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CEA adhesion molecules: multifunctional proteins with 
signal-regulatory properties 
Bj6rn Obrink 

The carcinoembryonic antigen family comprises a large 
number of complex molecules, several of which possess cell 
adhesion activities. The primordial adhesion molecules of 
this family are the cell-cell adhesion molecules (C-CAMs), 
which have been found to be multifunctional, signal-regulatory 
proteins. C-CAMs inhibit tumor growth, interact with 
calmodulin, protein tyrosine kinases and protein tyrosine 
phosphatases, and are subject to specific dimerization 
reactions. These new insights indicate that C-CAMs are 
important regulators of cellular functions. 
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Abbreviations 
Bgp 
BGP 
C-CAM 
CEA 
CGM 
GPI 
Ig 
IgSF 
ITAM 
ITIM 
L 
NCA 
PTK 
PTP 
S 
SH 
SHP 
SIRP 

biliary glycoprotein in mouse 
biliary glycoprotein in man 
cell-cell adhesion molecule 
carcinoembryonic antigen 
CEA gene family member 
glycosylphosphatidylinositol 
immunoglobulin 
Ig gene superfamily 
immunoreceptor tyrosine-based activation motif 
immunoreceptor tyrosine-based inhibition motif 
long 
nonspecific cross-reactive antigen 
protein tyrosine kinase 
protein tyrosine phosphatase 
short 
Src homology 
SH2-domain-containing PTP 
signal-regulatory protein 

I n t r o d u c t i o n  
The carcinoembryonic antigen (CEA), which was discov- 
ered in 1965 [1], has given its name to a large and complex 
family of abundantly expressed proteins. Available data 
indicate that these molecules are multifunctional, but 
largely their biological roles have remained elusive. One 
of the documented properties for many of the CEA 
family proteins is cell adhesion, and recently results 
have emerged from several laboratories that demonstrate 
that some of these adhesion molecules have important 
functions in signal transduction. This review will focus 
on recent progress in the study of the role of CEA- 
related adhesion molecules, particularly the phylogeneti- 
cally conserved cell-cell adhesion molecules (C-CAMs), as 
signal-regulatory proteins, and on the possible molecular 

mechanisms that are involved in signal transduction 
via CEA molecules. For background information and 
reference to earlier work, previous reviews [2--6] should be 
consulted. 

The CEA gene family 
The CEA gene family belongs to the immunoglobulin 
gene superfamily (IgSF) and comprises a large number of 
genes [2,3]. Two major subgroups, designated the CEA 
and the pregnant-specific glycoprotein (PSG) subgroups, 
exist [2]. The  majority of the proteins in the CEA 
subgroup are cell surface bound, whereas the PSGs are 
secreted. Only the cell surface bound molecules of the 
CEA subgroup will be considered here. Unfortunately, 
the nomenclature of the CEA family is complex and 
confusing, and several of the molecules are known 
under many different names. The  cell surface bound 
CEA subgroup molecules and their names are shown in 
Figure 1. 

The  cell surface associated CEA family proteins are 
heavily glycosylated and can either be transmembrane or 
associated with the plasma membrane via a GPI (gly- 
cosylphosphatidylinositol) anchor. However, .GPI-linked 
CEA family cell surface proteins are only found in humans 
(and probably in other primates as well), whereas the 
rodent cell surface molecules are exclusively transmem- 
brane (Figure 1). In the rat, the transmembrane proteins 
have been called C-CAMs, while they are known as 
biliary glycoproteins in mice and man (abbreviated as 
Bgps and BGPs, respectively). In the following discussion, 
however, these homologous molecules will be referred to 
as rat C-CAMs, mouse C-CAMs, and human C-CAMs, 
respectively (Figure 1). All CEA-related cell surface 
molecules have an extraceilular amino-terminal V-type Ig 
domain, which is followed by a variable number (0-6) of 
C2-type Ig domains. 

