
Smooth muscle signalling pathways in health and disease

H. R. Kim a, S. Appel a, S. Vetterkind a, S. S. Gangopadhyay a, K. G. Morgan a, b, *

a Department of Health Sciences, Boston University, Boston, MA, USA
b Boston Biomedical Research Institute, Watertown, MA, USA

Received: August 19, 2008; Accepted: October 8, 2008

Abstract

Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system
and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have
major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regu-
lated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity
via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins
calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular ‘players’ should identify target
molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovas-
cular disease, asthma, functional bowel disease and pre-term labour.
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Introduction

All contractility is initiated by changes in the activity of, or interac-
tions of, actin and myosin. In recent years, a multitude of sig-
nalling pathways have been suggested to regulate smooth muscle
contractility; however, these pathways can be broken down into
three major types of mechanisms (Fig. 1): (1) mechanisms that
regulate actin-activated myosin ATPase activity via changes in the
phosphorylation state of the 20-kD myosin light chain (LC20); (2)
mechanisms that regulate the availability of actin to interact with
myosin via the action of inhibitory actin-binding proteins such as
caldesmon (CaD) and possibly calponin (CaP) and (3) the less
well-studied possibility of mechanisms by which the cytoskeleton
is remodelled to facilitate the transmission or maintenance of force
developed by actomyosin interactions.

The first set of pathways is known to be involved in pathologies
such as traumatic brain injury and post-haemorrhagic cerebral

vasospasm [1, 2] (discussed in detail in a review by Jose Rafols
in this series), and in pulmonary hypertension [3]. The second set
of pathways is strongly implicated in pre-term labour [4]. The third
set of pathways is implicated in asthma [5]. Thus, the diversity of
signalling pathways that regulate contractility may well offer
opportunities for discovery of potential disease- and organ-spe-
cific therapies.

The first set of mechanisms is illustrated on the left-hand side
of Fig. 1 (purple type), where depolarization of a smooth muscle
cell, for example, by exposure to a physiological saline solution in
which NaCl is replaced by KCl, opens voltage-dependent Ca2�

channels and increases intracellular ionized calcium (Ca2�
i) levels.

This leads to a Ca2�
i/calmodulin (CaM)-dependent activation of

myosin light chain kinase (MLCK), phosphorylation of myosin
LC20 and an increase in myosin ATPase activity [6, 7]. However,
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as soon as intracellular Ca2� indicators were successfully applied
to smooth muscle cells and cell permeabilization techniques were
developed, it became clear that many agonists increase the rela-
tive amount of force produced at a constant Ca2�

i, i.e. cause ‘Ca2�

sensitization’ of force [8–17]. Ca2� sensitization of force can be
caused by a Ca2� sensitization of LC20 phosphorylation mecha-
nisms and this is now known to involve pathways that inhibit
myosin phosphatase [18, 19] as well as pathways that increase
the Ca2� sensitivity of MLCK, such as the ERK1/2-mediated phos-
phorylation of MLCK [20–22], or, possibly by the direct phospho-
rylation of Ser19 on LC20 by kinases other than MLCK. These
mechanisms are described in more detail below.

An observed ‘Ca2� sensitization’ of force can also occur in the
absence of changes in LC20 phosphorylation [23]. In this case
most evidence points to the second type of pathway – i.e. those
that regulate the activity of inhibitory actin-binding proteins that
regulate the availability of actin to interact with myosin (Fig.1
right-hand side, blue type). These pathways include possible roles
for ERK1/2, CaP and CaD [24]. These pathways are described
below in more detail.

In recent years, the third possibility, (Fig. 1, top, gold type), i.e.
that contractility may be modulated by remodelling of the
cytoskeleton has been suggested, although the molecular mecha-
nisms are far less well defined. Remodelling of the cytoskeleton is
well know to occur in airway smooth muscle, and there is grow-
ing evidence that this also happens in some blood vessels, (see
below); however, it is not yet clear exactly how cytoskeletal
remodelling modulates contractility of either the airway or vascu-
lar cells. This topic will be discussed in detail below. Little is
known regarding the molecular mechanism of the remodelling but
several groups have suggested that, as occurs in non-muscle
cells, the process involves not only actin polymerization but also

turnover of adhesion plaque proteins and activation of non-recep-
tor tyrosine kinases such as those in the Src family [25].

