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Among the transcription factors that are conserved across phylogeny, the grainyhead
family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of
grainyhead (grh) gene is essential during developmental processes such as epithelial
differentiation, tracheal tube formation, maintenance of wing and hair polarity, and
epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like
1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures
and functions. GRHL proteins are essentially associated with the development and
maintenance of the epithelial phenotype across diverse physiological conditions such as
epidermal differentiation and craniofacial development as well as pathological functions
including hearing impairment and neural tube defects. More importantly, through direct
chromatin binding and induction of epigenetic alterations, GRHL factors function
as potent suppressors of oncogenic cellular dedifferentiation program – epithelial-
mesenchymal transition and its associated tumor-promoting phenotypes such as tumor
cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic
effects such as increased migration and anchorage-independent growth in certain tumor
types. Furthermore, investigations focusing on the epithelial-specific activation of grh
and GRHL factors have revealed that these factors potentially act as a pioneer factor
in establishing a cell-type/cell-state specific accessible chromatin landscape that is
exclusive for epithelial gene transcription. In this review, we highlight the essential roles
of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus
on its emerging pioneering function.

Keywords: Grainyhead, Grh, Grainyhead-like 2, GRHL2, epithelial-to-mesenchymal transition, pioneer factor,
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INTRODUCTION

The grainyhead (grh) transcription factor is a member of
the ancestral LSF/Grainyhead gene family. Originally identified
in Drosophila (previously known as Elf-1 or NTF-1) as
an embryonic lethal locus, grh mutant Drosophila embryos
show immature cuticle development, patchy tracheal network
and the most notable ‘granular’ head skeleton aberration
(Nüsslein-Volhard et al., 1984; Bray and Kafatos, 1991). The
LSF/Grainyhead family of proteins are functionally distinctive
by their nature of oligomerization and mechanism of DNA-
binding module on cognate regulatory sites (Traylor-Knowles
et al., 2010). Therefore, the gene family is subdivided into
two branches: the LSF/CP2 subfamily and the Grainyhead
subfamily, resulting from a major gene duplication event dated
more than 700 million years ago (Wilanowski et al., 2002;
Venkatesan et al., 2003). These transcription factors bind to cis-
regulatory elements and control the expression of crucial genes
during early embryonic development and tissue homeostasis.
The LSF/CP2 subfamily has three mammalian orthologs and
evolved from the ancestral gene gemini (dCP2) in Drosophila.
Recent critical reviews have discussed the role of LSF/CP2
subfamily members (TFCP2, TFCP2L1, and UBP1) in various
aspects of development and human diseases including cancer
(Kotarba et al., 2018; Taracha et al., 2018). In this review, we
elaborate on the essential functions of grainyhead in Drosophila
and the three mammalian orthologs: Grainyhead-like proteins
(GRHL1, GRHL2, and GRHL3). Additionally, we focus on
human GRHL2 as an important determinant of the epithelial
phenotype during development and as a gatekeeper of epithelial
differentiation in several human cancers. Finally, we also discuss
in detail the novel pioneering role of grainyhead and Grainyhead-
like proteins in contouring the chromatin landscape during
embryonic development and cancer progression.

The single grh gene in Drosophila and Caenorhabditis elegans
exists as multiple orthologs in the vertebrates, which are denoted
as grainyhead-like (grhl) genes. These genes remain evolutionarily
conserved from insects to humans. In addition, a varying number
of splice variants generated from alternative splicing events
and alternative transcriptional initiation sites further highlight
the underlying complexity and their gene regulatory networks
operating during development and disease progression (Uv et al.,
1997; Miles et al., 2017). Of note, three orthologs of grainyhead
exist in humans: Grainyhead-like 1 (GRHL1), Grainyhead-like
2 (GRHL2) and Grainyhead-like 3 (GRHL3). Each protein
contains three annotated functional domains: a transcriptional
activation domain (TAD) at the N-terminus; a central DNA-
binding domain (DBD) structurally similar to the equivalent of
p53, and a dimerization domain (DD) at the C-terminus with
unique ubiquitin-like folds. The TAD is the least conserved
domain between Drosophila and mammalian orthologs, which
could be partially due to the presence of an isoleucine-rich
segment that has poor conservation across phylogeny (Attardi
et al., 1993; Werth et al., 2010). With respect to the human
GRHL2 amino acid sequence homology, the DBD holds higher
level of sequence identity in all GRHL proteins, when compared
to all other domains across the model organisms (Table 1).

