. There are several areas of analysis of such

problems. Below we describe those of them, which are in the scope of our interest in the

PLOS ONE | DOI:10.1371/journal.pone.0170701 February 7, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Polanski A, Szczesna A, Garbulowski M,

Kimmel M (2017) Coalescence computations for

large samples drawn from populations of time-

varying sizes. PLoS ONE 12(2): e0170701.

doi:10.1371/journal.pone.0170701

Editor: Zaid Abdo, Colorado State University,

UNITED STATES

Received: July 12, 2016

Accepted: January 9, 2017

Published: February 7, 2017

Copyright: © 2017 Polanski et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data in table 1 are

from the study: Chen H., Chen K., (2013),

Asymptotic Distributions of Coalescence Times

and Ancestral Lineage Numbers for Populations

with Temporally Varying Size, Genetics, vol.

194, pp. 721. Data in table 2 are from the mtDB

database (http://www.mtdb.igp.uu.se/). The related

paper is: Ingman, M., Gyllensten, U., (2006), mtDB:

Human Mitochondrial Genome Database, a

resource for population genetics and medical

sciences. Nucleic Acids Res 34, D749-D751. Our

Matlab code is avaiable as a supplement to the

paper at the publisher’s page and as the post at the

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170701&domain=pdf&date_stamp=2017-02-07
http://creativecommons.org/licenses/by/4.0/
http://www.mtdb.igp.uu.se/


present paper. The first area is pursuing computations for existing algorithms for the case of

large sizes of the coalescence tree. Many authors have pointed out (e.g., [7, 9, 16, 17] that some

of the computational algorithms for coalescence modeling, published in the literature, are

applicable only for relatively small sizes of samples, below 50. In view of availability of data of

much larger sizes it is interesting and important to study and develop analogous or corre-

sponding methodologies suitlable for larger sample sizes. The second area includes computing

limits and/or growth/shrinkage patterns of distributions (expectations) of coalescence times

and allele frequencies in the coalescence process. When the sample size tends to large values it

becomes a natural and important question whether limits of distributions/values exist, how

they can be computed and used in population and statistical genetics research. The third area

includes developing large sample approximations. Large sample approximations usually have

the form of simple analytical expressions and therefore may be very useful for (approximate)

statistical inference. Large sample approximations also give a valuable support for intuitive

understanding of mechanisms of evolution of large samples. Two types of approximations

have been applied for large samples, deterministic and normal. Deterministic approximation

is based on the fact that the coalescence process, which in principle has a stochastic nature,

converges partly to a deterministic scenario when sample size goes to infinity [15, 18]. In the

deterministic approach times in the coalescence process are represented by deterministic val-

ues. In the normal approximation approach times in the coalescence process are modeled

(approximated) by normal distributions [16] on the basis of the fact that, under the constant

population scenario, they are sums of many independent components [19].

The aim of the present paper is to show new results and conclusions in the three areas listed

above. We derive our results by using new methods for computing exact probability distribu-

tions and expectations of times to coalescences for trees of arbitrary large sizes and for arbi-

trary scenarios of population time change. In previous publications [16, 20] such distributions

and values were computed by using approximations or estimated by stochastic coalescence

simulations. The proposed approach is based on deriving the inverse of the integral transform

introduced in [7]. Further we derive the limit distribution of the time to most recent common

ancestor, under different scenarios of population size change, which uses the gamma quotient

formula for infinite products [21]. We show the following applications of the proposed

approaches:

• Computing probability distributions and expectations of coalescence times for genealogies

of large samples of DNA sequences, with high accuracy. In previous articles such distribu-

tions and expectations were estimated on the basis of coalescence simulations or approxi-

mate methods.

• Computing limit distributions of times to most recent common ancestor in the coalescene

tree under different rates of population growth.

• Evaluation of accuracy of published large sample approximations [16] for times in the coa-

lescence tree and expected allele frequencies.

• Estimation of rates of convergence of distributions of times in the coalescence tree to their

limits.

• Fitting the exponential growth model to DNA polymorphisms data from the whole database

of mitochondrial DNA for over 2000 individuals [22].

In the “Discussion” section we show some other possible applications of the derived results

and some possible further directions of the research.

Coalescence computations for large samples
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Results

Results, which we show in this paper concern the past history of an n-sample (of DNA

sequences) taken at present, as illustrated in Fig 1 where samples are numbered from 1 to

n = 5. Time t is measured from the present to the past with the units defined by number of gen-

erations. We assume validity of the diffusion approximation [23], so t is a continuous variable.

Coalescences are events of merging (joining) branches of the phylogenic tree of samples. Ran-

dom coalescence times from sample of size n to sample of size k − 1 are denoted by Tk, k = 2,

3. . .n, and their realizations by corresponding lower case letters tn, tn−1, . . ., t2, 0< tn<
tn−1. . .<t2. Times between coalescence events are denoted by the capital and lower case letters

S, s; in Fig 1 these times are denoted by S5, S4, . . ., S2. Apart from coalescnce times T2, . . ., Tn−1,

Tn and times between coalescence events S2, . . ., Sn−1, Sn of special interest (e.g., [5, 7, 8, 16])

are also the time to the most recent common ancestor (TMRCA) and total length of branches

Fig 1. Coalescence tree and notation for ancestral history of a sample of n = 5 DNA sequences. Times to coalescence events are

denoted by capital letters T, times between coalescences are denoted by capital letters S. A mutation event is marked by an open circle.

doi:10.1371/journal.pone.0170701.g001
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in the coalescence tree (TLBT), defined as follows