Mechanisms that regulate LC20 
phosphorylation

Smooth muscle myosin, unlike striated muscle myosin, requires
phosphorylation at Ser 19 in order to show significant levels of
actin-activated myosin ATPase activity. Ca2�/CaM-dependent acti-
vation of MLCK is the primary and best-known pathway by which
changes in the phosphorylation level of smooth muscle myosin
occur. However, it is worth mentioning that smooth muscle myosin,
at least in vitro, is also known to be capable of being phosphorylated
in a calcium-independent manner by additional kinases like Rho
kinase [26], integrin-linked kinase [27], and zipper-interacting pro-
tein kinase (ZIPK) [28, 29]; however, the relative in vivo significance
of these pathways is not yet entirely determined [18, 30, 31]. MLCK
itself has been recently reviewed elsewhere [32] and will not be
focused on here. Recent studies have uncovered evidence for a mul-
titude of additional complex pathways by which smooth muscle
myosin phosphorylation levels can be regulated in vivo, including
both regulation of dephosphorylation and the activation of a second
Ca2�/CaM-dependent kinase, CaMKII described below.

Regulation of myosin phosphatase

LC20 dephosphorylation is catalysed by a single myosin light
chain phosphatase (MP). The smooth muscle MP complex 
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Fig. 1 Pathways that regulate
contractility (demonstrated
and putative).
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consists of the catalytic subunit, PP1c-�, a regulatory subunit,
myosin phosphatase target subunit 1 (MYPT1), also referred to as
myosin-binding subunit (MBS), and a small, approximately 20-kD
subunit of unknown function. Alternative splicing of two exons
gives rise to four major MYPT1 isoforms, that differ in the 
presence of a central insert and/or a leucine zipper motif at the 
C-terminal end of the protein (LZ� and LZ– isoforms) [33–36].

Initially, MP was assumed to be constitutively active and not
subject to regulation. However, in recent years, an array of regula-
tory pathways leading to MP inhibition and activation has been
described and is summarized diagrammatically in Fig. 2. The var-
ious MP regulators can be divided roughly into two groups: (i)
protein scaffolds and (ii) substrates of upstream kinases (or,
phosphoproteins), with some regulators having a dual function.

The most prominent MP regulator is the regulatory subunit,
MYPT1, which behaves as both a scaffolding protein and a sub-
strate of upstream kinases. In its function as a scaffold, MYPT1
can be classified as an activator of MP, since it targets the MP
complex to its substrate, LC20 [37]. Moreover, binding of MYPT1
to PP1c-� also enhances its catalytic activity towards LC20 [38,
39]. On the other hand, phosphorylation of MYPT1 on one or both
of the two major inhibitory phosphorylation sites (corresponding
to threonine-696 and threonine-853 in mammalian MYPT1), leads
to inactivation of MP [40, 41]. MYPT1 also contains an activating
phosphorylation site – serine-695 – that inhibits subsequent
inhibitory phosphorylation of threonine-696 [42].

Another phosphoprotein-type inhibitor of MP is CPI-17 (PKC-
potentiated PP1 inhibitory protein of 17 kD) [43]. This small pro-
tein acts as an MP pseudosubstrate when phosphorylated, and
binds to the catalytic site of MP, thereby competing with LC20 for
phosphorylation. A bimodal MP regulator of the scaffold-type is
the myosin phosphatase-Rho interacting protein (M-RIP), which
targets MYPT1, Rho and Rho kinase to actomyosin filaments. As
far as the targeting of MYPT1 to the actomyosin filaments is con-
cerned, this protein can be an activator of MP; however, since it
also targets Rho kinase to the MP complex, it can also have an

inhibitory effect on MP activity. These different possibilities are
reflected by controversial reports about M-RIP function [44–48].

The immediate MP regulators are, themselves, downstream
elements of extracellular cascades. Inhibitory phosphorylation of
MYPT1 is primarily mediated by the Rho pathway, via Rho kinase
directly and/or via Rho kinase-mediated activation of ZIPK [41,
49–51]. Whether kinases other than Rho kinase can activate ZIPK
in smooth muscle is not known. The inhibitory effect of activated
protein kinase C (PKC) on MP is primarily mediated by CPI-17
[52]. Apart from PKC, CPI-17 can also be phosphorylated by ZIPK
and integrin-linked kinase [53, 54]. As CPI-17 is more rapidly
phosphorylated and dephosphorylated than MYPT1, these appar-
ently redundant pathways might be necessary for fine-tuning of
contraction; furthermore, each pathway provides contact points
for offset signalling [55, 56].

Counterbalancing the Rho and PKC pathways, which support
contractility, the nitric oxide pathway leads to relaxation. Nitric
oxide elevates intracellular cGMP, which activates the type Ia
cGMP-dependent protein kinase (PKG). PKG phosphorylates
RhoA at Serine-188, an inhibitory phosphorylation site, thus dis-
rupting RhoA signalling [57, 58]. Furthermore, PKG phosphory-
lates MYPT1 at the activating phosphorylation site, serine-695,
thus blocking subsequent inhibitory phosphorylation [42, 59].
This effect on MYPT1 depends on the expression of the LZ� iso-
form of MYPT1, however, it is controversial whether the interac-
tion between MYPT1 and PKG is mediated by a leucine zip-
per–leucine zipper interaction [60–62]. Other downstream effec-
tors of nitric oxide include protein phosphatase 2a (PP2a) [63],
one of the phosphatases that dephosphorylate and thus inactivate
CPI-17 [64, 65].

