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Abstract
Optimization of machining parameters like cutting speed, feed, and depth of cut is one of the extensively studied fields in 
the past two decades. While researchers agree optimization of these parameters is essential, there is no conscience as to 
what the objective of the optimization should be. The studies consider production cost, production time, surface finish, 
among others, as the objective of parameter optimization, but there are very few studies that consider the manufacturer 
prescribed tool life as the criteria for parament optimization. Among the methods that do consider tool life as an opti-
mization objective, very few are closed-loop systems and these systems are facing challenges to generalizing when the 
application changes or the machining material changes or the tool geometry changes. Considering this, a novel image 
feedback using a convolution neural network-based method combined with principles of fuzzy logic is used to optimize 
machining parameters. Since the system is based on online feedback from the images of the inserts, it can be used for dif-
ferent materials, and the system is invariant to the different tool geometries and grades as the decisions are based on the 
wear mechanisms detected. The hybrid system is validated through experimentation for the turning application, but the 
methodology can be easily adapted for other machining applications.
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1  Introduction

In the past decades, the optimization of machining param-
eters like cutting speed, feed, and depth of cut are exten-
sively studied [1]. The studies are warranted as these param-
eters affect different facets of machining, which include but 
not limited to surface finish, load on the machine, power 
consumption, tool life [2–4]. Usually in a mass manufac-
turing setup, these parameters are optimized at the initial 
stages of the production setup, as shown in Fig. 1 or as part 
of continuous improvement when better cutting tools are 
to be tested. Cutting speed, feed and depth of cut are opti-
mized through trial and error and are mostly based on the 
expert knowledge of the machine operator and empirical 

rules in machine data handbooks [5]. If the tooling engineer 
has selected the right tools for the right material conditions, 
and the machine operator has selected the right machining 
parameters, the manufacturer prescribed tool life, as well as 
other desired outcomes, are achieved. Also, considering that 
tooling can account for up to 12 percent of the production 
tool life.

The studies so far take an experimental approach to get 
the best machining parameters to achieve the desired tool 
behavior in which various machining parameters are tried, 
and the parameters with the best tool life are adopted [7–9]. 
These studies treat machining parameter optimization as a 
one time job, but these machining parameters have to be 
optimized every time a new production line is being set up. 
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The open-loop nature of the experimental approach pre-
sents a challenge of generalization; when the tool geom-
etry, coating grades, or the workpiece material changes, 
the assumptions in the experimentation of the studies ren-
der the optimized parameter unusable. Adding to this, the 
optimized parameters don’t always work given the scho-
lastic behavior of tool life. Therefore, it is better not to treat 
parameter optimization as a one time process.

Figure 2a gives a general overview of the approach taken 
by existing studies for parameter optimization. In the first 
step, an experiment is conducted with a different combina-
tion of cutting speed, feed, and depth of cut. A database is 
created with these experiments with target labels, which 
can be different depending on the objective. In the third 
step, the database is used to train prediction models or 
optimizers. Finally, the best combination of the machin-
ing parameters is predicted by the models. This approach 
works well as long as the tool behaves the same way in 
every application it is used. Figure 2b gives the proposed 
approach. In the proposed system, the database creation 
and training prediction models and optimizers are elimi-
nated by making the experimentation process a closed-
loop system. The closed-loop nature of the system has two 
advantages; one, instead of wasting time in trying different 
combinations, the closed nature tries the Very few studies 
have taken a closed-loop approach to parameter optimiza-
tion. The existing closed-loop parameter controller depends 
on the passive signals like cutting force [10–12], spindle 
motor current [13], acoustic emissions signals [14]. Passive 
signals are good inputs to create closed-loop systems, but 
these systems require complex sensors close to the cutting 
action, which limits the size of the workstation. These sys-
tems are also prone to different noise in machine-shops. 
Most of the passive signal based systems do not consider 
other parameters that affect these signals like the length 
of the holder, chip breaker, condition, or rigidity of the 
machine while modeling the predictive algorithms; These 
systems work in a standard laboratory setup, but these 
parameters pose a challenge when these predictive mod-
els have to be scaled up to be implemented in the differ-
ent industrial environments. The advantages of the online 

nature of these systems also can’t be utilized to a full extent 
because of the unidirectional nature of G-code execution 
used by most of the existing CNC machines [15–17], which 
don’t allow for real-time changes in G-codes. Vision-based 
systems, on the other hand, are not online systems, but they 
can work between cycles [18], and vision-based systems are 
more accurate than their indirect counterparts [18]. Inspired 
by the closed nature of the previously discussed studies and 
the problems experienced by the passive signal based sys-
tems while scaling up, combined with the ability of vision-
based systems to address the shortcomings of these sys-
tems; the presented study proposes a closed-loop system 
alternative using a vision system.