Members of the grh/GRHL family share a similar
palindromic DNA-binding motif (AACCGGTT), with
different levels of variability for some target genes (Table 2).
In Drosophila, Grh recognizes DNA regulatory sequences
upstream of genes Ddc (TGAACCGGTCCTGCGG) and en
(GTGAGCCGGCGAAACCGGTT), whereas the binding motif
on Ubx and ftz promoters is (T/C)NAAC(C/T)GGT(T/C) (Bray
et al., 1988; Soeller et al., 1988; Dynlacht et al., 1989; Wilanowski
et al., 2002; Venkatesan et al., 2003). In mammals, GRHL
binding motifs display as two adjacent repeats of Grainyhead
consensus sequences, with two tandem core CNNG motifs
set apart by five bases. For example, the mouse Grhl2 binding
site in intron 2 of Cdh1 (AAACCAGTCAAACCAGTT) and
the promoter of Cldn4 (AATCCAGAGAAACTGGTC) are
strikingly similar to the human GRHL2 binding motif on the
intron 2 of the CDH1 (GCAAACCAGCCAAACCAGTTT) and
the promoter of CLDN4 (GGAATCCAGAGAAACTGGTCAG)
(Werth et al., 2010; Chung et al., 2016). The invariant CNNG
tandem motifs share similarity with the binding motif of Tfcp2l1
from the CP2 family suggesting a close phylogenetic relationship
with members of the p53 family (two CNNG set apart by
six bases) based on protein folding and the binding of DNA
(Kokoszynska et al., 2008). A recent study on the crystal structure
of Grhl1/2 DBDs shows that these domains share a common
fold with p53, substantiating earlier computational predictions
(Ming et al., 2018).

GRAINYHEAD AND GRHL FACTORS IN
DEVELOPMENT

In metazoans, two major cell types form the basis of organ
development: epithelium and mesenchyme. Epithelial cells
are generated first during the embryonic development, while
mesenchymal cells are derived from the pre-existing epithelial
cells through a process called epithelial-to-mesenchymal
transition (EMT) (Hay, 1995; Thiery and Sleeman, 2006;
Kalluri and Weinberg, 2009). Epithelial cells usually maintain
a strict, aligned cellular polarity (apical and basal surfaces)
and remain closely connected to adjacent cells through
specialized transmembrane structures, such as tight junctions,
adherens junctions, and desmosomes. In contrast, due to their
lack of stable cell-cell attachment and apical-basal polarity,
mesenchymal cells possess higher migratory abilities and
interact extensively with the surrounding extracellular matrix.
The earliest developmental EMT occurs during gastrulation,
where mesenchymal cells are generated from epithelial epiblast
cells. The mesenchyme further condenses to form mesoderm
(middle layer of the embryo) and endoderm (inner layer of the
embryo), which eventually form the vertebral column, bony
appendages and connective tissues (Hay, 2005). However, the
epithelia is the stable state of cellular organization that forms
the epidermis, the primary layer covering the external surface of
the body that provides protection against external physical and
mechanical stress. The following sections describe the vital roles
of Grainyhead and Grainyhead-like proteins in the epidermis
and epithelia.
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TABLE 1 | Members of the grainyhead/Grainyhead-like transcription factor family and protein sequence homology in nematode, fruit fly, zebrafish, and mammals.

Species Gene name
(Official name)

Aliases Gene
location

Assembly Splice
variants

Amino acid sequence homology (% identity to human GRHL2)

Full length TAD DBD DD

Round worm
(Caenorhabditis
elegans)

CP2
domain-containing
protein (grh1)