The  cell surface associated C-CAMs in rat, mouse and 
man are highly conserved with respect to both domain 
organization and amino  acid sequence, suggesting that 
they originated from a common ancestor. Only one gene 
has been found in each of humans and rats, whereas mice 
have two related genes, Bgpl and Bgp2 [7]. The  number 
of Ig domains in C-CAMs varies from one to four as a 
result of differential splicing. The  amino-terminal V-type 
domain is highly homologous to that of other CEA family 
members. Alternative splicing also gives rise to two forms 
of cytoplasmic domains containing either 10-12 or 71-73 
amino acids [8-10]. The  different cytoplasmic domains 
will be referred to as S (short) and L (long), respectively. 
In addition to glycosylation and splice variants, two allelic 
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Figure 1 
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Cell surface bound CEA-related molecules. The cell surface bound CEA-related molecules are either transmembrane proteins or bound to 
the plasma membrane via a GPI anchor. The GPl-linked molecules (CEA, NCA, CGM6 and CGM2) do not occur in rodents, nor do two 
transmembrane molecules, CGM1 and CGMT, but they are found in man. In contrast, the C-CAMs, which are phylogenetically conserved, 
are expressed in rats, mice and humans. Several of these molecules are known under a large number of names in the literature, and this 
confusion over nomenclature has contributed to the complexity of this field. In this review a simplified nomenclature, shown in the upper half 
of the figure, is used. Some of the many other names that are in use are shown in the lower part of the figure. In addition to the two C-CAM 
isoforms (C-CAM-L and C-CAM-S) shown in the figure, several alternatively spliced isoforms with fewer Ig domains occur. They have been given 
distinct names, and are not shown in the figure. Also CGM1 can be alternatively spliced, yielding either a soluble isoform or a transmembrane 
isoform with a shorter cytoplasmic domain; only the isoform with the long cytoplasmic domain is shown in the figure. CBATP, canalicular bile 
acid transport protein; CD, cluster of differentiation; gp, glycoprotein; HA 4, hepatocyte antigen 4; MHVR, mouse hepatitis virus receptor; pp, 
phosphoprotein; TM-CEA, transmembrane CEA. 

variants, denoted a and b, occur in both rats and mice 
[8,9]. They  are different from each other primarily in the 
amino-terminal Ig domain. 

The  GPI-linked CEA-related molecules, including CEA 
itself, represent the evolutionarily youngest members of 
the family. It is not clear why the human species contains 
GPI-linked cell surface bound CEA-related proteins, but 
it suggests that they may have replaced some of the 
functions of rodent C-CAMs. A comparison of the tissue 
expression of C-CAM and CEA in rat and human tissues 
gives some support for this idea [I1,12]. Novel functions 
for the GPI-linked proteins may also have developed. 

Cel l  s u r f a c e  C E A  f a m i l y  m o l e c u l e s  a r e  
m u l t i f u n c t i o n a l  
In adult tissues the CEA-related cell surface molecules 
are expressed primarily in different epithelia, vessel 

endothelia, and hematopoietic cells [11-15], but indi- 
vidual molecules show distinct expression patterns. The 
spatiotemporal expression pattern of C-CAMs suggests 
important functions during embryonic development; a 
highly dynamic expression has been seen in, for example, 
the trophoblasts of the placenta [16,17], the endothelial 
cells and pericytes during vascularization of the central 
nervous system [18], muscle development [16], and 
development and eruption of teeth [19]. 

Interest in this family also emanates from numerous 
reports showing that its members are associated with 
malignancy [20-27]. Alterations in expression patterns 
in various tumors have been reported for CEA, NCA 
(nonspecific cross-reactive antigen), CGM (CEA gent 
family member)2 and C-CAM. CEA has for a long time 
been the most widely used tumor marker in clinical 
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medicine. However, no clear picture of the functional roles 
of these molecules in cancer has yet emerged. 

A number of functions have been ascribed to the 
membrane-bound CEA family molecules, including cell 
adhesion, ecto-ATPase activity, bile salt transport activ- 
ity, receptor internalization, recognition of bacteria and 
viruses, blocking of cell differentiation, and regulation of 
signal transduction. 

Cell adhesion 
C-CAM and the GPI-linked molecules CEA and NCA 
mediate adhesion primarily by homophilic binding to 
molecules on adjacent cells, but heterophilic binding 
to produce the complexes CEA-NCA, CEA-BGP, and 
NCA-BGP has also been found [28]. The  amino-terminal 
V-type Ig domains mediate these interactions; however, 
whereas C-CAM homophilic binding results from a 
reciprocal binding between the amino-terminal Ig domains 
of opposing molecules [29], the amino-terminal domain of 
CEA binds to another, more membrane-close Ig domain 
on its ligand CEA partner [30]. The  three-dimensional 
structure of the amino-terminal domain seems to be 
important for adhesion, as mutation of Arg98 abrogates 
both rat C-CAM- and CEA-mediated adhesion [31°]. This 
arginine residue is highly conserved in Ig domains and is 
essential for their conformation; it forms an intradomain 
salt bridge with a specific, highly conserved aspartate 
residue [32]. 