TMRCA ¼ T2; ð1Þ

and

TLBT ¼
Xn

k¼2

kSk ¼ T2 þ
Xn

k¼2

Tk: ð2Þ

During the DNA replication process mutation events occur along branches of the coales-

cence tree. In Fig 1 an exemplary mutation event is marked by an open circle. Consequently,

sequences 4 and 5 have mutant alleles (bases), while sequences 1, 2 and 3—ancestral ones. We

assume that the mutation process is described by a Poisson point process and that assumptions

of the infinite sites model are satisfied (e.g., [5, 16, 24]). Allele frequencies corresponding to

mutations depend on times in the coalescence tree Sk and on mutation intensity μ. Expected

allele frequency, fnb, of mutation of type b, i.e., having b mutant bases versus n − b ancestral

bases in the leaves of the coalescence tree (in Fig 1 b = 2, n − b = 3), is given by the following

expression (e.g., [5, 16, 24])

fnb ¼ m
ðn � b � 1Þ!ðb � 1Þ!

ðn � 1Þ!

Xn

k¼2

n � k
b � 1

� �

kðk � 1ÞEðSkÞ; 1 � b � n � 1: ð3Þ

Under the additional hypothesis that μ is close to zero, probability, pnb, that a randomly chosen

mutation is of type b is given by the following expression [5]

pnb ¼
fnbP
b fnb
¼

fnb
mEðTLBTÞ

: ð4Þ

The effective size of the underlying population is assumed to be given by a deterministic

function N(t), t 2 [0,1). Two special cases of population size change (growth) scenarios are

often researched, constant and exponential. The constant population size scenario is denoted

as

NðtÞ ¼ NCðtÞ ¼ N0: ð5Þ

The exponential growth scenario is given by

NðtÞ ¼ NEðtÞ ¼ N0 exp ð� rtÞ ð6Þ

where r is the exponent parameter. For exponential growth we also denote

r ¼ rN0; ð7Þ

and we call ρ the product parameter of the population exponential growth. With r = 0 the

exponential scenario Eq (6) becomes the constant scenario Eq (5).

Probability distributions of coalescence times

In this subsection we present results concerning probability distributions of times in the coa-

lescence tree, which according to our best knowledge were not published before. We obtain

them by using the methods described in subsections “Inversion of the integral transform” and

“Limit distributions” of the “Methods” section. In Fig 2 we show probability distributions of

TMRCA, pTMRCA
t
N0

� �
, for genealogy sizes n = 10, n = 100 and n =1, for different scenarios of

Coalescence computations for large samples
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populations size change, constant (upper plot) and exponentially growing with ρ = 1 (middle

plot) and ρ = 10 (lower plot). Convergence of probability density functions of TMRCA to the

limit distribution, derived in subsection “Limit distributions”, is rather fast. One can observe

that time scale change related to exponential scenario of population growth with increasing ρ
results in probability distribution of TMRCA with increasing similarity to normal distribution.

The result published by [19] states that probability distributions of times Tk in the middle of

the coalescence tree converge to normal distribution when n!1. Using our expressions

from subsection “Inversion of the integral transform” of the “Methods” section, we have

numerically studied the rate of this convergence by computing skewness coefficients γ(Tk),

gðTkÞ ¼ E
Tk � EðTkÞ

StdðTkÞ

� �3
" #

ð8Þ

for distributions of times Tk when the index k changed from top to the bottom of the

Fig 2. Probability density functions, pTMRCA
t
N0

� �
, for different scenarios of populations size change,

constant (upper plot) and exponentially growing with ρ = 1 (middle plot) and ρ = 10 (lower plot).

Probability distributions are shown for different genealogy sizes n = 10, n = 100 and n =1 (limit distribution).

doi:10.1371/journal.pone.0170701.g002
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coalescence tree. Values of skewness coefficient allow for estimating departure of the distribu-

tion of interest from normality.

Plots of skewness coefficient γ(Tk) for different genealogy sizes, n = 100 (upper plot) and

n = 1000 (lower plot) and for different scenarios of population size change constant (ρ = 0)

and exponentially growing with ρ = 1, ρ = 10 and ρ = 100 are shown in Fig 3.

From the plots in Fig 3 one can see that skewness of probability distributions of times Tk
decrease for increasing values of the product parameter ρ. For all scenarios, constant and expo-

nential with different ρ, one observes a sharp increase of values of skewness coefficient γ(Tk) in

the fourth quartile of the range of values of the coalescence tree index k.

Accuracy of approximate formulae for expectations of coalescence times

Large sample approximations for probability distributions and expectations of coalescence

times are very useful due to both their simple forms, and applicability to samples of arbitrary

large size. Chen and Chen, (2013) [16], derived large sample approximations for expected

Fig 3. Values of skewness coefficient γ(Tk) of probability distributions of times in the coalescence tree

computed for different genealogy sizes, n = 100 (upper plot) and n = 1000 (lower plot) and for different

scenarios of population size change constant (ρ = 0) and exponentially growing with ρ = 1, ρ = 10 and ρ = 100.

doi:10.1371/journal.pone.0170701.g003
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coalescence times, EðTE
k Þ, ETMRCA, ETBLT for the case of exponential growth of population

underlying the coalescence process. An important issue for applications of Chen and Chen’s

approximate formulae (“Methods” section, Eqs (26)–(28), is how accurately they approximate

exact values. Chen and Chen (2013) [16] in their Figure 5 show plots, which demonstrate accu-

racy of their approximations of ETMRCA Eq (27) and ETBLT Eq (28). However, estimation of

accuracy of approximation of ETMRCA (upper plot “A” in Figure 5 in Chen and Chen, (2013)

[16] is based only on simulations, which reduces precision of estimation. The lower plot “B” in

Figure 5 in Chen and Chen, (2013) [16] shows good accuracy of approximation Eq (28). How-

ever, one can examine accuracy only in qualitative terms.