– Chr I:
1,259,374-1,268,155

WBcel235:
BX284601.5

3 40.5 < 30 54.7 36.1

Fruit Fly (Drosophila
melanogaster)

grainy head (grh) Dmel\CG42311; DREB;
EG:191D12.1; Elf-1;
Grh; Ntf; Ntf1

Chr 2R: 17,801,132-
17,842,820

BDGP6.28:
AE013599.5

8 52.1 < 30 52.1 35.5

Zebrafish
(Danio rerio)

grainyhead-like 1
(grhl1)

fc49a04; wu:fc49a04 Chr 17: 32,391,056-
32,426,413

GRCz11:
CM002901.2

7 56.9 63.3 73.4 68.2

grainyhead-like 2a
(grhl2a)

zgc:110324 Chr 16:
9,807,263-9,830,451

GRCz11:
CM002900.2

1 61 63.7 78.9 59.8

grainyhead-like 2b
(grhl2b)

grhl2, si:dkey-21k18.2 Chr 19: 12,234,975-
12,291,981

GRCz11:
CM002903.2

2 70.5 59 86.1 70.7

grainyhead-like 3
(grhl3)

cb467, sb:cb467,
si:dkey-221l4.7,
wu:fa01c12,
wu:fb74c01

Chr 17: 26,965,351-
26,977,183

GRCz11:
CM002901.2

4 50.3 < 30 55.3 51.8

Mouse
(Mus musculus)

grainyhead-like 1
(Grhl1)

LBP-32, Tcfcp2l2, p61
MGR, p70 MGR

Chr 12: 24,572,283-
24,617,391

GRCm38:CM001005.2 4 56.7 59.1 73.4 59.2

grainyhead-like 2
(Grhl2)

0610015A08Rik, BOM,
Tcfcp2l3, clft3

Chr 15: 37,233,036-
37,363,569

GRCm38:CM001008.2 6 94.7 96.2 98.7 93.2

grainyhead-like 3
(Grhl3)

Get1, Som, ct Chr 4: 135,541,888-
135,573,630

GRCm38:CM000997.2 1 45.6 54.5 57.8 60

Human
(Homo sapiens)

grainyhead-like 1
(GRHL1)

LBP-32, MGR,
TFCP2L2

Chr 2:
9,951,693-10,002,277

GRCh38:CM000664.2 8 56.4 59.1 72.6 57.6

grainyhead-like 2
(GRHL2)

BOM, DFNA28,
FLJ13782, TFCP2L3

Chr 8: 101,492,439-
101,669,726

GRCh38:CM000670.2 6 – – – –

grainyhead-like 3
(GRHL3)

SOM, TFCP2L4 Chr 1: 24,319,322-
24,364,482

GRCh38:CM000663.2 9 45.7 50.5 57 64.1
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TABLE 2 | A non-exhaustive list of transcriptional targets of Grh/GRHL factors in literature.

Target gene Binding
region

Species/
Model

Regulated by
GRHL

Activation/
Repression

Function References

Dopa decarboxylase (Ddc) Promoter/
Enhancer

Drosophila Grainyhead Activation Hardening of larval and
adult cuticles

Bray and Kafatos, 1991;
Venkatesan et al., 2003;
Mace et al., 2005

Ultrabithorax (Ubx) Promoter Drosophila Grainyhead Activation Differentiation of ‘head
skeleton’

Bray and Kafatos, 1991

Engrailed (en) Promoter Drosophila Grainyhead Activation Posterior wing
compartment identity

Soeller et al., 1988

Zerknüllt (zen),
Tailless (tll),
Scute (sc),
Sex lethal (Sxl)

Promoter Drosophila Grainyhead Repression Developmental
patterning, sex
determination and
cellularization

Harrison et al., 2010

Fasciclin 3 (Fas3),
Coracle (cora),
Sinuous (Sinu)

Intron 1 Drosophila Grainyhead Activation Septate junction
proteins that forms
barrier epithelia

Narasimha et al., 2008

Stitcher (stit) Intron 2 Drosophila Grainyhead Activation Epidermal wound
healing

Wang et al., 2009

Misshapen (msn),
Krotzkopf verkehrt (kkv),
Tyrosine hydroxylase (ple)

Enhancer Drosophila Grainyhead Activation Epidermal wound
healing

Pearson et al., 2009

Claudin b (cldnb), Epithelial
cell adhesion molecule
(epcam)

Enhancer Zebrafish Grhl2b Activation Otic development and
hearing ability

Han et al., 2011

Engrailed 2a (eng2a),
CDC42 small effector 1
(cdc42se1)

Promoter Zebrafish Grhl2b Activation Midbrain-hindbrain
morphogenesis

Dworkin et al., 2012

Engrailed-1 (EN1) Promoter Human GRHL1 Activation Morphogenesis Wilanowski et al., 2002