It has been reported that the cytoplasmic L domain 
is needed for C-CAM-mediated homophilic adhesion in 
insect Sf9 cells [31°,33]. However, both the L and the 
S forms of C-CAM can mediate adhesion in mammalian 
CHO cells [34,35]; in these cells there are indications 
that the S form may even be more effective than the L 
form (K WikstriSm, B 0brink, unpublished data). Thus, 
it seems as if the cellular background is essential for 
the manifestations of C-CAM adhesive activities, which 
may be a function of the supramolecular organization of 
C-CAM and its interactions with other molecules (see 
below). 

In addition to homophilic and hetetophilic binding 
between the CEA-related adhesion molecules themselves, 
human C-CAM and NCA mediate adhesion of granuio- 
cytes to E-selectin on vessel endothelial cells because 
they carry a specific carbohydrate structure known as 
the sialyl Lex epitope which is a ligand for E-selectin 
[36,37]. This interaction triggers activation of I]2 integrins 
in the granulocytes, which leads to firm adhesion to 
the endothelial cells. Stimulation of granulocytes by 
antibodies to human C-CAM and NCA also induces 
132-integrin-mediated cell aggregation [38]. 

C-CAM is not present in intercellular junctions but is 
concentrated in areas where cells are more loosely associ- 
ated with each other. A striking example is the junctional 
epithelium that forms a transition zone between the teeth 

and the gingival epithelium. The  junctional epithelial 
cells have no tight junctions, very few desmosomes, 
and express no E-cadherin (C Terling, J Wroblewski, B 
Obrink, unpublished data), but they seem to be kept 
together by abundant microvillar projections [39]. The  
high concentration of C-CAM in these areas [19] indicates 
that it may have a major adhesive role. 

Although C-CAM appears in intercellular contact areas 
in several locations, such as between stratified epithelial 
cells [11], in contact zones between endothelial cells and 
pericytes of vessel walls [18], and between hepatocytes 
in mature liver [40], it has also been found in high 
concentrations on microvillar-rich apical surfaces of simple 
epithelia and in bile canaliculi [11]. The  GPI-linked 
molecules CEA and NCA are also found on apical surfaces 
and in the glycocalyx of colon epithelial cells [41]. Thus, 
in these locations the CEA-related molecules may have 
functions other than intercellular adhesion, although it 
is possible that they might mediate dynamic adhesive 
interactions between microvilli. However, one should 
consider the possibility that the adhesive properties of 
CEA-related molecules might reflect molecular interac- 
tions that are more important for signal transduction than 
for the formation of strong physical intercellular bonds. 

Ecto-ATPase activity, bile salt transport activity, and 
receptor internalization 
The  eDNA encoding rat C-CAM was originally cloned 
as encoding a CaZ+/MgZ+-dependent ecto-ATPase [42]. 
In agreement with this, increased ecto-ATPase activity 
was conferred on COS cells and Sf9 cells that were 
transfected with rat C-CAM-L [31°,43]. The  C-CAM- 
induced ecto-ATPase activity in Sf9 cells was abrogated 
by mutation of Arg98, which is believed to be part 
of an ATPase consensus sequence [31°,42]. However, 
the agreement between the C-CAM sequence containing 
Arg98 and the ATPase consensus sequence is only partial. 
It seems more likely that this arginine residue affects 
the ATPase activity because of its essential role for the 
three-dimensional structure of the Ig domain, as discussed 
above. A truncation of the cytoplasmic L domain of 
C-CAM also destroyed the ATPase activity [31°]. Thus, 
both an intact amino-terminal V-type Ig domain and an 
intact cytoplasmic L domain seem to be required for 
ecto-ATPase activity in these cells. However, efforts in a 
number of laboratories have failed to confirm any ATPase 
activity of purified C-CAM, and it has been found that the 
bulk of the ATPase activity can be chromatographically 
separated from C-CAM ([44]; I Hunter, B 0brink, 
unpublished data). How could these apparently conflicting 
results be explained? There  seem to be two possibilities: 
either the ecto-ATPase activity is not an intrinsic property 
of C-CAM, which instead might regulate the ATPase 
activity of another molecule; or the ATPase activity needs 
a particular C-CAM supramolecular organization, requiring 
both the amino-terminal Ig domain and the L domain, that 
is lost when C-CAM is solubilized from the membrane. 
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In experiments with reconstituted purified C-CAM [45] or 
with C-CAM-transfected COS cells [43], it has been ob- 
served that rat C-CAM-L can mediate ATP-driven efflux 
of taurocholate. Site-directed mutagenesis demonstrated 
that this activity required phosphorylation of Set503 and 
was regulated by phosphotylation of Tyr488; both of these 
amino acid residues are located in the cytoplasmic domain 
of C-CAM-L [43]. The  transport activity was completely 
abrogated by truncation of the cytoplasmic domain. How- 
ever, it is not easy to see how a single-pass membrane pro- 
tein can act as a transmembrane, taurocholate-transporting 
molecule, unless specific oligomerization of C-CAM-L 
occurs. The  ileal and hepatocyte sinusoidal bile acid 
transporters are muhipass membrane-spanning proteins 
[46,47]. A possibility is that C-CAM may interact with 
a bile acid transporter and thus act as a tissue-specific 
regulator of bile acid transport. 