Here we precisely evaluate accuarcy of Chen and Chen’s approximations by using the

approach presented in the “Methods” section. This approach is justified by results of the

numerical study which proves that for sample sizes of orders of hundreds of thousands relative

accuracy is better than 10−6 (see the Methods section).

In Fig 4 we show plots of relative errors of Chen and Chen’s, (2013) [16] approximations

(“Methods” section, Eqs (27) and (28) for ETMRCA and ETBLT computed by using our

expressions given in “Methods” section, Eqs (22)–(25). It is easily seen, that relative error for

both ETMRCA and ETBLT, for a given sample size n depends only on the value of the product

Fig 4. Relative errors of approximations for ETMRCA (upper plot) and ETBLT (lower plot) proposed by Chen

and Chen (2013) [16].

doi:10.1371/journal.pone.0170701.g004
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parameter of the population growth ρ Eq (7). When computing approximate ETBLT one

needs to replace the value on the right hand side of Eq (28) by its limit, 2N0, in the case when

n = 2rN0 = 2ρ. As seen from upper and lower plots in Fig 4 relative approximation errors of

ETMRCA and ETBLT show quite complicated, nonlinear dependence on ρ. Relative error

committed when using Chen and Chen’s approximation approximation for ETMRCA
(“Methods” section, Eq (27)) is of order of percents. For n> 100 this error practically does not

depend on n, which is consistent with fast convergence of distribution of TMRCA (shown in

Fig 2). Relative error committed when using Chen and Chen’s approximation for ETBLT
(“Methods” section, Eq (28)) increases for small values of ρ and decreases for large ρ and for

large sample sizes n. For values of ρ> 10 and for sample sizes n> 100 accuracy of approxima-

tion Eq (28) is very good, of the order of 10−3 or better, consistently to results already shown

in [16]).

In their Table 1 Chen and Chen (2013) [16] show values of asymptotic approximations of

expectations and standard deviations of coalescence times. In order to evaluate accuracy of

these approximations they compare them to averages computed over stochastic simulations,

which results in committing error resulting from random variation in simulations. Below in

our Table 1 we have reproduced one part of Chen and Chen’s (2013) [16] Table 1, correspond-

ing to sample size n = 800. In our Table 1 we have replaced estimates of expectations and stan-

dard deviations of coalescence times obtained by simulations by their exact values computed

with the use of our algorithm described in subsection “Inversion of the integral transform” of

the “Methods” section. Chen and Chen (2013) [16] use index named m to number coalescence

times. Our index used for numbering coalescence times is k. Due to different notation conven-

tions these indexes must be shifted by 1 in order to obtain corresponding results.

Table 1. Comparison of exact expectations and standard deviations of times to coalescence Tk to their asymptotic approximations proposed by

Chen and Chen (2013) [16], for n = 800.

r k Mean Tk Standard deviation of Tk

Exact Asymptotic Bias% Exact Asymptotic Bias%

0.001 6 6647.928 6679.599 0.476 250.612 258.485 3.141

0.001 11 5964.931 5981.414 0.276 181.193 184.235 1.678

0.001 51 4327.067 4330.733 0.085 85.654 85.933 0.326

0.001 201 2771.310 2772.589 0.046 50.608 50.631 0.045

0.001 401 1790.748 1791.759 0.057 45.001 45.005 0.009

0.001 796 30.870 30.962 0.299 13.556 13.635 0.581

0.005 6 1651.262 1657.606 0.385 50.175 51.749 3.136

0.005 11 1514.458 1517.766 0.218 36.314 36.922 1.674

0.005 51 1185.169 1185.918 0.063 17.314 17.369 0.317

0.005 201 865.864 866.147 0.033 10.656 10.659 0.030

0.005 401 651.350 651.619 0.041 10.389 10.386 0.030

0.005 796 28.849 29.206 1.243 11.891 12.153 2.204

0.01 6 894.933 898.105 0.354 25.091 25.878 3.137

0.01 11 826.518 828.172 0.200 18.167 18.465 1.670

0.01 51 661.765 662.141 0.057 8.669 8.696 0.315

0.01 201 501.585 501.728 0.029 5.363 5.365 0.032

0.01 401 393.043 393.183 0.036 5.297 5.295 0.034

0.01 796 26.796 27.343 2.043 10.361 10.699 3.262

doi:10.1371/journal.pone.0170701.t001
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Comparing values of biases in our Table 1 to their counterparts in Chen and Chen’s (2013)

[16] Table 1 one can see that Chen and Chen’s (2013) [16] were able to estimate magnitudes of

biases, however it was not possible for them to compute exact values.

Accuracy of approximate formulae for expected allele frequencies

We evaluate accuracy of Chen and Chen’s (2013) [16] method for approximate computation

of expected allele frequencies based on the idea of replacing expected times in coalescence pro-

cess with underlying exponentially growing population, by their approximations (“Methods”

section, Eq (26)). In Chen and Chen’s (2013) [16] Figure 6 one can observe that approximate

method proposed by Chen and Chen (2013) [16] leads to estimates, which properly reflect pat-

terns of change of expected allele frequencies. However, this obsevation can be done only

qualitatively.