Desmoglein 1 (Dsg1/DSG1) Promoter Human and
Mouse

GRHL1 Activation Desmosome
organization

Wilanowski et al., 2008

Albumin (Alb),
Carbamoylphosphate
synthetase I (1), Hepatocyte
nuclear factor 4α (Hnf4α),
CCAAT/enhancer binding
protein α (Cebpa)

Unknown Mouse Grhl2 Repression Inhibition of hepatocytic
differentiation

Tanimizu et al., 2013

Claudin 3 (Cldn3),
Claudin 4 (Cldn4),
E-cadherin (Cdh1)

Promoter –
Cldn4, Intron
2 – Cdh1

Mouse Grhl2 Activation Maintenance of breast
epithelial cell identity

Werth et al., 2010

miR-122 Promoter Human GRHL2 Repression Ethanol induced liver
injury and fibrosis

Satishchandran et al., 2018

miR-200b/-200a/429 Promoter Human GRHL2 Activation Suppression of EMT Cieply et al., 2012; Chung
et al., 2016

Serine peptidase inhibitor,
Kunitz type 1 (SPINT1)

Promoter Human GRHL2 Activation Salivary gland
development

Walentin et al., 2015;
Matsushita et al., 2018

Matrix metalloproteinases
(MMPs) - multiple

Unknown Human GRHL2 Repression Suppression of invasion
phenotype

Chung et al., 2016; Pifer
et al., 2016; Xiang et al.,
2017

Forkhead box M1B
(FOXM1B)

Promoter Human GRHL2 Activation Human papillomavirus
associated
oropharyngeal cancer
development

Chen et al., 2018c, 2

Tumor protein p63
(TP63/p63)

Promoter Human GRHL2 Activation Maintenance of
epithelial phenotype in
human keratinocytes

Mehrazarin et al., 2015

Ovo like zinc finger 2
(Ovol2/OVOL2)

Promoter Human and
Mouse

GRHL2 Activation Epithelial barrier
function and
palatogenesis

Watanabe et al., 2014; Aue
et al., 2015; Carpinelli et al.,
2020

v-erb-b2 avian
erythroblastic

Promoter Human and
Mouse

GRHL2 Activation Suppression of EMT Werner et al., 2013; Chung
et al., 2016

(Continued)
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TABLE 2 | Continued

Target gene Binding
region

Species/
Model

Regulated by
GRHL

Activation/
Repression

Function References

leukemia viral oncogene
homolog
3 (Erbb3/ERBB3)

member RAS oncogene
family (Rab25/RAB25)

Promoter Human and
Mouse

GRHL2 Activation Regulation of epithelial
morphogenesis

Senga et al., 2012; Gao
et al., 2013

Rho Guanine Nucleotide
Exchange Factor 19
(Arhgef19/ARHGEF19)

Promoter Human and
Mouse

GRHL2 and
GRHL3

Activation Maintenance of
epidermal differentiation

Caddy et al., 2010; Boglev
et al., 2011; Gao et al.,
2013

miR-21 Promoter Human and
Mouse

GRHL3 Repression Maintenance of
epidermal differentiation

Bhandari et al., 2013

Transglutaminase 1
(Tgm1/TGM1)

Promoter Human and
Mouse

GRHL3 Activation Maintenance of
epidermal differentiation

Ting et al., 2005; Boglev
et al., 2011

Uroplakin 2 (UpkII) Promoter Mouse GRHL3 Activation Urothelial differentiation Yu et al., 2009

The recurrence of EMT is also observed during the early
development of the nervous system to generate neural crest cells.
During the embryonic process termed neurulation, epithelial
neural plate (neural ectoderm) bends, invaginates and fuses
along the dorsal midline to form a cylindrical structure called
the neural tube. Subsequent closure of the neural tube in
anterior and posterior directions guides formation of the future
brain and spinal cord (Wilde et al., 2014). Meanwhile, the
dorsal neuroepithelial cells located close to the neural tube
lose intercellular connections, undergo EMT, and migrate away
to become neural crest cells (Acloque et al., 2009). Further
delamination and migration of neural crest cells navigate to
populate multiple niches throughout the embryo, ultimately
progress toward terminal differentiation derivatives such as
ganglia of the peripheral and enteric nervous system, cardiac
valves, bone and cartilage of the facial skeleton (Simões-Costa
and Bronner, 2013; Muñoz and Trainor, 2015). Members of the
Grainyhead-like family provide distinct regional signals during
neurulation, neural crest migration, and neural tube closure that
are discussed in detail in an upcoming section.