C-CAM also has receptor-regulating effects as observed 
from its effect on the insulin receptor. A two- to threefold 
increase in the rate of receptor internalization, triggered 
by insulin stimulation, was observed in cells that were 
transfected with C-CAM [481. 

Microbial receptors 
CEA-related surface proteins act as receptors for both 
bacteria and viruses. Fimbrial proteins of several strains 
of Escherichia coli and Salmonella bind to D-mannosyl 
residues on CEA, NCA and human C-CAM [49,50]. 
A different mode of bacterial binding was recently 
described for Neisseria gonorrhoeae and Neisseria meningitidis, 
which bind specifically to the amino-terminal Ig domains 
of human C-CAM, NCA, CGM1 and CEA via their 
virulence-associated Opa proteins [51,52]. 

Like several other cell adhesion molecules of the IgSF, 
C-CAM cart also function as a virus receptor. Thus, 
the mouse hepatitis virus (MHV), a murine coronavirus, 
utilizes mouse C-CAM as its receptor [53]. Several 
splice variants coded by the Bgpl a gene act as MHV 
receptors, but mice having the allelic variant Bgpl b are 
resistant to MHV. However, in transfected cells one of 
the Bgplb-coded isoforms could also act as a receptor [53], 
although the efficiency of the two allelic variants differs 
significantly [54]. A protein product from the murine 
C-CAM gene B~2  can also act as receptor for MHV [7]. 
Rat coronaviruses do not use rat C-CAM as a receptor. 

Block of cell differentiation 
It has been argued that overexpression of CEA and NCA 
in human carcinomas interferes with cell differentiation 
[55,56]. This suggestion is supported by findings that ec- 
topic expression of CEA and NCA in rat myoblasts blocks 
biochemical and morphological differentiation [55]. CEA 
can cooperate with Myc and Bcl-2 and cause complete 
cellular transformation [56]. The  differentiation-blocking 
effect of CEA depends on its adhesive activity, but it is 
not known if specific signaling mechanisms are involved. 

Regulation of signal transduction 
There  are now convincing data showing that C-CAMs and 
several of the human GPI-linked CEA-related molecules 
participate in signal transduction. In human granulocytes, 
which express C-CAM-L, CGM6, NCA and CGM 1, treat- 
ment with monoclonal antibodies against these molecules 
stimulates the induction mediated by the tripeptide 
N-formyl-Met-Leu-Phe of both a respiratory burst and 
activation of 1~2 integrins [57",58°]. This effect depends 
on the presence of extracellular calcium ions and involves 
transient tyrosine phosphorylation of the cytoplasmic 
domain of C-CAM-L [58°]. Antibodies against all four 
CEA-related molecules can trigger respiratory burst and 
132-integrin-mediated adhesion, but there is evidence that 
the stimulatory effect mediated by CGM6 and NCA 
requires cooperation with C-CAM [57°]. This is supported 
by the finding that C-CAM can form complexes with 
CGM6 and NCA, but not with CGM1, in granulocytes 
(B Singer, personal communication), and by the demon- 
stration of activation-dependent, conformation-specific 
epitopes in granulocyte C-CAM [59]. Thus, the signaling 
effects in granulocytes may require a cytoplasmic domain, 
such as those carried by C-CAM-L and CGM1. 