In Fig 5 we show values of relative errors of expected allele frequencies qnb versus allele type

b for two values of genealogy size n = 1000 (upper plot) and n = 10000 (lower plot) for different

values of the product parameter of the population growth ρ = 1, ρ = 10, ρ = 100 and ρ = 1000.

Relative error shows nonlinear behavior with respect to changes in ρ. For the range of values of

ρ depicted in Fig 5 values of the relative error are small (of the order of 10−4 – 10−3) for low val-

ues of b and grow to about 10% for high values of b. Since accurate computation of expected

Fig 5. Relative errors of expected allele frequencies qnb versus allele type b for two values of

genealogy size n = 1000 (upper plot) and n = 10000 (lower plot) for different values of the product

parameter of the population growth ρ = 1, ρ = 10, ρ = 100 and ρ = 1000.

doi:10.1371/journal.pone.0170701.g005
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frequencies for alleles corresponding to low values of b is more important than for those corre-

sponding to high values of b, Chen and Chen’s (2013) [16] approximation seems useful for

many applications.

Analysis of mitochondrial DNA dataset

The last result, which we show is the analysis of human mitochondrial DNA polymorphisms

from the Human Mitochondrial Genome mtDB database [25]. The mtDB database contains in

total 3857 polymorphic sites quantified in 2704 individuals. For our analysis we have chosen

only a subset of 3857 polymorphic sites in mtDB, namely those sites whose status was deter-

mined for all 2704 individuals and which were diallelic. There were 3213 such segregating

sites. Table 2 shows their allelic frequencies.

We have fitted the model of exponential growth for the data given in Table 2. Analogously

to [8] we treated each segregating site as a separate SNP. The model fit is based on maximizing

the likelihood function defined in [8] (Eq (24)). In Fig 6 we present plots of log likelihood

functions versus exponential growth product parameter ρ, obtained with the use of exact

Table 2. Statistics of segregating sites in mtDNA data from Human mtDNA database [22]. Elements in b are possible numbers of copies of the rare

allele, and elements in ck are numbers of segregating sites in the sample that have the number of copies of the rare allele equal b.

b ck b ck b ck b ck b ck

1 1231 28 10 55 5 87 1 156 1

2 542 29 5 56 2 88 1 174 1

3 298 30 5 57 1 89 1 176 1

4 170 31 8 58 4 90 1 204 1

5 149 32 10 59 1 91 1 213 1

6 95 33 7 60 3 94 1 218 1

7 66 34 5 61 4 95 2 234 1

8 67 35 8 62 3 96 3 235 1

9 35 36 9 63 2 98 2 244 1

10 33 37 8 64 1 104 1 264 1

11 28 38 2 65 3 110 1 272 1

12 21 39 8 66 1 111 1 299 1

13 17 40 1 67 1 127 1 347 2

14 24 41 3 68 1 128 1 390 1

15 16 42 5 69 2 129 2 444 1

16 22 43 5 70 1 131 2 505 1

17 15 44 7 72 1 132 2 550 1

18 19 45 5 74 1 133 1 604 1

19 13 46 1 76 1 134 1 610 1

20 17 47 6 77 2 135 1 720 1

21 10 48 4 78 1 138 2 724 1

22 13 49 1 79 1 139 1 777 1

23 14 50 1 81 1 144 1 867 1

24 8 51 3 83 3 147 3 933 1

25 5 52 2 84 4 149 3 943 1

26 15 53 2 85 3 150 1 944 1

27 13 54 1 86 6 152 1

doi:10.1371/journal.pone.0170701.t002
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method (marked with asterisks) and with the use of approximate expectations of coalescence

times proposed by Chen and Chen (2013) [16] (marked with open circles). One can see that

plots are quite close one to another, consistently to results presented in subsection “Accuracy

of approximate formulae for expected allele frequencies”. Maximum likelihood estimate

obtained by using the exact method is r̂exact ¼ 339:3 and the estimate obtained by using the

approximate method is r̂approx ¼ 341:7. Additionally, we used Hudson’s program “ms” [26] to

perform 1000 coalescence simulations, with appropriate parameters, which allowed us to esti-

mate 95% confidence interval as 285 < ρ< 403. Similar estimates can be obtained on the basis

of the likelihood ratio statistics [8]. The obtained values and bounds of confidence intervals, fit

into the range of values (50–500) of exponential growth product parameter of human popula-

tion, which we estimated in [8] on the basis of different datasets.

Discussion

In this paper we evaluate the accuracy of the approximations for times in the coalescence tree

and expected allele frequencies as proposed by [16] and we compute the probability distribu-

tions of times in the coalescence tree and their limits. We also use Human Mitochondrial

Genome mtDB database to present a comparison of exact versus approximate log likelihood

function for solving the inverse problem of estimating population size history from observed

allele frequencies [18, 20, 24].

Fig 6. Log-likelihood curves for the exponential model of population growth for data on segregating

sites from the mtDB database [25]. Each segregating site from Table 2 was treated as a separate SNP. The

curve marked with asterisks shows the exact log likelihood function and the one marked with open circles is

the approximate log likelihood function. The maximum of the exact log likelihood function is attained at r̂exact ¼

339:3 and the maximum of the approximate log likelihood function is attained at r̂approx ¼ 341:7.

doi:10.1371/journal.pone.0170701.g006
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The presented resuts are based on new approaches described in the “Methods” section. We

propose new methods for coalescence computations for large sample sizes, based on inverting

the integral transform defined in [7] (“Methods” section, Eq (12)) and on using analytical

expressions for infinite products for computing limit distributions. Both the integral transform

Eq (12) and its inverse Eq (29) use techniques well known in statistical genetics—the Laplace

(Fourier) transformation and coalescence time scale change. However, combining them

together allows for deriving new results, unavailable in the previous literature.