Drosophila Grainyhead During Epidermal
Morphogenesis
In Drosophila, the formation of protective exoskeleton called
cuticle during the early stages of larval development serves
many important functions during the adult life including the
protection against water loss and the maintenance of structural
framework for locomotion. grh remains to be essential for
the development of the epidermal barrier and the repair of
barriers after wounding. The embryonically lethal larval cuticles
of grh mutants are multilayered and grossly inflated structures,
generating the “blimp” phenotype that are functionally weaker
when compared to wild-type cuticles (Uv et al., 1997; Ostrowski
et al., 2002; Hemphälä et al., 2003). grh mutant embryos
carrying induced aseptic epidermal wounds fail to restore the
expression of Dopa decarboxylase (Ddc in the wound border),
one of the two key enzymes contributing for the formation
and hardening of larval and adult cuticles. This results in the
defective phosphorylation of grh by ERK which is required for
wound-dependent regeneration of the epidermal barrier (Mace

et al., 2005; Geiger et al., 2011; Kim and McGinnis, 2011). Other
studies focusing on Drosophila epidermal wound healing and
amnioserosa (defects in dorsal closure) have identified the direct
regulation of Grh on major targets including stit, msn, cora, sinu,
and fas3 (Narasimha et al., 2008; Pearson et al., 2009; Wang and
Samakovlis, 2012). In addition to controlling the epithelial and
epidermal morphogenesis in Drosophila, Grh directly regulates
the expression of key genes (Table 2) that are involved in the
tracheal tube formation (Hemphälä et al., 2003), the maturation
of central nervous system (Almeida and Bray, 2005; Khandelwal
et al., 2017), and the maintenance of polarity in wing and hair
(Lee and Adler, 2004).

GRHL Family in Epithelial
Morphogenesis and Development
The GRHL family members play crucial roles during the
development of several epithelial tissues (Figure 1). During the
development of mouse circumvallate papilla (specialized dome
shaped region located at the back of a tongue), knockdown of
Grhl3 significantly alters the epithelial structure and disrupts the
epithelial integrity by having high proliferation, low apoptosis,
and enhanced migration in epithelial tongues cells of embryonic
mice (Adhikari et al., 2017). Several reports have claimed the
prominent function of GRHL factors in epidermal integrity.
Grhl1 directly controls the expression of the desmosomal
cadherin, desmoglein 1 (Dsg1) and mice deficient of Grhl1
show an abnormal desmosome phenotype in the interfollicular
epidermis, ultimately delaying the initial skin coat growth and
poor hair anchoring to the follicle (Wilanowski et al., 2008).

During early embryogenesis, Grhl2 expression is
predominantly observed in several barrier-forming epithelial
tissues, including the surface ectoderm, the otic ectoderm,
and the gut tube (Auden et al., 2006; Werth et al., 2010). At
the molecular level, Grhl2 binds to cis-regulatory elements
and controls the timely expression of the apical junctional
complex proteins such as the adherens junction component
E-cadherin and the tight junction molecules claudin 3,
claudin 4 (Cldn3/4), and an epithelial-specific member of
small guanosine triphosphatase Rab25, which are crucial for
epithelial differentiation (Werth et al., 2010; Senga et al., 2012;
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FIGURE 1 | Unique and cooperative functions of Grh and GRHL family during
development and disease. Epidermal differentiation is the most common
function shared by Grh and GRHL family, while a set of functions associated
with epithelial differentiation is carried out by more than one member of the
family. The overlapping function does not indicate that they are functionally
redundant. Illustration created with Biorender.com.