Perhaps the most spectacular demonstration of CEA- 
related molecules as important regulators of signal trans- 
duction comes from the recent findings that the transmem- 
brane C-CAMs can inhibit growth of malignant tumors. 
The  first indication that C-CAM may be important for 
tumor development was the observation that rat trans- 
plantable hepatocellular carcinomas expressed either no 
C-CAM or only low amounts of chemically altered C-CAM 
[20]. Recently, downregulation of C-CAM expression has 
also been reported during, prostate carcinogenesis [26], 
in colorectal carcinomas in  mice [23] and man [22], 
and in human hepatocellular carcinomas [27], but the 
picture is complex as significant C-CAM expression has 
been demonstrated in other neoplasms [21,25]. However, 
none of these reports has presented any quantitative 
analyses of the expression patterns of the various C-CAM 
isoforms. Recent observations indicate that co-expression 
of C-CAM-L and C-CAM-S, and the ratios of these 
two isoforms, are crucial for regulation of the functional 
activities of C-CAM [60°°]. 

Inhibition of tumor growth by C-CAMs 
A direct approach to investigating the effects of C-CAM 
on tumor growth has recently been taken. In one study 
it was demonstrated that transfection of mouse C-CAM-L 
(the Bgpla gene product) into mouse colon carcinoma 
cells inhibited tumor development in mice of the same 
genetic background as the carcinoma cells [61]. In another 
study it was found that transfection of rat C-CAMla-L 
into human prostate carcinoma cells caused inhibition of 
tumor development caused by injection of these cells into 
nude mice [62]. In the latter study it was furthermore 
demonstrated that transfection of an antisense construct 
decreased C-CAM expression in benign rat prostate cells 
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and made these cells tumorigenic in nude mice. Rat 
C-CAM-L can also prevent tumor growth of bladder 
carcinomas [63 ° ] and breast carcinomas [64 ° ] in nude mice. 
The  inhibitory effect resides in the cytoplasmic L domain, 
as transfection with the S isoform alone did not cause 
inhibition of tumor growth [61]. In a preclinical study it 
was demonstrated that delivery of rat C-CAM-L, by means 
of an adenovirus vector, to tumor-carrying animals also 
prevented tumor growth [65]. Efforts are now being made 
to develop C-CAM-based clinical treatment of cancer, but 
clearly much work remains to be done to clarify the basic 
mechanisms of the tumor-inhibitory effects of C-CAM. 

That  the tumor-inhibiting effect depends on the cyto- 
plasmic domain of C-CAM-L was further substantiated 
by deletion of this domain; deletion abrogated the tumor 
growth inhibitory effect [64°]. However, the tumor- 
inhibitory effect is not a simple function of expression of 
C-CAM-L; upon increasing the expression of C-CAM-L 
above physiological levels, the tumor inhibitory effect 
disappeared [60°°]. Thus, there seems to be a window of 
C-CAM-L expression levels in which its inhibitory effects 
become visible. Interestingly, the settings of this window 
seem to be regulated by the expression of C-CAM-S 
[60°°]. Upon simultaneous expression of C-CAM-L and 
C-CAM-S the tumor-inhibitory effect was observed also at 
much higher expression levels. This was dependent on the 
ratio of the expression levels of C-CAM-L to C-CAM-S. 
At L : S  levels of <1.3 tumor inhibition occurred, even at 
very high total expression levels of C-CAM. At higher L : S 
ratios, there was no tumor inhibition, at either high or 
moderate total C-CAM expression levels. Thus, the ratio 
of the expression levels of the L and S isoforms is critical 
for regulating the tumor-inhibitory effect of C-CAM-L. 

In most tissues and cells there is a simultaneous expression 
of C-CAM-L and C-CAM-S [66], and regulation of the 
L : S  ratios as a means of regulating signal transduction 
by C-CAM is an intriguing possibility. Support for this 
idea comes from the finding that the expression levels of 
the two isoforms can indeed be regulated independently 
of each other in an epithelial rat cell line, NBT-I I  [67]. 
In these cells fibroblast growth factor (FGF)-I  (acidic 
FGF) selectively upregulates the expression of C-CAM-L, 
and this is correlated with an epithelial-to-mesenchymal 
transition. 

Molecu lar  mechanisms of  s ignal ing by 
C -CAMs 
The  downstream events that are involved in signal 
transduction by C-CAMs are not known, but inspection 
of the structure of the cytoplasmic L domain (Figure 2) 
and studies of the interactions of C-CAM both with 
itself and with other proteins give exciting clues to the 
mechanisms that might be involved. As will be seen, 
C-CAMs participate in a complex network of molecular 
interactions that may be essential both for the effects on 
signaling and for the regulation of enzymatic and transport 
activities. 