The optimization systems with surface finish objective 
functions [19, 20], which form the bulk of the optimization 
studies, can be classified as quality-based optimization sys-
tems. But the drawback of current quality based systems is 
that they assume the quality requirement as a monolith, 
which is the surface finish, while as illustrated by Mamlede-
sai et al. [21], there are different definitions for machining 
quality, and they are identified in tool change policies (TCP). 
It is a mammoth task to optimize these machining param-
eters for all quality requirements, which are also sometimes 
in conflict. Instead, we can encode the quality requirements 
as the useability of the tool, as suggested by Mamledesai 
et al. [21] the life of the tool can be divided into GO and NO 
GO region, where within the GO region, the tool is produc-
ing components that meet the design requirements which 
account for different quality requirements and enters the 
NO GO region when the tool starts to produce non-con-
forming parts. We can graphically superimpose these GO 
and NO GO regions on the normal wear curve [22, 23] as 
illustrated in Fig. 3a, where TCP is the threshold between GO 
and NO GO region. As seen in Fig. 3b, the quality is achieved 
through TCP irrespective of tool life, but when the normal 
wear curve (or desired wear mechanism) is achieved, TCP is 
pushed the furthest, and the TCP gets closer to zero when 
abnormal wear curves (or undesired wear mechanism) are 
seen. Therefore, there is a need for a parameter optimizer 
that will keep tool behavior closer to the normal wear curve 
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Fig. 1   Sequence of production evolution and the parameter optimization interventions in different steps
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and, as a consequence, also achieve better quality for more 
contact length or time.

The proposed system uses tool wear morphology as 
feedback for change in machining parameters. Tool manu-
facturers prescribe monitoring the wear morphology to 
optimize the machining parameters to achieve the best 
tool life and behavior [24–26]. There are different wear mor-
phologies, and some of them are desired, and others are 
undesired morphologies. To achieve the maximum tool life 
(or normal wear curve), the desired wear morphology must 
prevail. The desired and undesired wear morphologies are 
discussed in Sect. 2. The decision based on the wear mor-
phology also helps the tooling engineers generalize their 
knowledge across different tool geometry, coating grades, 
and working materials. The tooling engineers are taught to 
troubleshoot tool life using the wear morphologies and the 
remedy to those wear morphologies. As long as the tools 
have identifiable wear morphologies irrespective of the 
workpiece material, tool grade, or geometry, the respective 
remedy action can be taught; this helps the tooling engi-
neers generalize their knowledge.

In this study, the authors take the approach a tooling 
engineer takes to optimize the machining parameters based 
on the visual information available. A tooling engineer first 
looks at the tool for the type of wear and approximates the 

level of wear. Based on this evidence, the engineer changes 
the parameter appropriate for the level of wear and type of 
wear. These appropriate changes are relative to the initial 
machining parameters, and the decision of the magnitude 
of changes in parameters is a skill developed over the years 
by the engineers.

The presented study replicates this decision-making 
through independent systems that first recognize the type 
of wear using the Artificial Neural Network (ANN) algorithm. 
The ANN algorithm is the best suited for this application as 
it is capable of autonomously detecting the region of inter-
est and patterns in the images [27]. In the next step, the 
level of recognized wear is measured using commercially 
available measurement software [28]. Finally, the skills are 
captured in the system through fuzzy logic rules. The study 
utilizes fuzzy logic as it is flexible enough to capture a wide 
range of expert knowledge and converts them into lin-
guistic variables that are defined by mathematical models 
[29–31]. Thus, performing the task of the tooling engineer 
independently. This independent decision-making system 
equips the new inexperienced machine operators with the 
preemptive remedy actions to achieve full utilization of 
the tool life. Also, the system can be used in fast-tracking 
of identification of the best machining parameters for new 
exotic materials. With the full integration of the proposed 

Fig. 2   a Approach taken to get best machining parameters combination b The proposed closed loop system

Fig. 3   a Graphic illustration of normal wear curve for cutting tool with GO/ NO GO regions overlapped b Graphic illustration of wear curve 
for different cutting speeds and realtive change in TCP (adapted from [16])
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system with the machine controllers, the study can contrib-
ute to the concept of lights out machining without the need 
for human intervention.

The contribution of the study is a methodology that 
helps users determine the right combination of machining 
parameters and improve the tool life using fuzzy controller 
that replicates the human decision making partly when it 
comes to machining parameter optimization with tool life 
as the objective. The detection of wear morphology and 
measured values of the detected wear morphology serve 
as feedback to the controller, thus makes the proposed sys-
tem a closed-loop system. This approach will also help in 
generalizing the system across different working materials, 
tool geometries, and tool grades once the entire family of 
tool wear is integrated as the decisions are based on visual 
evidence of wear morphology.