Tanimizu and Mitaka, 2013). GRHL2 is involved in the epithelial
morphogenesis of the lung epithelium and essential for the
establishment and maintenance of the epithelial barrier of
mucociliary airways. In primary human bronchial epithelial cells,
GRHL2 directly or indirectly regulates the expression of proteins
that form apical junction assembly and cell polarity (CDH1,
TJP1, RAB25) as well as essential proteins that are required to
establish barrier function (PVRL4, VAV1, and ESRP1/2). Mutant
cells carrying dominant–negative GRHL2 protein consequently
fail to form polarized epithelium with barrier function (Gao et al.,
2013). Conditional deletion of Grhl2 in mouse tracheal basal
cells and in vitro CRISPR/Cas9 genome editing of GRHL2 in
human basal cells have been shown to disrupt the differentiation
of ciliated cells via targeting multiple genes in the Notch
signaling pathway and ciliogenesis such as Mcidas, Rfx2, and
Myb (Gao et al., 2015). In cooperation with Nkx2-1, a homeobox
transcription factor, Grhl2 regulates the expression of cell-cell
interaction genes such as semaphorins and their receptors,
which are crucial for maintaining the lung epithelial identity
(Varma et al., 2012). Using mouse lung epithelial cells, the same
study shows that Grhl2 binds to the Nkx2-1 promoter regions
and Nkx2-1 binds to the Grhl2 intronic region and generates a
positive feedback loop to reinforce lung epithelial phenotypes.
Furthermore, a recent study reports that the loss of Grhl2 in the
developing mice lung epithelium reduces the expression of Elf5,
an epithelial-specific transcription factor, and eventually leads
to the impaired ciliated cell differentiation and the reduction of
distal progenitor cells (Kersbergen et al., 2018).

Grhl3 controls epidermal differentiation and wound-repair
by directly regulating the expression of two crucial genes:
Transglutaminase-1, an enzyme that crosslinks structural
components of the superficial epidermis (Ting et al., 2005),

and RhoGEF19, a RhoA activator of the planar cell polarity
(PCP) signaling pathway (Caddy et al., 2010). Grhl3 functionally
interacts with the LIM-only protein LMO4 to regulate the
differentiation of the epidermis, where mice lacking functional
Grhl3 and LMO4 expression show severe defective skin barrier
formation and failure of eyelid development affecting the
expression of multiple genes linked to the epidermal terminal
differentiation and F-actin cable formation (Yu et al., 2006,
2008; Hislop et al., 2008). Mice deleted for epidermal specific
Grhl3 have digit fusion (syndactyly) due to abnormal adhesion
of the periderm covering the developing digits (Kashgari et al.,
2020). In autosomal-recessive ectodermal dysplasia syndrome,
whole exome-sequencing from affected individuals revealed the
presence of homozygous mutations in the GRHL2 locus. These
mutant keratinocytes showed changes in the cellular phenotype
and failure to form intact cell-cell junctions, partly due to
the cytoplasmic translocation of GRHL2 (Petrof et al., 2014).
Interestingly, cytoplasmic translocation of GRHL3 induces
the activation of the non-canonical Wnt signaling pathway
involving PCP genes, and eventually alters the mechanical
properties essential for enduring tensile force during epithelial
differentiation (Kimura-Yoshida et al., 2018). In additional to the
pulmonary and epidermal epithelium, another major tissue that
plays an important role in the barrier function is the urothelial
membrane, which controls the selective movement of water and
solutes between urine and tissues. Grhl3 is highly expressed in
mature umbrella cells of the bladder epithelium. It directly targets
the expression of uroplakin II, a major protein component of
the asymmetric urothelial membrane plaques, thereby regulating
the terminal differentiation and barrier function of the bladder
epithelium (Yu et al., 2009).

GRHL Family in Neural Development
During neurulation, the single-layered neurepithelium
distinguishes into two different cell fates: neural ectoderm
and surface (non-neural) ectoderm prior to neural tube
closure. The fate choice between neural and surface ectoderm
is highly regulated through signaling interplay of Wnt, FGF
and BMP activity (Murry and Keller, 2008). At the molecular
level, canonical Wnt signaling mediated Grhl3 expression is
essential for the specification of surface ectoderm cell fate,
whereas, repression of Grhl3 by Dickkopf1 (Dkk1), a canonical
Wnt signaling antagonist, leads to the specification of neural
ectoderm cell fate (Ting et al., 2003; Kimura-Yoshida et al., 2015).
Thus, the balance between Wnt controlled Grhl3 activation or
repression regulates the binary cell fate choice of neural and
surface ectoderm identity, which is essential for subsequent
neural tube closure. The remodeling of five or more polarized
epithelial cells converging radially around a central point of
fusion to form transient “rosette” like structures are identified
during the formation of multiple organ systems, including
surface ectodermal lineage specification (Afonso and Henrique,
2006; Nishimura and Takeichi, 2008; Harding et al., 2014).
Genetic fate mapping using Grhl3Cre/+ mice have reported
that the rosette forming cells of the surface ectoderm are
Grhl3-expressing lineage cells, and Grhl3 mutants showed severe
disruption of rosette formation, exhibiting fully penetrant spina
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bifida (Molè et al., 2020; Zhou et al., 2020). Single-cell RNA
sequencing of neural rosettes in vitro, generated from human
induced pluripotent stem cells, showed GRHL2 and GRHL3
were highly expressed in early rosettes highlighting the role
for GRHL TFs in neurulation in humans (Shang et al., 2018).
Therefore, these findings denote an earlier role for GRHL
factors in neurulation, such as lineage specification, prior to its
contribution in neural tube closure.