Binding of protein tyrosine kinases and protein tyrosine 
phosphatases 
The cytoplasmic L domain contains two tyrosine residues 
in phosphorylatable motifs (Figure 2). The  membrane- 
proximal tyrosine residue (Tyr488 in rat) has been found to 
be phosphorylated by the insulin receptor kinase in hep- 
atocytes [68], by c-src in epithelial cells [69], and by c-src 
[69] and lyn and hck [70] in granuiocytes. Convincing data 
about phosphorylation of the membrane-distal tyrosine 
(Tyr513 in rat) are lacking. These two tyrosine residues are 
part of a modified ITAM (immunoreceptor tyrosine-based 
activation motif), although the similarity is imperfect, as 
the spacing between the two tyrosines (24-26 amino acids) 
is greater than the spacing of 10 amino acids found in 
classic ITAMs [71°]. However, the proximal tyrosine is 
part of a perfect ITIM (immunoreceptor tyrosine-based 
inhibition motif) [72]. ITAMs and ITIMs  are present in 
a number of membrane receptors, such as T-cell receptor 
complexes, B-cell receptor complexes, FcTRIIB, CD22, 
interleukin receptors, and natural killer cell inhibitory 
receptors (KIRs) [72,73°]. Upon phosphorylation ITAMs 
and ITIMs bind protein tyrosine kinases (PTKs) and 
protein tyrosine phosphatases (PTPs), respectively, whose 
actions lead to stimulation or termination of signaling with 
profound effects on cellular proliferation. Interestingly, 
different splice variants of KIRs having short or long 
cytoplasmic domains occur [73°]; the spacing between the 
two tyrosine residues in the long KIR cytoplasmic domain 
is 29 amino acids, which is similar to that found in the long 
cytoplasmic domain of C-CAMs. 

C-CAM can bind both PTKs and PTPs (Figure 3). 
Phosphorylation of the membrane-proximal tyrosine leads 
to binding of c-src in colon carcinoma cells [69], and of 
lyn and hck in granulocytes [70]. C-CAM-L can also bind 
the PTP Src homology (SH)2-domain-containing PTP-1 
(SHP-1) in colon carcinoma cells [71°]. This binding 
requires the presence of both tyrosine residues although 
only the membrane-proximal tyrosine has been found to 
be phosphorylated. C-CAM-L is also able to bind the 
PTP SHP-2, and tyrosine-phosphorylated C-CAM-L is 
a substrate for both SHP-1 and SHP-2 (N Beauchemin, 
M Huber, personal communication). However, at present 
it is not clear if the binding of SHP-1 or SHP-2 is involved 
in the tumor-inhibitory effect, because mutation of Tyr488 
to phenylalanine does not abrogate the tumor-inhibitory 
effect of rat C-CAM-L, at least not in breast carcinoma 
cells [64°]. 

Binding of calmodulin 
Another signal-regulating protein that can bind to the 
cytoplasmic domains of C-CAM is calmodulin [74°]. Both 
C-CAM-L and C-CAM-S contain a calmodulin-binding 
site which is found close to the lipid bilayer (Figure 2). 
Rodent C-CAMs also have a calmodulin-binding site in 
the distal portion of the cytoplasmic domain, close to 
the carboxy-terminal end of the cytoplasmic L domain. 
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Figure 2 

ITAM consensus sequence 
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ITIM consensus sequence 

T/VXYXXL 

Mouse C-CAM-L cytoplasmic domain 

445 - YFLYSRKSGGGSDQRDLTEHKPSTSNHNLAPS]~NSPNKVDDVAYTVLNFNSQQPNRPTSAPSSPRATETVYSEVKKK - 521 

Rat C-CAM-L cytoplasmic domain 

445 - YFLYSRKTGGGSDHRDLTEHKPSTSSHNLGPSDDSPNKVDDVsYsVLNFNAQQSKRPTSASSSP- -TETV~SVVKKK - 51 g 

Human C-CAM-L cytoplasmic domain 

446 - CFLHFGKTGRASDQRDLTEHKPSVSNHTQDHSNDPPNKMNEVTYST~LNFEAQQPTQPTSASPSLTATEI I~SEVKKQ - 522 
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Amino acid sequences and binding motifs in the C-CAM-L cytoplasmic domain in mouse, rat and man. The amino acid sequences of the 
cytoplasmic domains of mouse, rat and human C-CAM-L are highly homologous. The numbers to the left and to the right of the sequences 
indicate amino acid positions in the intact proteins. The consensus sequences of ITAMs and ITIMs are shown at the top, with critical amino 
acids shown in large bold type, and the corresponding critical amino acid residues in the C-CAM sequences are also indicated by large, bold 
letters. The [TAM consensus sequence contains two tyrosine residues with a spacing of 10 amino acids between them. Note that the distance 
between the two tyrosines in the C-CAM sequences is larger than that of the ITAM consensus sequence. However, the most amino-terminal of 
the two tyrosines in C-CAM is part of a perfect ITIM consensus sequence in all three organisms. Binding sites for calmodulin are underlined. The 
single-letter amino acid code is used, where X represents any amino acid. Dashes indicate where gaps were introduced to maximize alignment 
of the C-CAM-L sequences. As rat C-CAM-L is shorter, Tyr513 in rat corresponds to Tyr515 in mouse and Tyr516 in man. 