Methodologies for efficient computation of probability distributions and expectations of

coalescence times for large sample sizes, presented in the “Methods” section of this paper, can

lead to many further applications. The inverse transform Eq (29) can be generalized to higher

dimensions. Two-dimensional generalization of Eq (29) can be used for computing second-

order moments of coalescence times [27] for large sample sizes. Methodology for computing

second-order moments of coalescence times can be useful e.g., for analyzing statistics of trialle-

lic DNA loci [28].

In this paper, by large sample sizes n we understand numbers comparable to the present

throughput capabilities of experimental techniques for DNA sequencing, i.e. thousands of peo-

ple, with data publically available in databases in 1000 Genomes Project [29] or mtDB [25].

The sample size is going to increase to hundreds of thousands or even millions in short order,

with ongoing projects including UK10K (about 10 thousand human genomes) and the Million

Veteran Program (about 1 million human genomes). The computational methods proposed in

this paper are likely to be relevant to many aspects of statistical analyses of these datasets.

Sequencing data for even larger number of cell samples are already available in the cancer

genomics TCGA database [30]. Cancer tissue is an evolving population of cancer cells with

diversity increasing as the tumour advances in development, and using coalescence modeling

for the analysis of cancer genomics data [17, 31] is of great interest and possibly of significant

practical importance. Cell count in cancer tissues exceeds bilions, and biopsies include

upwards of millions of cells [32]. However, developing algorithms for coalescence analyses of

cancer genomics sequencing data requires addressing not only the problem of large sample

size but also numerous additional issues specific to that type of data. Typical sequencing cancer

genomics data include reads obtained from a mixture rather than from separate cancer cells,

which calls for the development of integrative approaches combining large sample coalescence

modeling with ascertainment models (e.g., [33]). Another concern would be the presence of

mutational events such as chromosomal duplications, the loss of heterozygosity and rearange-

ments [31], which interfere with the point mutation processes. Additionally, point mutations

seen in the cancer sequencing samples are classified as either driver or passenger, which is

related with their roles in the selection mechanisms in the carcinogenesis process. Driver

mutations are defining new clones creating cancer cell population subdivisions, leading to the

need for further model refinement. Some of the problems listed above are possible topics of

present studies on coalescence modeling methods for applications in cancer genomics.

Methods

In the case of the evolutionary scenario with the constant population size times between coa-

lescence events, SCn ; S
C
n� 1
; . . . ; SC

2
, are mutually independent random variables, each distributed

exponentially, with expectations (e.g., [5])

EðSCk Þ ¼
N0

k
2

� � ; k ¼ 2; 3; :::; n: ð9Þ
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For the case of constant population size one can obtain analytical expressions for expected

allele frequencies f Cnb and probabilities pCnb [5, 34].

In the general case of the population size history given by a function N(t), times between

coalescences, S2, . . ., Sn−1, Sn, are not independent. Joint probability density function of the dis-

tribution of times T2, . . .Tn−1, Tn can be computed by using the following expression [35].

pðt2; :::; tn� 1; tnÞ ¼
Yn

j¼2

j
2

� �

NðtjÞ
exp �

Z tj

tjþ1

j
2

� �
ds

NðsÞ

 !

ð10Þ

where 0 = tn+1 < tn< tn−1. . .<t2, and j
2

� �
is the binomial symbol. Marginal distributions of

times T2, . . ., Tn−1, Tn, denoted by πT2(t), . . ., πTn−1(t), πTn(t) follow from multiple integrations

of the above formula Eq (10).

A method for computing marginal distributions, πT2(t), . . ., πTn−1(t), πTn(t), based on com-

bining the time scale change

t ¼ gðtÞ ¼
Z t

0

ds

NðsÞ
ð11Þ

with the technique of integral transformations was proposed in [7]. The proposed integral

transform U{.} with the underlying function N(t) was defined as follows

PðsÞ ¼ UfpðtÞg ¼ E exp � s
Z t

0

ds

NðsÞ

� �� �

¼

Z 1

0

pðtÞ exp � s
Z t

0

ds

NðsÞ

� �

dt: ð12Þ

Application of U transformation led to analytical expressions for U transforms of marginal dis-

tributions

UfpTkðtÞg ¼
Yn

j¼k

j
2

� �

sþ j
2

� � ; ð13Þ

and to expressions for marginal distributions

pTkðtÞ ¼
Xn

j¼k

An
jkqjðtÞ k ¼ 2; 3; :::; n; ð14Þ

where coefficients An
jk followed from partial fraction expansion of the product in Eq (13) (see

Eq (7) in [7]), and

qjðtÞ ¼
j
2

� �

NðtÞ
exp �

Z t

0

j
2

� �
ds

NðsÞ

� �

: ð15Þ

The probability distribution, qj(t), in the above formula Eq (15) is the distribution of the time

to the first coalescence event in the sample of size j. The formula Eq (14) was also indepen-

dently derived by Zivkovic and Wiehe (2008) [27] by repeated integration and using mathe-

matical induction.

By using Eqs (14) and (15) one can compute expectations of times to coalescences E(Tn),

E(Tn−1), . . ., E(T2)

EðTkÞ ¼
Xn

j¼k

An
jkej k ¼ 2; 3; :::; n; ð16Þ
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where

ej ¼
Z 1

0

tqjðtÞdt; ð17Þ

are expected times to the first coalescence event in a sample of size j. Expressions for expecta-

tions of times Tn, Tn−1, . . ., T2 Eq (16) can be used for computing expectations E(S2), . . .,

E(Sn−1), E(Sn) and ETLBT. Consequently, formula (Eq (3)) can be applied for computing allele

frequencies.