Delamination and migration of neural crest cell from the
border of the surface and neural ectoderm involves activation
of EMT. Although GRHL factors are potent suppressors of EMT
and associated phenotypes, depletion of grhl3/Grhl3 in zebrafish
and mouse embryos do not affect any stages of neural crest cell
development and activity (Dworkin et al., 2014; Kimura-Yoshida
et al., 2015). This might indicate that fate specification of surface
ectoderm in the neural plate border is partly driven by GRHL
factors. However, the involvement of other GRHL factors in
neural crest cell migration remains to be explored.

Following the delineation of the neurepithelium, the
developing neural tube converges and fuses along the midline to
form complete the neural tube closure event. Among the GRHL
family, disruption of GRHL2 and GRHL3 functions generated
severe neural tube defects. Loss of Grhl2 expression in the surface
ectoderm resulted in abnormal mesenchymal phenotypes, with
increase in vimentin expression and downregulation of epithelial
genes such as Fermt1, Esrp1, and Tmprss2, eventually resulting
in neural tube closure defects (Pyrgaki et al., 2011; Ray and
Niswander, 2016). In the Grhl2-null mutants, the expression
levels of two Grhl2 direct targets, E-cadherin (Cdh1) and Claudin
4 (Cldn4), are significantly reduced in the surface ectoderm
leading to neural tube defects (Werth et al., 2010). In contrast,
overexpression of Grhl2 could also be the underlying cause of
defective neural tube closure in Axial defects mutant mouse
(Brouns et al., 2011). Similarly, Grhl3-null mutants exhibited
fully penetrant spina bifida, and lack of Grhl3 expression in
the hindgut caused curly tail phenotype, which occurs during
the final stages of neural tube closure (Ting et al., 2003; Auden
et al., 2006; Gustavsson et al., 2007). Moreover, Grhl2 and Grhl3
exhibit cooperative activity during neurulation closure at the
forebrain/midbrain boundary and spinal closure from mid
to lower thoracic region (Rifat et al., 2010). Taken together,
members of the GRHL family play critical roles during several
stages of neural development and dysregulation of these
factors during neural development renders severe impact on
neural tube closure.

GRHL IN PATHOPHYSIOLOGY

An array of studies has reported the implication of GRHL
members in multiple human diseases including cancers.
Essential functioning of GRHL factors are implicated during
carcinogenesis as well as during tumor suppression indicating
that these factors play complex and controversial roles in
regulating different cancer entities. In the following section we
highlight several prominent findings that describe the essential
roles of GRHL factors in pathophysiology.

Tumor Promoting Roles of GRHL
Members
Few recent studies have demonstrated the association of
expression levels of GRHL members with patient outcomes
during cancer progression. In colorectal cancer, higher
expression levels of GRHL1 and GRHL3 are associated
with worse disease-free survival, whereas low levels of all
three members confer better overall survival of patients
(Yuan et al., 2020). GRHL2 expression is enriched in human
breast cancer stem cell-like subpopulation and is included
in a 31-gene signature predictive of distant metastasis in
estrogen receptor–negative breast cancer cohorts (Leth-
Larsen et al., 2012). Gene correlation analysis of a breast
cancer cohort showed that higher expression of GRHL2 is
correlated with worse relapse-free survival in Luminal A,
Luminal B, HER2+, and Basal-like subtypes (Mooney et al.,
2017). Furthermore, overexpression of GRHL2 in breast
cancer cell lines showed significant increase in migration,
invasion potential and also correlated with unfavorable
breast cancer patient characteristics – grade III tumors
and large tumor size at the time of diagnosis (Yang et al.,
2013). High expression of GRHL2 is also observed in
pancreatic cancer patients with worsened overall survival
(Wang et al., 2019).