The study encompasses wear detection, wear measure-
ment, and fuzzy controller, the interface between these 
three systems is manual and presents future scope to auto-
mate these interfaces. The boundary conditions used for 
the linguistic variables in the case study are imitated to the 
point of proving that the methodology works and there is 
a need to further investigate the boundary conditions for 
these linguistic variables. The study used a manual lathe 
which did not allow for independent control of feed rate 
therefore the remedy actions involving the feed rates are 
beyond the scope of the study. The study only considers 
flank wear, deformation, and built-up edge but there are 
other wear patterns like chipping, crater wear that war-
rant other remedial actions. These varieties of wear pre-
sent an excellent opportunity to further investigate other 
remedy actions and their integration into the fuzzy control 
framework.

The rest of the paper is structured as follows. The back-
ground literature is discussed in Sect. 2. In Sect. 3, the meth-
odology is proposed starting with the overview followed by 
the basic concepts used in the system. In Sect. 4, the case 
study and the results are demonstrated. Finally, the further 
development needs in the full implementation of the sys-
tem and the conclusions are given in Sect. 5.

2 � Literature review

In this section, we first discuss the start of art technologies, 
followed by the different objectives for optimization and 
deficiencies of these systems. Finally, we explore the differ-
ent prediction models used in the prediction.

Lan et al. [3] developed a system to maximize the tool life 
using fuzzy logic. This system optimizes the cutting speed, 
feed, and depth of cut using fuzzy rules, but there is no 
feedback loop in this system. Schultheiss et al. [32] studied 
the possibility of using a previously used tool for secondary 

machining operations. The authors in this study propose 
using alternatively left and right-hand cutters for using both 
sides of the nose. Haber et al. [12] developed a closed-loop 
fuzzy controller with an optimizer; this controller optimizes 
the feed rate based on force signals to achieve better tool 
life in drilling applications. The study also identified the 
need to tune fuzzy controllers using feedback. Bhushan [33] 
discussed the identification of significant combinations of 
critical machining parameters to achieve improvements in 
tool life and power consumption. The study takes an experi-
mental approach to identify these significant combinations. 
Zhang et al. [34] Proposed an objective function to minimize 
the energy consumption; this objective function accounts 
for the stochastic nature of tool wear with other machining 
parameters. Finally, the authors arrive at the best combina-
tion to achieve better energy consumption. Shi et al. [35], 
in their study, established the relation between tool wear 
and power consumption. Ribeiro et al. [36], in their system, 
analyzed and optimized the machining parameters with 
the surface finish as the objective using an experimental 
approach. Moshat et al. [37] pointed to the popularity of 
Taguchi methodology when it comes to parameter optimi-
zation. The study proposed a hybrid Principle Component 
Analysis and Taguchi methodology to solve the optimiza-
tion problem. Thepsonthi et al. [7] developed a multiobjec-
tive particle swarm optimization-based model for obtaining 
burr-free surface features along with the tool life. Yan et al. 
[20] proposed a multiobjective optimizer that considered 
production rate, cutting quality and energy consumption; 
the right cutting conditions are determined using weighted 
grey relational analysis. Ramesh et al. [19] investigated the 
optimal cutting parameters for better surface finish and 
better tool life using grey relation analysis and techniques 
for order preferences by similarity to ideal solution method. 
El-Hossainy et al. [38] introduced an optimizer using LINGO 
software; the software was optimizing different objective 
functions, and one of them is tool life. The system consid-
ered cutting speed, feed, and depth of cut as independent 
variables.

Surface finish [9, 39–43] is one of the primary objectives 
to optimize the machining parameters where inputs to pre-
diction models are cutting speed, feed, and depth of cut, 
among others, and the model is expected to predict the 
surface finish. The drawbacks of using surface finish as an 
objective function are discussed in the previous section. 
The effects of various parameters on power consumption 
[42] are also studied extensively to provide the best work-
ing parameters that consume the least power. Often studies 
quote sustainable manufacturing while optimizing power 
consumption, but the studies do not consider the environ-
mental impacts of the carbide ore extraction, supply chain, 
and how will improved tool life impact these aspects; there 
is a need for more holistic optimization when it comes to 
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power consumption and sustainable manufacturing. Cycle 
time or production time [4] and Manufacturing cost [44, 
45] are also a common objective to optimize the cutting 
parameters. Other than the above-mentioned objectives, 
some studies have also considered cutting force or load on 
machine [42] and material removal rate [46] as the objective 
to optimize the machining parameters. A complete review 
of different optimization objectives can be found in the 
study done by Rana et al. [47].

The machining parameter optimization objectives men-
tioned in the previous paragraphs are essential as they 
affect machining quality and production cost. On the other 
hand, if surface finish, power consumption, and produc-
tion cost are considered without considering tool life, the 
manufacturers run the risk of underutilizing the tool or, in 
the worst-case, end up using the wrong tool, which drives 
up the tooling cost. Therefore, there is a need for a system 
that can optimize the tool life. In the context of optimized 
tool life, if the other desired outcomes like surface finish, 
production time, and cost are not achieved, the tool selec-
tion is wrong and has to be changed in consultation with 
tooling engineers.