These regulatory pathways form a network that tightly regu-
lates MP and, therefore, has a significant impact on LC20 phos-
phorylation and contractility. Disturbance of the balance between
LC20 phosphorylation and dephosphorylation is expected to, and
is known to lead to pathologies. For example, vascular hypercon-
striction of pulmonary arteries, caused by an overstimulated Rho
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Fig. 2 Regulatory pathways leading to
myosin light chain phosphatase inhibi-
tion and activation. Activating sig-
nalling molecules (leading to relax-
ation) are shown in green, inhibitory
molecules (supporting contractility)
are shown in pink. Molecules shown in
blue are bimodal and can be both, an
inhibitor or an activator.
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pathway, leads to pulmonary artery hypertension [3]. MYPT1
phosphorylation in particular has been shown to be sensitive to
hypoxia, thus probably playing an essential role in hypoxic relax-
ation [66]. In hypertensive rat models, inhibition of the Rho path-
way corrected the hypertension [67]. In the setting of neonatal cir-
culatory transition and in persistent pulmonary hypertension of
the newborn, the Rho pathway appeared to be less important, but
instead a role for CPI-17 was shown [68].

CaMKII

Ca2�/CaM-dependent kinase II (CaMKII) is a Serine/Threonine
kinase that is ubiquitously expressed. It is a family of four closely
related isoforms; �, �, � and �, the products of four separate
genes. The �- and ��isoforms are primarily restricted to neural
tissues, but the �- and �-isoforms are widely distributed. We
have identified six variants of CaMKII-� from an aorta cDNA
library raising the possibility that each could be differentially 
targeted, have different substrate specificity and, thus, have 
different functions [69].

CaMKII consists of an N-terminal catalytic/regulatory domain
and a C-terminal association domain. A linker domain connects
these two conserved domains, which is variable in sequence (Fig. 3).
The association domains of all isoforms of CaMKII interact to form
large wheel-shaped holoenzymes [70]. Crystallographic data indi-
cate that the holoenzyme is dodecameric [71].

As the name implies CaMKII is activated by Ca2� and CaM. In
the inactive state, an autoinhibitory domain blocks the active site
of the molecule, but the binding of Ca2�/CaM disrupts the autoin-
hibitory domain and the kinase becomes active. In vitro studies
have shown that CaMKII can autophosphorylate at several sites
[72, 73]. However, autophosphorylation of Thr286 (numbering
according to �-isoform, Thr287 for �, � and �) is the best
explored site and two important consequences have been pro-
posed for autophosphorylation at this site [74]. First, autophos-
phorylation of Thr286 disables the autoinhibitory domain; as a
result CaM kinase acquires ‘autonomous activity’, activity that is
retained even after removal of Ca2�. Secondly, the affinity of
CaMKII for CaM increases about 1000-fold, also called ‘CaM trap-
ping’. The ability of the kinase to retain activity after being acti-
vated Ca2� at a previous point in time has been referred to as a
‘molecular memory’ [75] that has been linked, for the �- and 

�-isoforms to the processes of synaptic plasticity, learning, and
memory per se, supported, most convincingly by the CaMKII 
�-knockout mouse model [76]. In vascular smooth muscle a
modified form of memory has been linked to a prolongation of
vascular tone [77].

A distinct phase of autophosphorylation occurs at Thr305,
Thr306 and Ser314 when Ca2�/CaM dissociates from the Thr286
phosphorylated protein [78]. Autophosphorylation of Thr305 and
Thr306 are inhibitory as they prevent further binding of CaM.
However, autophosphorylation at Ser314 has no effect on binding
of CaM [73, 79]. In vascular smooth muscle it appears that
Thr305/306 phosphorylation is a significant regulator of vascular
tone in that this site, which inhibits CaMKII activity, is, itself, inhib-
ited by the action of �-agonists [77] leading to a delayed reactiva-
tion of kinase activity, and increased vascular tone.

Both pharmacological inhibitors and antisense knockdown of
CaMKII in vascular tissue and cells have clearly shown that
CaMKII activation is a significant regulator of vascular tone [20,
80, 81]. In vitro, CaMKII has been shown to phosphorylate many
key proteins involved in smooth muscle regulation, including
MLCK [82, 83], LC20 [84], CaD and CaP [85–87], phospholipase-
�2 [88] and the �-subunit of Ca2� channel [89]. The in vivo sig-
nificance of most of these proteins is unclear; however, in vivo
studies have indicated that CaMKII increases the activity of the
voltage-dependent K� channel [90], the voltage-dependent Ca2�

channel [91] and decreases the activity of the Ca2� activated Cl�

channel [92]. The transcription factor, cAMP-responsive element-
binding protein (CREB) also appears to be an in vivo substrate of
CaMKII and the elevation of c-fos by CREB phosphorylation regu-
lates gene expression in smooth muscle [93]. Phospholamban, a
negative regulator of sarcoplasmic reticulum Ca2�-ATPase is also
a substrate of CaMKII that seems to have in vivo relevance; how-
ever, because of the apparent low abundance of phospholamban
in smooth muscle, the magnitude of the effect may be less than
that in cardiac muscle [94].