For the case where N(t) follows the exponential scenario, N(t) = NE(t) Eq (6) time scale

change in Eq (11) becomes

t ¼ gEðtÞ ¼
1

rN0

ð exp ðrtÞ � 1Þ ð18Þ

and qj(t) in Eq (15) becomes

qEj ðtÞ ¼
j
2

� �

N0

exp rt þ
j
2

� �

rN0

ð1 � exp ðrtÞÞ
� �

: ð19Þ

Analogously to Eqs (16) and (17), by using Eqs (14) and (19) one can compute expectations

for the exponential scenario

EðTE
k Þ ¼

Xn

j¼k

An
jke

E
j ð20Þ

where eEj are expectations of times with probability distributions given in Eq (19), equal to

[8, 10]

eEj ¼ eEj ðN0; rÞ ¼ �
exp ½ðj

2
ÞðrN0Þ

� 1
�

r
Ei½� ðj

2
ÞðrN0Þ

� 1
�: ð21Þ

In the above Ei denotes the exponential integral, Eið� mÞ ¼ �
R1

1
½ exp ð� mxÞ=x�dx, Re(μ)> 0,

([36], 3.351.5). Eq (20) can be used for computing EðSE
2
Þ; :::; EðSEn� 1

Þ; EðSEn), ETMRCAE,

ETLBTE and, substituted in Eq (3), for computing allele frequencies.

As we have already mentioned in the introduction section, many authors [7–9, 16, 17] have

reported that expressions for probability distributions and expectations of times, and for allele

frequencies of mutations for the general case of population size history N(t) are applicable only

for small sample sizes n< 50, due to the fact that coefficients An
jk very quickly diverge to very

large numbers with alternating signs when n increases.

The approach based on application of combinatorial identities and methods of summing

hypergeometric series given in [7, 8], which allows for obtaining numerically stable expres-

sions for ETMRCA, ETLBT and expected allele frequencies fnb, applicable for large values of n.

These expressions have the following forms

ETMRCA ¼
Xn

j¼2

ð2j � 1Þ
n!ðn � 1Þ!

ðnþ j � 1Þ!ðn � jÞ!
ð� 1Þ

jej; ð22Þ

ETLBT ¼
Xn

j¼2

ð2j � 1Þ
n!ðn � 1Þ!

ðnþ j � 1Þ!ðn � jÞ!
½1þ ð� 1Þ

j
�ej ð23Þ
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and

fnb ¼ m
Xn

j¼2

Wn
bjej; b ¼ 1; 2; :::; n � 1: ð24Þ

Coefficients Wn
bj in Eq (24) are given by the recursion below

Wn
b2
¼

6

ðnþ 1Þ
; Wn

b3
¼ 30

ðn � 2bÞ
ðnþ 1Þðnþ 2Þ

;

Wn
b;jþ2
¼ �
ð1þ jÞð3þ 2jÞðn � jÞ
jð2j � 1Þðnþ jþ 1Þ

Wn
bj þ
ð3þ 2jÞðn � 2bÞ
jðnþ jþ 1Þ

Wn
b;jþ1

; ð25Þ

j = 2, 3, . . ., n − 2. In Eqs (22)–(24) ej denote expected times to the first coalescence event in a

sample of size j given in Eq (17). By using expressions Eqs (9), (15)–(17) and (21) one can com-

pute expectations ej and further ETMRCA, ETLBT and fnb for any scenario of population size

change, constant (eCj ), given by generally defined function N(t) (ej) and exponential (eEj ).

Expressions Eqs (22)–(25) were used by several authors for computing exact values of

expected times ETMRCA, ETLBT and expected allele frequencies, e.g., or for studying proper-

ties of coalescence process [37], for studies on pupulation size histories [38] and for compari-

sons between exact and approximate methods [16].

By applying time scale change g−1(τ), given in Eq (36) Chen and Chen, (2013) [16] have

obtained the following approximation of expected coalescence times for the exponential

growth scenario

EðTE
k Þ ’

1

r
ln 2rN0

1

k � 1
�

1

n

� �

þ 1

� �

; ð26Þ

and

ETMRCAE ¼ EðTE
2
Þ ’

1

r
ln 2rN0 1 �

1

n

� �

þ 1

� �

: ð27Þ

By integrating over time expectation of the pure death process describing merging of branches

of the coalescence tree Chen and Chen, (2013) [16] have also derived the following approxima-

tion for expected total length of branches in the coalescence tree under exponential scenario

ETBLTE

ETBLT E ’
2nN0 ln 2rN0

n

2rN0 � n
: ð28Þ

Finally Chen and Chen, (2013) [16] have proposed to substitute approximate expectations of

coalescence times Eq (26) in expression Eq (3) to obtain approximate expected allele frequen-

cies in the coalescence process with the underlying exponential population growth.

Inversion of the integral transform

The limitation of applicability of computations based on combinatorial identities and sum-

ming hypergeometric series is that they can only be used for expectations ETMRCA, ETLBT
and for expected allele frequencies fnb. Computing probability distributions of times Tk is not

possible.