The parameter optimization study has used a variety 
of methodologies to achieve the desired objectives. ANN 
is one of the new methodologies used in the last decade 
[42]; this methodology establishes the nonlinear relations 
between the input variables and target variables. The rela-
tion later helps in the prediction of outcomes of using indi-
vidual machining parameter combinations. The genetic 
algorithm [48] is also a commonly used methodology 
based on the basic principle of selection of the best solu-
tion to the optimization problem. Experimentation, which 
involves trying different parameters and determining the 
best paraments of the lot, is also a common approach; the 
Taguchi method [9] is used to design these experiments. 
In the experimentation approach, which forms the basis 
of the above-mentioned methodologies, there is no room 
for a closed-loop system, which can adjust the parameters 
based on the online feedback from the change in a machin-
ing environment. The experimental approaches are at best 
useful to generate machining parameters data for catalogs; 
even for these applications, the experiment is trying differ-
ent combinations without reliable feedback. The findings 
of these approaches are also limited to the material they 
are experimenting with or the tool geometries that are 
used in the studies. If the material or the tool geometry 
or the tool coating grade changes, the assumptions make 
the generalization of the findings for a different material or 
tool impossible. Therefore, there is a need for a methodol-
ogy that can arrive at the best machining parameters using 
reliable feedback.

The proposed system develops a feedback loop and a 
closed system by optimizing the parameters based on the 

wear condition of the tools. The wear on the cutting tool 
is unavoidable. There are, however, desired and undesired 
wear patterns. The desired wear morphologies must prevail 
for the full utilization of cutting tools (or normal wear curve). 
Abrasion wear is the removal of small fragments [49] from 
the tool, which relatively preserves the rake angles of the 
cutting tool, giving the best life designed by the manufac-
turer. The abrasion wear pattern is also termed as normal 
flank wear by the tooling engineers. The other wear mech-
anism is plastic deformation, which significantly changes 
the working angles [49] of the insert rendering it unfit for 
machining in a short cutting time, this type of tool wear is 
commonly seen while machining high melting point mate-
rial at high cutting speeds. The adhesive wear pattern is the 
other commonly seen wear pattern in the cutting insert, 
where the material being cut adheres to the cutting edge 
and the rake face [49], this leads to change in cutting angles 
and poses a risk to smooth chip flow which makes the tool 
unfit for machining, Built-Up Edge (BUE) is the industrially 
used term for this kind of wear pattern. The undesired wear 
patterns also lead to imperfections such as chatter marks, 
edge fettering, poor surface finish among others these 
effect the quality standards. The pictorial examples of these 
imperfections can be seen in the study conducted by Mam-
ledesai et al. [21]. Considering that the plastic deformation 
and adhesive wear patterns drastically reduce the usability 
of the cutting tools (or generate abnormal wear curves), tool 
manufacturers prescribe remedy actions to achieve abrasive 
wear pattern, which is the ideal wear pattern to realize the 
full life of the cutting tool. The remedy actions to achieve 
abrasion wear patterns are discussed later in Sects. 3.3.

Parameter optimization based on tool condition moni-
toring can be done using indirect and direct monitoring 
methods [50]. Indirect methods use data from one or more 
of vibration [51–53], sound [54], and force [52] sensors. On 
the other hand, direct methods rely on first-hand evidence, 
like images of tools [55]. While indirect methods are online 
systems and give information on real-time bases, they are 
less accurate and susceptible to noise when the systems 
are deployed in machine shop floors [56]. Indirect systems 
are also trained for predictions based on specific experi-
mental data provided by the sensors, and the model needs 
to be retrained if any of the parameters in the experiment 
change. For example, if the vibration sensor-based model 
is trained for finishing geometry, the same model can’t be 
used if the geometry changes to roughing geometry as 
the vibration levels are higher for roughing geometry; the 
same can be implied for other indirect methods. Direct sys-
tems like vision-based systems are not real-time systems 
but are in process systems; they can be designed to work in 
between cycles [18] and tool change programs. Since direct 
systems are based on first-hand evidence, they present the 
advantage of higher accuracy. Also, the vision systems can 
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be placed away from the metal cutting; this allows them not 
to interfere with machining operations. That is why vision 
systems have gained popularity in inspects [57], collision 
detection [15, 16], and other applications. Direct systems 
can also be trained to monitor wear morphologies, which 
have specific remedial actions to achieve desired wear 
morphology. These remedy actions are common to differ-
ent tool geometries, coating grates and workpiece materi-
als. The ability to work with wear morphologies allows the 
system to generalize the remedy rules for different applica-
tions. Considering the higher accuracy of direct methods, 
combined with the ability to generalize remedy rules, the 
computer vision-based direct method is selected to create a 
feedback loop for a closed machining parameter optimiza-
tion system that can respond to change in tool condition.