CaMKII-mediated regulation of MLCK appears also to have in
vivo relevance but is not due to direct phosphorylation of MLCK
but rather to the recruitment of a more complex pathway involv-
ing activation of ERK and the presumed ERK-mediated phospho-
rylation of and activation of MLCK at constant Ca2� levels [20, 81,
95] (pathway 1, Fig. 1).

It is of interest that the knockdown of a specific variant of
CaMKII-�, CaMKII-�G-2, inhibits depolarization-mediated con-
tractions and the ERK-MLCK pathway described above. Whether
this one variant is the only variant of the six known to be present
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Fig. 3 Domain structure of CaMKII. The phos-
phosites are indicated with ‘P’ on top of the
amino acid residues. The numbering is
according to the �-isoform.
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in vascular tissue that regulates contractility, or whether other
variants share this mechanism, is not yet known. Obviously, if G-2
were the sole variant effective in regulating vascular tone, it would
be a potentially specific candidate molecule for drug discovery
research. This variant is unusual in having a unique sequence of
99 amino acids that target the variant, when activated, to adhesion
plaques. The prevention of CaMKII-�G-2 targeting to adhesion
plaques leads to significant inhibition of ERK activation as well as
contractility [81].

A specific G-2 phosphatase, a small C-terminal domain phos-
phatase-3 (SCP3) homologue, a PP2C-type phosphatase has also
been reported [96]. This phosphatase is primarily expressed in
vascular smooth muscle tissues and specifically binds to the asso-
ciation domain of the CaMKII-� G-2. SCP3 dephosphorylation of
CaMKII-� G-2 is site specific, excluding the Thr287 site associated
with Ca2�/CaM-independent activation of the kinase. Thus, the
selective dephosphorylation by SCP3 creates a constitutively
active kinase which is regulated by phosphorylation-dependent
targeting mechanisms [96].

Recent work on the �-isoform of CaMKII has shown a role for
CaMKII-� in PDGF- stimulated vascular smooth muscle migration
[97] and wound healing [98]. Vascular injury induced by balloon
angioplasty has been shown to increase CaMKII-� isoform expres-
sion in smooth muscle cells and in fibroblasts [99]. Trafficking of
iNOS was also shown to be dependent on the activation of
CaMKII-� isoform [100]. Thus, the �- and �-isoforms of CaMKII
may have distinct, but equally important roles in vascular function.

Mechanisms that regulate the access
of myosin to actin

Caldesmon

CaD is a highly conserved, actin- [101] and myosin- [102] binding
protein that exists in two isoforms which are generated by alterna-
tive splicing. Whereas the heavy isoform (h-CaD) is restricted to
smooth muscle cells, the light isoform (l-CaD) is expressed in
non-muscle and de-differentiated smooth muscle cells [103]. This
thin-filament associated protein is capable of stabilizing actin fila-
ments [104], blocking Arp2/3 mediated actin polymerization
[105], inhibiting actomyosin ATPase activity [106] as well as
actin-myosin interaction [107] and thereby regulates contractility

of smooth muscle cells. The inhibitory effect of h-CaD can be
reversed by either binding of (CaM)/Ca2� to the C-terminal
domain [108] or by phosphorylation of Serine residues 759 and
789 by either ERK1/2 [109] or cdc2 [110]. These events lead to a
conformational change in the CaD structure which allows interac-
tion between actin and myosin [111]. While cdc2 phosphorylation
plays an important role in cytokinesis [112], the phosphorylation
of CaD by ERK1/2 appears to regulate smooth muscle contractil-
ity [113]. In this latter process ERK1/2 is activated by PKC (Fig. 1)
which in turn can be stimulated by phorbol esters or GPCR recep-
tor agonists. Interestingly, CaD is found in podosomes [114],
structures that are known to represent sites of PKC activation and
signalling and that are involved in actin cytoskeleton remodelling
processes [115]. Thus CaD is an important mediator of smooth
muscle contractility, regulated, among other mechanisms, by a
PKC/ERK signalling pathway.