In this subsection we present a new approach, which allows for computing distributions

and expectations of times to coalescence events, T2, . . ., Tn−1, Tn, with (theoretically) arbitrary
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accuracy, applicable for large genealogies. The approach is based on construction of the trans-

formation inverse to Eq (12). The inverse of Eq (12), denoted by U−1{.}, has the following form

pðtÞ ¼ U
� 1
fPðsÞg ¼

1

NðtÞ
1

2pi

Z cþi1

c� i1
PðsÞ exp s

Z t

0

ds

NðsÞ

� �

ds: ð29Þ

In Eq (29) c is a suitably chosen constant and i ¼
ffiffiffiffiffiffiffi
� 1
p

. The above formula is constructed by

analogy to the inverse of the Laplace transform, Mellin—Fourier integral [39]. Since π(t) is a

density function of the probability distribution we can set c = 0, s = iω and replace Eq (29) by

pðtÞ ¼ U
� 1
fPðioÞg ¼

1

NðtÞ
1

2p

Z 1

� 1

PðioÞ exp io
Z t

0

ds

NðsÞ

� �

do: ð30Þ

Verification that U−1[U(π(t))] = U−1[P(s)] = π(t) is straightforward, since either Eq (29) or Eq

(30) can be understood as a two-step procedure. The first step is the inverse Laplace

pC0ðtÞ ¼
1

2pi

Z cþi1

c� i1
PðsÞ exp ðstÞds ð31Þ

or inverse Fourier transform

pC0ðtÞ ¼
1

2p

Z 1

� 1

PðioÞ exp ðiotÞdo ð32Þ

of P(s) = U(π(t)) or of P(iω) = P(s)|s = iω, with τ given by Eq (11). The second step is the time

scale change g−1(τ) inverse to Eq (11). Since [g−1(τ)]−1 = τ = g(t), then the second step is

pðtÞ ¼
d
dt
ðgðtÞÞpC0ðgðtÞÞ ¼

1

NðtÞ
pC0ðgðtÞÞ: ð33Þ

It is obvious that in the first step we obtain probability distribution pC0ðtÞ which is the original

of the Laplace transform P(s) or Fourier transform P(iω) and corresponds to the constant pop-

ulation size scenario with N0 = 1, while in the second step, by the time scale change t = g−1(τ)

we obtain probability distribution π(t) under the scenario of the population size change given

by N(t).
Using Eq (30) we can write expression for probability distribution of time Tk in the follow-

ing integral form

pTkðtÞ ¼
1

NðtÞ
1

2p

Z 1

� 1

Yn

j¼k

j
2

� �

ioþ j
2

� � exp io
Z t

0

ds

NðsÞ

� �

do; ð34Þ

valid for the general case of the population size history N(t).
For the case of the exponential scenario of time change of the population size, the two steps

mentioned above would assume the following forms. In the first step we compute probability

distribution p
C0

TkðtÞ, of time to coalescence Tk under constant population size scenario with

N0 = 1

p
C0

TkðtÞ ¼
1

2p

Z 1

� 1

Yn

j¼k

j
2

� �

ioþ j
2

� � exp ðiotÞdo: ð35Þ

In the second step we transform p
C0

TkðtÞ using Eq (11), which leads to

t ¼ g � 1ðtÞ ¼
1

r
ln ð1þ N0rtÞ; ð36Þ
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and

pE
TkðtÞ ¼

exp ðrtÞ
N0

p
C0

TkðtðtÞÞ ¼
1þ N0rtðtÞ

N0

p
C0

TkðtðtÞÞ: ð37Þ

Distributions p
C0

TkðtÞ, Eq (35) and pE
TkðtÞ, Eq (37) are computed numerically. Numerical com-

putations can be done in two ways, by numerical integration procedures, according to Eq (30),

separately for each time point, or by using the inverse fast Fourier transform algorithm. In our

computational examples, presented further in this paper, we have used both these approaches.

For numerical integration we have used adaptive Gauss-Kronrod quadrature procedure [40]

implemented as the Matlab function “quadgk”. Advantage of using numerical integration is

that the time points can be freely located according to needs, which leads to lower errors. The

disadvantage of the method of numerical integration is that it is slower compared to the fast

Fourier transform algorithm.

The advantage of the fast Fourier transform algorithm is that it its much faster. However,

estimating and controlling accuracy is more difficult. Despite problems with controlling accu-

racy, in the majority of computational examples we have computed Fourier integrals in

Eq (35) by using Matlab inverse fast Fourier transform function “ifft”, taking advantage of its

speed. In more detail, at first we have defined the time axis range and grid for p
C0

TkðtÞ by using

information on the first and second moments of TC0

k [16] and assuming some additional mar-

gin related to skewness of the distributions. Time axis range and grid allows for defining the

corresponding frequency axis ranges and grid and for computing p
C0

TkðtÞ by the inverse fast

Fourier transform procedure. We have estimated accuracy of computations by comparing

known values of moments of times to values computed on the basis of numerically obtained

distributions. In this way we have estimated that a grid with 500 equidistant time points was

sufficient for obtaining relative error�10−4 for the case of computations for constant popula-

tion size for n� 104. Nonlinear transformations of the time scale, necessary for computations

for population exponential growth scenarios, result in nonuniformity of the time axis grid res-

olution, which leads to increase of the error. For the case of exponential scenarios of popula-

tion growth we have experimentally verified that a grid with 1000 equidistant time points for τ
was sufficient for obtaining relative error�10−3 for moments of distribution with the trans-

formed time, with n� 104 and ρ� 104.

As supporting files (S1 File) to this paper we provide Matlab functions and scripts for com-

puting probability distributions of times in the coalescence tree for exponential scenario of

population growth, based on the direct method of numerical integration. We have tested these

functions for the range of values of the product parameter 0� ρ� 106 and genealogy sizes

n< = 104. In the provided programs all parameters are set automatically and the relative errors

are 10−5 or better.