The gap in continuous machining parameter optimiza-
tion using reliable feedback in the context of tool life is an 
area with scarce publications. As is evident in the literature 
discussed in the previous paragraphs, the proposed system 
is designed to address this gap. The developed system is a 
combination of a Convolutional Neural Network (CNN) and 
Fuzzy Logic (FL) methodology. The previous studies use FL 
for tool condition monitoring [58, 59], but FL is not the best 
approach for feature recognition since the feature descrip-
tions have to be hardcoded in terms of fuzzy rules, which 
takes a considerable amount of computational memory 
and also FL systems can’t accommodate new situations 
not bound by the rules [60]. In this regard, CNN approaches 
are more accurate and also don’t require the feature defini-
tion stage [61]; this expedites the training process and also 
improves the ability to recognize a variety of wear morphol-
ogies. FL, however, is efficient in converting human knowl-
edge into variables computers can understand [60]. The FL 
in the proposed methodology is used to model the expert 
and tool manufacturer’s troubleshooting knowledge. The 
proposed hybrid system uses CNN as the feedback and FL 
as the controller, which selects and adapts the machining 
parameter.

3 � Hybrid Fuzzy controller with an image 
feedback system

The overview of the proposed fuzzy controller can be seen 
in Fig. 4. The proposed system is divided into the controller 
and the feedback sections. The feedback section consists 
of the wear classifiers that classify the type of wear on the 
tool and the approximates amount of wear on the tool. The 
type of wear, amount of wear, the component diameter, and 
spindle revolutions per minute (RPM) form the inputs to the 
controller; these are further elaborated in Sect. 3.1. The first 
step in the controller is the fuzzification, where the change 
in cutting speed, wear type, and lever of wear are converted 

to linguistic variables discussed in Sect. 3.2. In Sect. 3.3, the 
rule base, which forms the intelligence of the controller for 
remedial actions as suggested by tooling engineers and tool 
manufacturers, is developed. The output of the controller is 
a crisp number that is used to control the cutting speed of 
the machine. The output of the system is a remedial action 
to achieve the desired wear morphology that improves tool 
life. The process of relying on the evidence of wear morphol-
ogy, amount of wear, and the initial machining parameters 
replicate the tooling engineer decision-making process 
when it comes to machining parameter optimization. The 
techniques of output inference and defuzzification are dis-
cussed in Sect. 3.4.

3.1 � Inputs to controller

The controller uses four inputs diameter of the component, 
RPM, type of wear, and level of wear. The cutting speed ( Vc ) 
in meters per minute is calculated using Eq. 1 [62], where D 
is the diameter of the component to be machined in mil-
limeters, and N is RPM of the workpiece. 

There have been many studies in wear type identifica-
tion and wear amount estimation fields. Sun and Yeh [63] 
developed an image processing methodology that can rec-
ognize the type of wear, and the level of wear is estimated 
by accounting for the number of pixels in the wear region. 
Wu et al. [61] took a neural network approach to identify the 
type of wear pattern and used a minimum circumscribed 
rectangle to get the quantity of the wear. The proposed sys-
tem uses a neural network approach to identify the type 
of wear automatically by capturing the images of the used 
tools, and the amount of wear is manually calculated. How-
ever, there are other technologies developed that can also 
automate the amount of wear calculation.

Neural networks are one of the most used methods in 
image recognition. The neural network allows for automatic 
feature extraction by learning the nuanced differences in 
the images. The images are manually classified into differ-
ent wear categories and are used to training and validate 
the classification models. Once the training is complete, the 
model can automatically identify the different wear patterns 
by uploading the new images.

The CNN architectures use different layers which per-
form different actions on the images. The convolution 
layers, narrow down on the region of interest and create 
useful descriptions of the images which make them best 
suited to work with images [64]. The output of the convo-
lution layers then passes through the pooling layer, which 
in the case of the proposed architecture is a max-pooling 
layer which reports the maximum value in the predefined 

(1)Vc = (�DN)∕1000
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image pixel neighborhood. Max pooling layers make the 
proposed architecture more robust against small transla-
tion in image pixel data [65]. The dense layers are the fully 
connected layers where each neuron is interacting with all 
the neurons of the previous layers [66]. The last dense layer 
has the same amount of neurons as the number of wear 
classes, the output of the layer is the network’s prediction 
for the image belonging to three classes. This is summarized 
in Eq. 2 where yp is the prediction of the model.

Activation functions are commonly used in the neural 
network to allow them to accommodate and learn non-
linear functions [65], Rectified Linear Unit (ReLU) is com-
monly used in hidden layers of the network architectures 
as they return zero gradient value of negative nodes and 
the node value for positive inputs this improves the com-
putation easy [67]. The softmax activation function is used 
in the final layer to represent probability distribution over 
different classes, which is a common practice in classifier 
architectures [65].