bCaP function in regulation of PKC �/ε and
ERK1/2 signalling

CaP is an actin-binding protein that was first isolated from gizzard
smooth muscle cells and that can regulate myosin ATPase activity
[116]. To date there are known three isoforms of this putative actin
regulatory protein, called h1 CaP (smooth muscle-specific basic
CaP, bCaP) [117], h2 CaP (neutral CaP) [118] and acidic CaP
[119] which are encoded by three different genes. The most abun-
dant isoform in differentiated smooth muscle cell (dSMC) is bCaP
[120, 121], although the other isoforms are also expressed in this
cell type in a lower extent [119, 122]. Moreover bCaP can be used
as a differentiation marker of smooth muscle due to its down-reg-
ulation in proliferating cells [87]. CaP proteins consist of a con-
served so called CaP homology (CH) domain in their N-Terminus,
a Troponin I (TnI) – like actin-binding domain and three C-termi-
nal repeats [123, 124]. The very C-terminus is the variable region
in the three CaP-isoforms, whereas the N-terminal fragment is
highly conserved (see Fig. 4). The CH-domain has been shown to
bind acidic phospholipids [125] and ERK1/2 [126], although this
structural motif is often implicated in actin binding in many other
cytoskeleton proteins [127]. PKC-� and -ε can interact with bCaP
through the C-terminal repeats [128]. Actin binding of CaP occurs
through the TnI-like domain and in a weaker fashion through the
C-terminal repeats [124] and is regulatable by phosphorylation of
PKC at Serine 175 and Threonine 184 residues located within the
C-terminal repeats [129, 130].
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Fig. 4 Domain structure of calponin (CaP). CaP proteins consist of a conserved N-terminus including the CH-domain (blue), the TnI-like domain (yel-
low) as well as the three C-terminal repeats (green). However, the very C-terminal end is a highly variable region (red) that differs in size and amino acid
sequence within the three CaP isoforms.
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The functional role of bCaP in regulation of smooth muscle
contractility is controversial. One theory is that bCaP may directly
regulate contractility by inhibiting actomyosin ATPase activity of
myosin heads cross-linked to actin [116] and indeed experiments
have shown that bCaP is able to negatively influence in vitro motil-
ity of actin filaments [131]. On the other hand, bCaP has been sug-
gested to facilitate agonist-induced signal transduction perhaps by
acting as a scaffold protein. This latter hypothesis is based on the
findings in vascular smooth muscle cells that bCaP acts as an
adaptor protein to directly interact with the signalling proteins PKC
[128] and ERK1/2 [126], cotranslocates to the cell cortex upon
stimulation together with ERK1/2 and PKC [132] and, in addition,
seems to promote PKC activation [128]. Moreover it was shown
that a knockdown of bCaP in differentiated vascular smooth mus-
cle cells results in impaired ERK1/2 activity, h-CaD phosphoryla-
tion and contractility [133].

Extracellular regulated kinase 1/2 (ERK 1/2) is a member of the
mitogen-activated protein kinase (MAPK) family, kinases that
posses serine/threonine activity. Stimulation of most cell surface
receptors by mitogens or GPCR agonists causes activation of
MAPK signalling pathways where MAPKs such as ERK1/2 become
phosphorylated at Thr and Tyr residues. Phosphorylated ERK1/2
proteins are able to form dimers, enter the nucleus, phosphorylate
transcription factors and thereby promote cell proliferation of
undifferentiated cells [134–136]. On the other hand, active MAPKs
have also been found in differentiated, non-proliferating contrac-
tile smooth muscle cells [137, 138], but their function in this cell
types is still not fully understood. Furthermore it is interesting that
an intact actin cytoskeleton seems to be necessary for ERK sig-
nalling [139] and that ERK1/2 itself shows actin-binding proper-
ties [126], suggesting that the actin cytoskeleton is involved in
ERK1/2 signalling. More evidence for ERK1/2 playing a significant
role in regulation of smooth muscle contractility comes from stud-
ies in pregnant rats showing that ERK1/2 activity is connected to
onset of labour [140]. In uterine smooth muscle, the kinase is acti-
vated in late pregnancy, possibly due to an increased cortical ten-
sion, after translocation to the cell surface. This event is followed
by an increased h-CaD phosphorylation which contributes to the
initiation of contractions [4, 25].

Another interesting interaction partner of bCaP that seems to
be involved in the ERK1/2 signalling pathway is the smooth
muscle Archvillin (SmAV) protein. Recent findings show that
SmAV binds to bCaP, ERK1/2 and Raf [141, 142], translocates
to the cell periphery in smooth muscle cells after agonist stim-
ulation and colocalizes with ERK1/2 and bCaP. Furthermore, an
antisense-mediated knockdown of SmAV decreases ERK1/2
activation and contractility of smooth muscle, similar to a bCaP
knockdown [141].