Limit distributions

According to our best knowledge no results concerning limit distributions of times close to the

root of the coalescence tree, in particular TMRCA, were published in the literature. In this sub-

section we compute limit distributions for TMRCA for both constant and time varying popula-

tion size scenarios. Denote the limit distribution of TMRCA under the population size

scenario N(t) by πTMRCA,1(t). On the basis of results from the previous subsection we have

pTMRCA;1ðtÞ ¼
1

NðtÞ
1

2p

Z 1

� 1

Y1

j¼2

j
2

� �

ioþ j
2

� � exp io
Z t

0

ds

NðsÞ

� �

do: ð38Þ
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Infinite product, which appears on the right hand side of the above formula can be analytically

computed by using the following well known identity involving quotients of gamma functions

(e.g., [21])

Y1

k¼0

ðkþ a1Þðkþ a2Þ

ðkþ b1Þðkþ b2Þ
¼

Gðb1ÞGðb2Þ

Gða1ÞGða2Þ
; ð39Þ

where Γ(.) denotes Euler’s gamma function and a1, a2, b1, b2 are any complex numbers satisfy-

ing a1 + a2 = b1 + b2. Using Eq (39) with a1 = 1, a2 = 2, b1;2 ¼ 1:5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 2io

p
, i ¼

ffiffiffiffiffiffiffi
� 1
p

,

allows for deriving the following expression for the infinite product in Eq (38)

Y1

j¼2

jðj � 1Þ

2ioþ jðj � 1Þ
¼

2pio
cos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 2io

p� � : ð40Þ

The above identity is listed in A. Dieckmann’s internet collection of infinite products [41].

Subsituting the above identity in Eq (38) one can compute the limit distribution of TMRCA,

πTMRCA,1(t) as follows

pTMRCA;1ðtÞ ¼
1

NðtÞ
1

2p

Z 1

� 1

2pio
cos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 2io

p� � exp io
Z t

0

ds

NðsÞ

� �

do: ð41Þ

We have numerically computed limit distribution πTMRCA,1(t) given by the above formula

Eq (41) using the direct method of numerical integration. When trying to apply fast Fourier

transform algorithm we have encountered problems with the proper control of the accuracy of

computations.

Round-off errors in computing allelic frequencies

We have conducted a computational study on effects of round-off errors on accuracy of com-

putation of expected allele frequencies by using expression Eq (24). Results in this subsection

can be useful for such researches as those reported in [37], [38] and [16].

We denote the computed and the true expected allele frequencies by f compnb and f truenb respec-

tively, and we define the maximum relative error commited when computing allele frequen-

cies, MxRelErr, as follows

MxRelErr ¼ max
1�b�n� 1

�
�
�
�
f compnb � f truenb

f truenb

�
�
�
�: ð42Þ

By “computed allele frequencies” we mean values obtained by using expressions Eqs (24) and

(25). One can estimate upper bound for MxRelErr by using error analysis technique. We define

f compnb ðsÞ as representing values computed by using Eqs (24) and (25) in the case where expected

times ej in Eq (24) are additionally corrupted by Gaussian, relative error with standard devia-

tion σ. By assuming the value of σ of one or two orders of magnitude higher than true relative

round-off errors in computing ej we can obtain the following, conservative, upper bound on

MxRelErr

MxRelErr < max
1�b�n� 1

�
�
�
�
f compnb ðsÞ � f compnb

f compnb

�
�
�
�: ð43Þ

In Fig 7 we show upper bounds of MxRelErr for the scenario of exponential growth of popula-

tion with different values of product parameter ρ, obtained by assuming σ = 10−13. The

assumed value of σ is approximately of one-two orders of magnitude higher than accuracy of
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computing eEj in Eq (21), which we estimate to be in the range 10−14 – 10−15. Values of eEj were

computed by using Matlab function “expint” with the modification described in [8], which

allows for obtaining exact function values for wide ranges of argument values.

Contemplating values of upper bounds for MxRelErr computed by using Eq (43), shown in

Fig 7, we come to the conclusion that formulae Eqs (24) and (25) for computing allele frequen-

cies fnb can be safely used for sample sizes n up to the range of hundreds of thousands and

expect relative errors not higher than 10−6.

Formulas for distributions of times in the coalescence tree, Eqs (31) and (32) can be used

for computing expectations of coalescence times by numerical integration, which can be then

substituted in Eq (3). This provides alternative method for computing allelic frequencies. Due

to errors in numerical integration, higher by approximately two orders of magnitude than

errors in computing values of special functions Ei(x), maximal relative round-off errors of alle-

lic frequencies obtained by using Eq (3) and numerically computed expectations of coales-

cence times are in the range 10−4 – 10−3. They are significantly higher than those in Fig 7 but

still acceptable in many applications.

Fig 7. Influence of round-off errors on accuracy of computation of expected allele frequencies by using

expressions Eqs (22)–(25). The plot shows upper bounds of maximum relative error for the scenario of

exponential growth of population with different values of product parameter ρ, obtained by corrupting values of

expected times ej by Gaussian, relative error with standard deviation σ = 10−13.

doi:10.1371/journal.pone.0170701.g007
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Supporting information

S1 File. Software for computing probability distributions of times in the coalescence pro-

cess. Archive with Matlab functions and scripts for computing probability distributions of

times in the coalescence tree for exponential scenario of population growth, based on the

direct method of numerical integration. Our Matlab functions and scripts are also available as

a GitHub repository (https://github.com/agnieszkaszczesna/Coalescence-Computations-for-

Large-Samples).
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