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ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that is the cause of
several hospital-acquired infections. Bacteriophages that target this bacterium could
be used therapeutically as novel antimicrobial agents. Here, we present the com-
plete genome sequence of the T1-like K. pneumoniae phage Sanco.

Klebsiella pneumoniae, especially with the continued emergence of multidrug-
resistant strains, has become a significant public health threat in hospital settings

(1–3). Characterization of K. pneumoniae phages may prove useful in developing new
treatments for infections caused by this bacterium.

Phage Sanco was isolated in 2013 from a wastewater treatment plant in College
Station, TX, against a deidentified K. pneumoniae clinical isolate. K. pneumoniae was
cultured on tryptic soy broth or agar (Difco) at 37°C with aeration. Phage were cultured
and propagated by the soft-agar overlay method (4). It was identified as a siphophage
using negative-staining transmission electron microscopy, performed at the Texas A&M
University Microscopy and Imaging Center as described previously (5). Phage genomic
DNA was prepared using a modified Promega Wizard DNA cleanup kit protocol (5).
Pooled indexed DNA libraries were prepared using the Illumina TruSeq Nano LT kit, and
the sequence was obtained with the Illumina MiSeq platform using the MiSeq v2
500-cycle reagent kit following the manufacturer’s instructions, producing 1,296,046
paired-end reads for the index containing the phage Sanco genome. FastQC v0.11.5
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to quality con-
trol reads. The reads were trimmed with FastX Toolkit v0.0.14 (http://hannonlab.cshl
.edu/fastx_toolkit/download.html) before being assembled using SPAdes v3.5.0 (6).
Contig completion was confirmed by PCR using primers 5=-CCGGTTTGTCGATATCATC
C-3= and 5=-ACGGAGGTGTTTTCAATCCA-3= facing off the ends of the assembled contig
and Sanger sequencing of the resulting product, with the contig sequence manually
corrected to match the resulting Sanger sequencing read. GLIMMER v3.0 (7) and
MetaGeneAnnotator 1.0 (8) were used to predict protein coding genes with manual
verification, and tRNA genes were predicted with ARAGORN 2.36 (9). Rho-independent
termination sites were identified via TransTermHP (http://transterm.cbcb.umd.edu/).
Sequence similarity searches were done by using BLASTp v2.2.28 (10) against the NCBI
nonredundant (nr) and UniProt Swiss-Prot (11) and TrEMBL databases. InterProScan
5.15-54.0 (12), LipoP (13), and TMHMM v2.0 (14) were used to predict protein function.
HHpred with ummiclust30_2018_08 for multiple sequence alignment (MSA) generation
and PDB_mmCIF70 for modeling in the HHsuite v3.0 release were also used for
functional prediction (15). All analyses were conducted using default settings via the
Center for Phage Technology (CPT) Galaxy (16) and WebApollo (17) interfaces (https://
cpt.tamu.edu/galaxy-pub).

Sanco was assembled at 28-fold coverage into a complete contig of 48,790 bp. The
GC content of the genome is 51%, which is lower than that of the host (57%) (18).
Determined by BLASTn against the NCBI nucleotide (nt) database, Sanco shares greater
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than 83% overall nucleotide identity (E value � 0) with a group of characterized T1-like
Klebsiella phages, including Sushi (GenBank accession no. KT001920) (19), Skenny
(MK931444) (20), Sweeny (MK931443) (21), and Shelby (MK931445) (22). The Sanco
genome was opened to be syntenic with those of phage T1 (NC_005833) and phage
TLS (NC_009540). Sanco proteins sharing homology (determined by BLASTp search
against the NCBI nr database at an E value cutoff of 10�3) with T1 proteins include
those involved in phage morphogenesis and DNA replication. A full lysis cassette was
identified in the Sanco genome, and it included a holin, signal-arrest-release (SAR)
endolysin, and unimolecular spanin. The endolysin is predicted to have a glycosidase
activity.

Data availability. The genome sequence of phage Sanco was submitted to
GenBank under accession no. MK618657. The associated BioProject, SRA, and Bio-
Sample accession numbers are PRJNA222858, SRR8772108, SAMN11236500, respec-
tively.
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