The model shown in Fig. 5 brings these findings together. In
this model bCaP acts as a scaffold, connecting ERK1/2 and PKC
pathways to regulation of smooth muscle cell contractility [24]
(Fig. 5): (1) In the first step a, yet unclear, stimulus leads to sub-
sequent activation of PKC-�/ε, which is facilitated by bCaP. bCaP
has been shown in vitro to be able to stimulate PKC-�/ε activation

in the absence of lipids [128]. It can be speculated that either cell
permeant phorbol esters bind to PKC-�/ε located at the actin fila-
ments to activate the molecule or, in the case of GPCR activation,
that another PKC isoform such as PKC-� activates PKC-�/ε by
phosphorylation. Activated PKC-�/ε would then be able to phos-
phorylate bCaP and attenuate its binding affinity to actin, so that
(2) the PKC-�/ε–ERK1/2–bCaP complex translocates to the cell
cortex, where it comes in contact with SmAV, acting as a scaffold
for Raf and MEK. PKC-�/ε at the surface membrane could then
undergo a full activation through binding of diacylglycerol, pro-
duced by active phospholipase C at the cell membrane. Active
PKC-�/ε can phosphorylate Raf [143], which in turn activates
MEK, followed by activation of the ERK1/2 molecule. (3) Whereas
PKC-�/ε, bCaP and SmAV stay at the cell cortex, (4) phosphory-
lated ERK1/2 moves back to the actin cytoskeleton where it comes
into proximity with the actin-bound h-CaD molecule and phospho-
rylates its substrate [144]. Phosphorylation of h-CaD results in a
conformational change of the molecule, leading to partial dissoci-
ation of h-CaD from actin and, hence, to actomyosin interaction
and contraction [113].

Less is known about bCaP and its involvement in vascular dis-
eases, but hints come from mice with a mutated bCaP locus which
express a C-terminal truncated form of the protein lacking the TnI-
like domain as well as the three C-terminal repeats and the vari-
able C-terminus. Surprisingly the most conspicuous phenotype of
these mice was an increased bone formation, leading to the
hypothesis that bCaP is involved in regulation of osteogenesis
[145]. Further examination has revealed that these mice display a
faster shortening velocity [146], a lower heart beat rate, an
impaired �-adrenergic vasoconstriction, an enhanced arterial
baroreflex sensitivity [147], a lower active isometric force [148] as
well as impaired arterial blood pressure regulation during exercise
due to an enhanced muscular vasodilation [149]. Particularly the
enhanced vasodilation in mice expressing the truncated bCaP
form is consistent with our hypothesis that bCaP is required to
activate ERK1/2 which in turn inactivates h-CaD, thereby facilitat-
ing contraction. However, it should be considered that the trun-
cated bCaP protein expressed in the mouse model lacks only the
actin-binding domains and the CH-domain is still expressed. So it
should be examined if this truncated bCaP form is still able to
interact with ERK1/2 and could therefore substitute for the wild-
type bCaP in some of its functions.

In other studies, it has been shown that blood vessels of mice
with a mutated bCaP locus are more fragile [150] and therefore
less resistant to metastasis of tumour cells [151, 152]. Indeed
down-regulated bCaP expression is a poor diagnostic marker in
many cancers [153–158], leading to the hypothesis that misregu-
lated bCaP levels are connected to cancerous diseases. It has been
speculated that down-regulated bCaP levels in smooth muscle
cells of blood vessel tumours leads to a destabilization of actin fil-
aments, thereby weakening adhesion of cells to neighbouring cells
as well as to the extracellular matrix. This in turn could be a rea-
son for the fragility and penetrability of metastatic tumour cells
[150]. On the other hand it was also shown that restoration of
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bCaP expression in transformed cells can lead to a reduced prolif-
eration rate, tumourigenicity and metastatic cell motility. It has
also been speculated that a loss of bCaP leads to an unstable actin
filament system, thereby facilitating cytoskeleton reorganisation
which is necessary for cells to assume an invasive phenotype
[159, 160]. Finally, given the evidence (mentioned above) that CaP
interacts with MAPKs and the known association of MAPKs with
regulation of proliferation, this pathway could also contribute to
this property of CaP. Thus, the exact mechanisms by which bCaP
can act as a tumour suppressor remains to be elucidated.

Mechanisms that regulate cytoskeletal
remodelling

The actin cytoskeleton is defined as the collection of actin fila-
ments and actin filament associated proteins, including adhesion
plaque proteins. It has previously been assumed that the actin
cytoskeleton in dSMC is largely static, performing a solely struc-
tural role, in comparison to the dynamic cytoskeleton of migrating,
proliferating vascular smooth muscle cells [161]. Although this
topic is still controversial, a body of evidence is growing to 

support the idea that the actin cytoskeleton is remodelled during
contractile agonist activation and that this remodelling might
modulate vascular contractility [162–164].