Binding of calmodulin to C-CAM is regulated by the intra- 
cellular calcium concentration and leads to downregulation 
of C-CAM self-association [74°]. 

Dimedzation of C-CAMs 
Another feature of C-CAMs, which might be important 
for the signaling mechanisms of C-CAM, is that both 
the L and the S isoforms can dimerize [75"] (Figure 3a). 
This has been demonstrated by the use of chemical 
cross-linkers on both intact epithelial cells and purified 
C-CAM in solution. The  dimers are in equilibrium with 
the monomers, but the extent of dimerization can be 
controlled by the cells. Increase of the intracellular calcium 
concentration leads to dissociation of C-CAM dimers. 
This dissociation might be mediated by calmodulin, as 
it was found that calcium-activated calmodulin caused 
dissociation of C-CAM dimers in vitro [75 °] (Figure 3b). 

The C-CAM dimers are preferentially homodimers, that is, 
C-CAM-L dimerizes with itself and C-CAM-S dimerizes 
with itself [75"]. Both the ectodomain alone and the 
L domain alone can dimerize (I Hunter, B Obrink, 

unpublished data), which implies that the affinity of 
C-CAM-L for itself is higher than the affinity of C-CAM-S 
for itself or the affinity of C-CAM-L for C-CAM-S. As 
the dimerization process is in chemical equilibrium, both 
a change in the overall expression level of C-CAM and a 
shift of the ratio between the L and the S forms would 
alter the monomer:dimer ratio and the concentration of 
heterodimers. 

The  regulation of C-CAM expression and variation in 
the monomer: dimer ratio of C-CAM-L in epithelial cells 
could have profound influences on the regulatory and 
signaling activities of C-CAM, as it might affect the 
binding of PTKs, PTPs and other proteins (Figure 3c). In 
addition to influences by calmodulin, the monomer : dimer 
ratio might also be regulated by phosphorylation. Both 
the S and the L cytoplasmic domains contain several 
serine/threonine residues that can be phosphorylated. 
Protein kinase C catalyzed phosphorylation of Ser503 
in rat C-CAM-L [43], Ser449 in rodent C-CAMs and 
Thr453 in human C-CAM-L (M Edlund, K Wikstr~m, 
R Toomik, P Ek, B Obrink, unpublished data) has 
been demonstrated. These phosphorylation sites are 
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Figure 3 

Protein-binding patterns of C-CAM. C-CAM can participate in a complex, dynamic network of simultaneously occurring binding interactions 
with itself and with other proteins. However, in order to describe these interactions in a simple way, three modes of interactions are illustrated 
separately here. (a) It has been demonstrated that both C-CAM-L and C-CAM-S can form homodimers. Heterodimer formation between 
C,-CAM-L and C-CAM-S has not been demonstrated, but is likely to occur to some extent. Monomers (center) and dimers (right) are in 
equilibrium with each other. Both the ectodomains and the long cytoplasmic domain of C-CAM-L are believed to contribute to dimerization. 
In addition, both C-CAM isoforms can mediate cell adhesion by reciprocal binding between the amino-terminal Ig domains of opposing 
C-CAM molecules on adjacent membranes (left). As illustrated, it has been demonstrated that monomeric C-CAM can mediate cell adhesion, 
but it is not known whether dimeric C-CAM mediates adhesion or not. (b) Both C-CAM-L and C-CAM-S can bind calmodulin (CAM) in a 
Ca2+-dependent manner. Increase of the calcium concentration leads to calmodulin binding to C-CAM; this binding causes dissociation of 
C-CAM dimers. Calmodulin can be recycled when the calcium concentration decreases. (c) The cytoplasmic domain of C-CAM-L can be 
tyrosine phosphorylated by src-family kinases and by the insulin receptor kinase (not shown). This can lead to binding both of src-family kinases 
(e.g. c-src), which contain one SH2 domain (a tyrosine-phosphate-binding domain) per molecule, and of the protein tyrosine phosphatases 
SHP-1 and SHP-2, which contain two SH2 domains per molecule. The binding modes that are illustrated hera are speculative; it is not known 
whether it is monomeric or dimeric C-CAM-L, or both, that binds the kinases and phosphatases. Circled P, phosphorylation. 

located within the calmodulin-binding sites in the C-CAM 
cytoplasmic domains [74"] (Figure 2). 