(2)yp =

⎧
⎪⎨⎪⎩

0

1

2

if the image has BUE

if the image has deformation

if the image has normal wear

The parameters are where the intelligence of the layers 
are stored in terms of weights. These weights are fine-tuned 
by backpropagation in the training process. The model uses 
categorical cross-entropy as loss function [65] and ADAM as 
the optimizer for training and optimizing the weights [66]. 
More information about the training and optimization of 
neural network architectures can be found in [61, 65]–[68]. 
The proposed system uses the CNN architecture proposed 
in Table 1 to classify the wear type.

The amount of wear is manually demarcated on the 
images of the used tools; although the magnitude can 
also be automatically generated by technologies dis-
cussed in [61, 63, 69], and many other studies, this work 
is not replicated. The type of wear ( yp ), amount of wear 
in terms of micrometers, and cutting speed ( Vc ) form the 
inputs to the fuzzy controller.

3.2 � Fuzzification

There are two variables, type of wear �
T

 and the 
amount of wear �

A
 which form the input to the fuzzy 

s ys te m s.  LT={"BUE", "Deformation", "Normal""wear"} , 
and LA={"Low", "Medium", "High"} are the family of lin-
guistic values for the type of wear and amount of wear, 

Fig. 4   Overview of the fuzzy controller
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respectively. LT is the label used from family LT and LA is 
the label used from family L

A
 this is summarized by Eqs. 3 

and 4.

The amount of wear has a trapezoidal membership func-
tion [70]; this is summarized in Eq. 5, where xa is the meas-
ured value of wear on the cutting tool in micrometers and 
p,q,r,s are the boundary values of the membership function. 
Similarly, for the type of wear, the membership function is 
singleton given in Eq. 6, where x0 = yp.

The response ( ℜ ) is divided into seven linguistic vari-
ables R . Where, R = {Deformation High (DH), Deformation 
Medium (DM), Deformation Low (DL), Normal (N), BUE High 
(BH), BUE Medium (BM), BUE Low (BL)}. R is the label used 

(3)LT =

⎧
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BUE

Deformation

Normal wear

(4)LA =

⎧
⎪⎨⎪⎩

Low

Medium

High
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xa ≤ p

p < xa ≤ q

q < xa ≤ r

r < xa ≤ s
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(6)μT
(
xT;x0

)
= f(x) =

{
1

0

xT = x0
xT ≠ x0

from family R . The Gaussian membership function [70] for 
the response variable ( μR ) is given in Eq. 7, where c is the 
mean of the distribution, s is the standard deviation, and y 
is the output value. The mean of the linguistic response vari-
ables is dependent on the initial cutting speeds. The Gauss-
ian membership is carefully chosen because we can easily 
control the distribution with two parameters compared to 
four in the trapezoidal membership function.

3.3 � Rules

The rules for the fuzzy controller are developed using the 
knowledge base of troubleshooting guides from different 
tool manufacturers. The different statements extracted from 
troubleshooting guides are given in Table 2. The trouble-
shooting guides only suggest the overall remedy actions, 
but the magnitude of change in cutting speed or the feed 
rate is the skills developed by tooling engineers over time 
and experience; these skills are captured in the fuzzy rules.

Based on the information from the knowledge base and 
the tooling engineer’s skills, the fuzzy rules ( Hi ) are devel-
oped, the basic fuzzy rule is given by Eq. 8. The different 
linguistic values of LT, LA, and R for rule i are summarized 
in Table 3. The fuzzy rules model the expert statement; for 
example, rule 1 states that if the wear type is “BUE” and wear 
amount is “High” then increase the cutting speed by “BH,” 
where “BH” can be a percentage increase from initial cut-
ting speed.

(7)μR (y;c, s) = e

(
−

(y−c)2

2s2

)

(8)H
i=
{
IF �T is LT AND �A is LA THEN ℜ is R

}9

i = 1

Table 1   CNN architecture for 
wear type classification model

Layer type Input shape Output shape Activation function Parameters

1 Convolution layer 200,200,3 198,198,32 ReLU 896
2 Max pooling layer 198,198,32 99,99,32 0
3 Convolution layer 99,99,32 97,97,32 ReLU 9248
4 Max pooling layer 97,97,32 48,48,32 0
5 Convolution layer 48,48,32 46,46,64 ReLU 18,496
6 Max pooling layer 46,46,64 23,23,64 0
7 Convolution layer 23,23,64 21,21,64 ReLU 36,928
8 Max pooling layer 21,21,64 10,10,64 0
9 flatten (Flatten) 10,10,64 6400,1 0
10 Dense layer 6400,1 50,1 ReLU 320,050
11 Dense layer 50,1 35,1 ReLU 1785
12 Dense layer 35,1 10,1 ReLU 360
13 Dense layer 10,1 3,1 Softmax 33
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3.4 � Inference and defuzzification

Mamdani-Assilan fuzzy inference method is used for fuzzy 
inference. This method is suitable for the application at 
hand as it can work with the conjunctive interpretation 
of fuzzy rules in the canonical form given in Eq. 8 [70]. The 
conjunctive “AND” is interpreted as the minimum ( ∧ ) [70]. 
The inference results from each rule are finally added using 
maximum ( ∨ ) operation [70]. The final inference value μR∗ (y) , 
which gives the area under all the triggered rules is given 
in Eq. 9.