Actin can exist as either filamentous actin (F-actin) or globular
actin (G-actin) in cells. G-actin spontaneously polymerizes to form
F-actin above its critical concentration (~8 �g/ml) [165]. The 
G-actin concentration in the cytoplasm of dVSM cells is above the
critical concentration. However, the polymerization of actin is
tightly controlled by a large number of actin-binding proteins such
as profilin, ADF/cofilin, capping proteins, and sequestering pro-
teins, etc. Signalling pathways that regulate these processes there-
fore regulate the actual ratio between G- and F-actin resulting in
assembly or disassembly of the actin filament (Fig. 6) [165, 166].

Actin exists primarily as F-actin (~80% of total actin) in unstimu-
lated contractile intact vascular smooth muscle. The percentage of 
F-actin can go above 90% in �-adrenergic receptor stimulated
smooth muscle, indicating dynamic remodelling of the actin
cytoskeleton [164]. This result is consistent with the findings reported
by Gunst and colleagues for airway smooth muscle [167, 168].

Actin is the most abundant protein in smooth muscle and it is
highly conserved throughout evolution and across species [169].
Six actin isoforms, products of separate genes, are present in
vertebrate tissues [170]. Among these isoforms, two smooth
muscle type isoforms (� and �) and two cytoplasmic isoforms 
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Fig. 5 Model of bCaP function in regulation of smooth muscle cell contractility. (1) Starting with a yet unidentified stimulus, PKC-�/ε gets subsequently
activated, an event that is further supported by bCaP binding. PKC-�/ε may now phosphorylate bCaP, leading to an impaired actin-binding property of
bCaP. (2) Hence the ERK1/2–PKC-�/ε–bCaP complex translocates to the cell cortex where it binds to SmAV, a protein acting as a scaffold for Raf and
MEK. Moreover the PKC-�/ε molecule gets fully activated by membrane bound diacylglycerol that is produced by activated phospholipase C coupled to
GPCR. The activated PKC-�/ε molecule phosphorylates Raf, which in turn phosphorylates MEK that now activates ERK1/2. Whereas the
SmAV–bCaP–PKC-�/ε complex stays at the membrane, (4) activated ERK1/2 moves back to the actin filaments where it comes in contact with its sub-
strate h-CaD. Phosphorylation of the h-CaD molecule leads to its conformational change, resulting in enabled actin–myosin interaction and hence to
contraction. For detailed information see text/article.
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(� and �) coexist in differentiated vascular smooth muscle [164,
171]. The cytoplasmic �- and �-actin isoforms are also some-
times referred to as non-muscle isoforms in smooth muscle tis-
sues [169]. Evidence exists, largely in cultured non-muscle cells
that the different actin isoforms perform different cellular func-
tions [169]. The amino acid sequences of these actin isoforms
are remarkably conserved and most sequence differences are
clustered at the NH2-terminal ends [172]. The NH2-terminal
region of actin is known not to be involved in actin–actin
monomer binding and hence does not directly regulate actin fila-
ment polymerization; however, this region is known to be the
binding site of many actin-binding proteins including myosin
[173] and many actin polymerization regulatory proteins.
Recently, we showed that the NH2-terminal of actin isoforms also
modulates the contractile function of vascular smooth muscle by
using the NH2-terminal decoy peptides of actin isoforms [164].
This result supports the concept that different actin isoforms per-
form different functions, even though the detailed mechanisms
involved are not clear yet.

The actin filaments that connect to either dense bodies or
dense plaques (also known as focal adhesion complexes) in
smooth muscle are likely to include both the contractile filaments,
i.e. actomyosin-containing myofilaments, as well as actin 

filaments that are not associated with myosin, i.e. the non-muscle
actin cytoskeleton. However, the arrangement of the contractile
filaments with respect to the overall cytoskeleton and the mecha-
nism by which the non-muscle cytoskeleton is coupled to the
contractile apparatus are still a matter of debate [174]. A differ-
ential subcellular distribution of �-smooth muscle and �-cyto-
plasmic actin in vascular smooth muscle [175] and a differential
distribution for �-cytoplasmic actin from actomyosin containing
contractile bundles in chicken gizzard smooth muscle [174] have
been reported. A separation of cytoskeletal actin from acto-
myosin-containing contractile actin has been reported by using
immunoprecipitation [176]. In contrast, others have argued
against any actin isoform-specific domains in vascular smooth
muscle [177–179]. It is quite likely that the connection between
the two actin cytoskeletons is dynamic perhaps regulated by ‘a
hierarchical slippage clutch’ that is, itself, regulated by signalling
pathways [180].