C - C A M s  a n d  o t h e r  s i g n a l - r e g u l a t o r y  p r o t e i n s  
C-CAMs and some of the other CEA-related adhesion 
molecules constitute a family of signaling and signal- 
regulating proteins that affect growth and other cellular 
activities. It is thus of particular interest to compare 
them with another family of signal-regulatory proteins 
(SIRPs) that has been identified quite recently [76"',77°']. 
SIRPs share a number of characteristics with the C-CAMs. 
They  are transmembrane proteins, belonging to the IgSF, 
with three Ig domains in the extracellular portions. Short 
and long cytoplasmic domains exist, the long domains 
having four tyrosine residues that can be phosphorylated. 
The  first tyrosine residue is part of an ITIM, and the 
spacing between this and the following tyrosine, as well 
as between the third and the fourth tyrosines, is 23 
amino acids. Both SHP-1 and SHP-2, as well as Grb2 
(growth factor receptor binding protein 2), bind to the 
long cytoplasmic domain upon tyrosine phosphorylation of 
the long domain, which can be catalyzed by the insulin 
receptor and various growth factor receptors and can be 
induced by cell attachment to fibronectin. SIRPs have 
negative effects on cellular proliferation induced by insulin 
and growth factors. A large number of genes and/or ailelic 
variants for SIRPs exist, and there are indications of 
various alternatively spliced products. 

The structural and functional similarities between C- 
CAMs and SIRPs are overwhelming, and it will be inter- 
esting to see if yet other related families of signal-regulatory 
proteins exist. A candidate would be platelet/endothelial cell 
adhesion molecule-1 (PECAM-1), another cell adhesion 
molecule of the IgSF. PECAM-1 can possess one of several 
differently spliced cytoplasmic domains that regulate its 
ligand-binding properties [78]. In two of these alternative 
cytoplasmic domains there are two tyrosine residues that 
bind SHP-2 upon phosphorylation [79°]. The  first of these 
tyrosines is part of an ITIM and the spacing between the 
two tyrosines is 22 amino acids, which is similar to the 
spacing in C-CAMs, natural killer cell inhibitory receptors, 

and SIRPs. Stimulation of PECAM-1 with antibodies leads 
to upregulation of integrin function in leukocytes and 
platelets which results in increased adhesion to endothelial 
cells [79°]. 

C o n c l u s i o n s  a n d  f u t u r e  p e r s p e c t i v e s  
The  CEA family is a large and complex family containing 
several cell surface bound proteins with cell adhesion ac- 
tivity and signal-regulatory properties. Accumulating data 
show that these adhesion molecules are multifunctional 
and participate in the regulation of various cellular activi- 
ties. The  phylogenetically original cell adhesion molecules 
in the CEA family, the C-CAMs, affect ecto-ATPase 
activity, bile acid transport and receptor internalization. In 
addition, they function as receptors for various bacteria 
and for mouse hepatitis virus. Considerable progress has 
been made concerning the role of C-CAMs as important 
negative regulators of cellular and tumor growth, and much 
information has been collected on the supramolecular 
organization of C-CAMs and their interactions with various 
signaling molecules. The  challenging tasks now will be 
to define how C-CAMs regulate cellular activities, which 
signaling mechanisms are affected, and how the various 
molecular interactions in which C-CAMs participate 
are related to these events. A central problem will 
be to understand the role of the different C-CAM 
isoforms and how they interact in the regulation of 
the signaling activities. It will be interesting to see 
if the activities of other signal-regulatory proteins with 
alternative cytoplasmic domains, such as SIRPs, natural 
killer cell inhibitory receptors, and platelet/endothelial 
cell adhesion molecules, may be regulated by similar 
interactions between different isoforms of these proteins. 

Another important task for future analysis will be to deci- 
pher the functional roles of the GPI-linked CEA-related 
molecules. This might be done by comparative analysis of 
the cellular responses of granulocytes from rodents (which 
do not have GPI-linked CEA-related molecules) and man 
(who do have GPI-linked CEA-related molecules). Could 
it be that the granulocyte GPI-linked molecules have 
replaced the short cytoplasmic domain isoform of C-CAM? 
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