The defuzzification is done using the center of gravity 
(COG) method [70] where the crisp number for the new cut-
ting speed ynew is returned by the controller. The COG of 
the aggregate area of all the rules represented by Eq. 9 is 
calculated using Eq. 10. ynew is the new cutting speed used 
for the new machining cycle, which is influenced by initial 
cutting speed, type of wear, and amount of wear detected 
on the tool used in the previous cycle.

The fuzzy controller developed can only work with the 
cutting speed. Similarly, the fuzzy controllers can be devel-
oped for other machining parameters like feed rate and 
depth of cut. Cutting speed was considered as there is a 
consensus among the previous studies that the cutting 

(9)μR∗ (y) = ∨9
i=1

[
μi
T

(
xT
)
∧ μi

A

(
xA
)

∧ μi
R
(y)

]
y → �

(10)ynew =
∫
�
y μR∗ (y) dy

∫
�
μR∗ (y) dy

speed is one of the most influential factors when it comes 
to tool life [73]74.

4 � Case study

The purpose of this case study is to demonstrate the ability 
of the hybrid system to take remedy actions based on the 
wear morphology detected from the images of the cutting 
tools, and to demonstrate the positive effects of those rem-
edy actions. Proving the effectiveness of the magnitude of 
changes (response) and the limits of linguistic variables is 
beyond the scope of the case study, and there is a need for 
more research in this direction.

The case study started with the training and deployment 
of wear classification CNN. For the training, first, the images 
of used TNMG, CNMG and uncoated High Speed steel cut-
ting tools that have BUE, deformation, and normal wear 
patterns are acquired using a GigE DFK 33GP006 image 
sensor with TCL 3520 5MP lens with a 35 mm focal length; 
the setup can be seen in Fig. 5. The examples of images 
from different categories can be seen in Fig. 6. The image 
sensor has a resolution of 2592 * 1955. The neural network 
models were built and trained in the Intel Core i5 processor 
using the Tensorflow backend and Keras higher level pack-
age. For the wear classification model, a total of 207 images 
were used to train the model discussed in Table 1, and 89 
images were used for validation of the model. The images, 

Table 2   Remedy actions 
from knowledge base 
troubleshooting guides 
published by tool 
manufacturers

Wear mecha-
nism detection

Remedy statement for 
cutting speed

Reference Remedy statement 
for feed rate

Reference

BUE Increase cutting speed [24, 25, 71]
Normal wear Desired wear pattern [26, 71, 72]
Deformation Decrease cutting speed [24, 25, 66] Decrease feed rate [24, 25]

Table 3   Linguistic variables for 
different fuzzy rules

i LT LA R

1 BUE High BH
2 BUE Medium BM
3 BUE Low BL
4 Normal High N
5 Normal Medium N
6 Normal Low N
7 Deformation Low DL
8 Deformation Medium DM
9 Deformation High DH

Fig. 5   Image capturing setup
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when captured, were of different sizes but were resized to 
200*200*3 RGB images using the EBImage [75] package. 

The confusion matrix of wear type classification model’s 
predictions on the validation data set is shown in Table 4. 
The model has 86.52 percent accuracy and 0.3752 loss on 
the validation data set. The confusion matrix illustrates that 
the model performed reasonably well in identifying the 

wear patterns; the numbers in the diagonal of Table 4 are 
the correct predictions.

The wear classification model is then deployed using 
a Graphical user interface (GUI). The GUI asks the user to 
upload the image of the used tool, and the output is the 
type of wear, this is manually fed to the fuzzy controller. The 
examples of the deployed GUI can be seen in Fig. 7.

The amount of wear can be automatically measured 
using various technologies discussed in Sect. 3.1; however, 
in the proposed system, the measurement is done manu-
ally using commercially available IC Measure software [28]. 
The software uses image processing techniques. The calibra-
tion process prescribed by the makers were followed before 
measurement. Since the software is the intellectual property 
of the company further details are not shared by the makers. 
The examples of the measurements can be seen in Fig. 8.

Fig. 6   Examples of 200 × 200 pixels image for a (a) Deformation, (b) BUE and (c) Normal wear

Fig. 7   GUI for the wear classification model

Table 4   Base model confusion matrix

Prediction label Actual label

BUE Normal Deform

BUE 20 2 0
NORMAL 3 27 1
DEFORM 1 5 30
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The boundary values used to define the amount of wear 
trapezoidal membership function (p,q,r,s) are summarized 
in Table 5. These values are used with Eq. 5 to generate the 
membership functions for high, medium, and low linguis-
tic variables as shown in Fig. 9b; similarly, the membership 
function for the type of wear is shown in Fig. 9a. The c and 
s values used to define the response linguistic variable’s 
Gaussian membership functions are summarized in Table 6. 