Focal adhesion complexes are large structures, often a micron
in size, containing, in different cell types, over a hundred proteins
including integrin, actin, actin-binding proteins, protein kinases,
and signalling proteins (Fig. 6) [181]. At focal adhesions, the force
generated by the contractile proteins is conveyed to the extracel-
lular matrix (ECM) via integrin receptors. The integrin family 
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Fig. 6 Cytoskeletal remodelling at focal adhesions and regulation of smooth muscle contraction. Integrins connect the extracellular matrix to actin fila-
ments within the cell. Actin filaments are linked to cytoplasmic domain of integrin by linker proteins (green). Mechanical and/or contractile stimuli induce
the cytoskeletal remodelling by recruiting signalling proteins (orange) to focal adhesions.
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consists of 18 �- and 8 �-subunits which can form 24 unique 
integrin heterodimers [182]. The short intracellular domains of
integrins are indirectly connected to the actin cytoskeleton by sev-
eral proteins such as talin, vinculin, paxillin and by these connec-
tions, the extracellular events can be communicated into the cell
and vice versa [183]. Further details on this topic can be found in
other recent review articles [181, 183–185].

There are several reports indicating that the connection
between the actin cytoskeleton and components of focal adhesion
complexes are dynamic and are remodelled during agonist-
induced activation in differentiated airway smooth muscle.
Integrin mechanotransduction and consequent signal transduc-
tion-dependent alterations in the adhesion plaque proteins, pax-
illin, talin, vinculin and FAK has been reported for both vascular
and airway smooth muscle [163, 186–195].

Actin cytoskeletal remodelling also has been reported to
occur in vascular smooth muscle [162, 164, 189, 190, 196].
However, what has not been clear is exactly how, or if, cytoskele-
tal remodelling modulates contractility of smooth muscle.
Different possible mechanisms have been suggested by different
groups. Some groups have suggested that cytoskeletal remodel-
ling may alter the transmission of cross-bridge generated force
to the cell membrane [192]. Dynamic cytoskeletal processes
within the cell may enhance the strength of the connections
between membrane adhesion junctions and actin filament within
the contractile apparatus and cytoskeletal network, thus provid-
ing a strong and rigid framework for the transmission of force
generated by the interaction of myosin and actin filaments to the
outside of the cell [167]. However, Seow and his colleagues have
published that the length of total contractile filament complex is
changed by addition or removal of myofilament units, suggest-
ing the possibility of dynamic remodelling in actomyosin con-
taining myofilament [197–202]. Other groups have suggested
that cytoskeletal remodelling modulates force maintenance or
optimizes the energetic cost of tension in the vascular smooth
muscle cell [203].

Recently, we found that the actin cytoskeleton in vascular
smooth muscle is differentially remodelled in a stimulus- and
pathway-dependent manner. Interestingly, �-actin, the least abun-
dant actin isoform in vascular smooth muscle, is the most dynam-
ically remodelled by �-adrenergic receptor stimulation [164]. This
result suggests that the non-muscle actin cytoskeleton is more
dynamic than the actin cytoskeleton in contractile apparatus. The
reorganization of the cytoskeleton was shown to correlate with
mechanisms for regulation of smooth muscle contraction.

To understand the functional specificity of individual actin iso-
forms and to identify the isoforms related diseases, several inves-
tigations utilized manipulation of the isoform-specific genes
[204–206]. Ablation of �-cytoplasmic actin in skeletal muscle
causes progressive muscle necrosis and regeneration in mouse
[207–209]. Vascular smooth muscle contractility and blood pres-
sure homeostasis are impaired in the � smooth muscle actin null
mouse [206].

It is conceivable that abnormal contractility in vascular smooth
muscle may result from the perturbation of normal cytoskeletal
remodelling processes. Recently, Guo et al. [210] published that
14% of inherited familial ascending thoracic aorta aneurysms
leading to acute aortic dissections are caused by missense muta-
tions in ACTA2 (encodes � smooth muscle actin). By using struc-
tural and immunofluorescence analysis, this study show that
interference with actin filament polymerization caused by this
mutation leads to impaired smooth muscle contraction [210].
There is much experimental evidence supporting the concept that
remodelling of the actin cytoskeleton is a crucial regulator of
smooth muscle function. However, much remains to be deter-
mined regarding the mechanistic basis for the actin cytoskeletal
remodelling in smooth muscle.

Conclusions

Undoubtedly, the information above has communicated the con-
cept that smooth muscle ‘excitation–contraction coupling’ consists
of far more than a simple calcium switch. Although the complexity
of the multitude of, apparently, redundant signalling pathways
which regulate smooth muscle contractility can be overwhelming,
clearly the importance of proper functioning of smooth muscle
systems requires the fine tuning made possible by this sort of
complex system.

The importance of pathways that regulate plasticity of the
cytoskeleton and those that regulate the availability of actin to
interact with myosin is only now becoming clear. Similarly, the
relative importance of the mix of pathways that regulate myosin
phosphorylation levels in dSM tissues is just now playing out.
The good news is that this complex network of pathways offers
a multitude of possible leads for novel drug targets, with the
hundreds of proteins present in adhesion plaques representing,
potentially, quite accessible targets. Added to this the 
well-known tissue- and organ-specific nature of smooth muscle
signalling molecules and pathways, it is feasible that such 
targets could lead to quite specific, as well as effective, new
therapeutics.
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