For the fuzzy controller evaluation, Micro-Mark mini-
lathe 7 × 16 is used for machining. The tools used are 
uncoated high-speed steel tools. The workpiece material 

is Stainless steel 304. The cutting speed was monitored by 
recording the diameter of the component and the RPM 
(measured using REED instruments R7050 photo tachom-
eter and counter). The standard operating procedure in 
Table 7 was followed for collecting the data; the steps are 
repeated after every cut of 78 mm.

The data is collected for four cutting edges; the result 
of the experiment is shown in Appendix 1 and summa-
rized in Fig. 10. Tool 1 and Tool 3 are initiated with abnor-
mally low (23 m/min) and high (39 m/min) cutting speeds, 
respectively, which generated BUE and Deformation. The 
use of tools is stopped when the undesired wear pat-
terns are detected. The life for Tool 1 and Tool 2 in terms 
of contract length is 312 mm and 234 mm, respectively. 
When the undesired wear patterns are detected, the fuzzy 
controller suggested the change in cutting speed; when 
the suggestion is used while machining with Tool 2 and 
Tool 4, the tool life improved by more than 100 percent, 
as shown in Fig. 10.

Fig. 8   Amount of wear measurement using IC Measure software

Table 5   Boundary points for wear amount membership functions

A
x

p q r S

Low 10,000 200 300 400
Medium 350 600 900 1100
High 900 1200 1500 10,000

Fig. 9   Linguistic input variables a) type of wear b) amount of wear
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The study illustrates the ability of the system to detect 
different wear morphologies and take remedy actions by 
changing the cutting speed to achieve the desired wear pat-
terns and, in this process, achieve better tool life. The system 
can work with different materials and tool geometries as 
the remedy actions are based on the wear morphologies. 
The system was evaluated on a manual lathe, which did not 
allow for the control of feed rate.

The study considered cutting speed as the optimizing 
parameter as it has maximum impact on the tool life [73], 
74]. To further advance the scope of this study the fuzzy 
controller will have to modified to be a multiple output 
optimization fuzzy controller as discussed in the study 
done by Rodic [76]. Similar fuzzy rules, as discussed in 

Sect. 3.3, will have to be developed for remedy actions 
that involve controlling feed rates and depth of cut based 
on the remedial actions prescribed for different wear pat-
terns. The future work will be bidirectional. One, towards 
including a wider range of undesired wear patterns other 
than BUE and Deformation like chipping, crater wear, 
among others, which require us to control other machin-
ing parameters like feed rate and depth pf cut as part of 
remedy actions. Second, There is also a need to make the 
system completely automatic by integrating the outputs 
of the wear classification model, wear amount measure-
ment tool with the input to the controller, this process in 
the proposed study is done manually.

Table 6   Mean and standard deviation values for different response linguistic variables

R c s

BH Vc + (0.6 Vc) 3
BM Vc + (0.4 Vc) 3
BL Vc + (0.2 Vc) 3
N Vc 3

R c s

DM Vc−(0.4 Vc) 3
DH Vc−(0.6 Vc) 3
DL Vc−(0.2 Vc) 3

Table 7   Standard operating 
procedure for collecting data Step 1: Start the rotation and set the RPM to a predetermined level, as indicated by the fuzzy controller

Step 2: Carry out the metal cutting using automatic leadscrew feed
Step 3: Capture the image of the used tool and record the wear detected by wear classification GUI
Step 4: Measure the wear on the tool using IC Measure software if the wear is BUE or Deformation
Step 5: Record the diameter of the workpiece after the machining
Step 6: Input the diameter, RPM, type of wear, and measured wear to the fuzzy controller
Step 7: Record the cut number, cutting speed, and RPM suggested by the fuzzy controller

Fig. 10    Consolidated results from the experimental data presented in Appendix 1
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5 � Conclusion

Machining parameter optimization is one of the exten-
sively studied fields of manufacturing, with the objective 
of optimization being different. The proposed system uses 
the theory of wear mechanism to optimize the machining 
parameters. The objective of the study is to get the desired 
wear pattern when undesired wear patterns are detected 
to achieve better tool life. This problem is divided into two 
sections first, the detection of wear mechanism and level of 
wear, and in the second section, these detections are used 
as signals to trigger fuzzy rules, which change the machin-
ing parameter to obtain the desired wear pattern in the next 
cutting edge. The system uses CNN for the detection of wear 
mechanisms. The fuzzy controller uses the output of wear 
classifier, amount of wear, and current state of machining 
parameters as input to suggest changes to the machin-
ing parameters for the next cutting edge. The case study 
developed illustrates that when the suggested changes are 
incorporated, the tool life can be improved by 100 percent. 
Since the system is dependent on the wear morphology 
as feedback to the deployed parameters, the system is not 
limited by the working material or tool geometries.
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