At the molecular level, GRHL2 directly regulates the
expression of the EGFR family member ERBB3 and the Wnt
ligand Wnt7A, and overexpression of GRHL2 in metastatic
breast cancer cells exhibit increased anchorage-independent
growth, migratory and invasive potential (Xiang et al., 2012;
Werner et al., 2013). Aberrant activation of ERBB3 potentially
forms heterodimers with ERBB2 that directly contributes to
decreased survival rate coupled with increased resistance to
chemotherapy (Liu et al., 2007, 3; Sithanandam and Anderson,
2008; Garrett et al., 2011). Conditional deletion of Grhl2
prevents oral cancer development in a chronic, chemically
induced carcinogen model, when compared to the aggressive
tumor formation in Grhl2 wild-type mice (Chen et al., 2018b).
In addition, the study also identifies that GRHL2 mediated
activation of MAP kinase signaling and repression of TGF-
β signaling in oral squamous cell carcinoma cell lines, dually
render tumor promoting effects during the early stages of
carcinogenesis. The role of GRHL2 in prostate cancer seems
to be mainly oncogenic, as its expression is higher in prostate
cancer tissue samples (Danila et al., 2014; Paltoglou et al., 2017).
Paltoglou et al. showed that the loss of GRHL2 via silencing
resulted in the loss of androgen receptor (AR) expression and
demonstrated the presence of a positive feedback loop between
GRHL2 and AR to promote prostate cancer growth (Paltoglou
et al., 2017). In addition to driving AR expression, GRHL2 also
acts as an AR transcriptional co-activator that enhances the
oncogenic AR signaling pathway in prostate cancer progression.
Furthermore, the oncogenic role of GRHL2 is observed in
hepatocellular carcinoma (Tanaka et al., 2008), esophageal
cancer (Shao et al., 2017), oral squamous cell carcinoma (Kang
et al., 2009; Chen et al., 2016), and colorectal carcinoma
(Quan et al., 2014, 2015).
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GRHL Members as Tumor Suppressors
In squamous cell carcinoma, GRHL3 functions as a strong
tumor suppressor, where the deletion of Grhl3 in keratinocytes
leads to hyper-proliferation epidermal keratinocytes that are
more prone to chemical carcinogen induced spontaneous
squamous cell carcinoma formation (Darido et al., 2011).
Mechanistically, Grhl3 depletion in keratinocytes leads to the
loss of tumor suppressor Pten expression, which induces the
activation of PI3K/AKT/mTOR signaling and the oncogenic
miR-21 expression, culminating in the formation of aggressive
and poorly differentiated squamous cell carcinoma. Oncogenic
Ras-mediated Grhl3−/− mouse epidermal keratinocytes were
more prone to tumorigenesis by upregulating the miR-21 levels
(Bhandari et al., 2013). Similarly, in a two-stage chemical skin
carcinogenesis model, over 40% of benign papilloma developed
into squamous cell carcinoma in Grhl1−/− mice, when compared
to one-fourth of such tumor formation in Grhl1+/+ mice, due
to the severe impairment of epidermal barrier and aberrant
terminal differentiation of keratinocytes (Mlacki et al., 2014). In
neuroblastoma, patients with high levels of GRHL1 expression
show favorable prognosis, consistent with the suppressed tumor
growth phenotype seen in the xenografts carrying forced GRHL1
expression inMYCN-amplified neuroblastoma cells (Fabian et al.,
2014). At the molecular level, co-recruitment of MYCN and
HDAC3 to the GRHL1 promoter represses its transcription.
Esophageal squamous cell carcinoma with low expression of
GRHL1 levels show poor differentiation and the patients are
associated with reduced overall survival rate (Li M. et al.,
2019). The tumor suppressive role of GRHL2 is largely mediated
though the suppression of EMT which is summarized in the
following section.

GRHL Members as a Determinant for
EMT and MET Execution During Cancer
Progression
EMT and MET (mesenchymal to epithelial transition, the reversal
of EMT) functionally dictate the cellular dedifferentiation and
differentiation status respectively and determine the nature
of cellular behavior. Although EMT/MET processes occur
spontaneously during fundamental events such as gastrulation,
neural crest dissemination and organogenesis, execution of
EMT/MET is also observed during wound healing, fibrosis
and cancer (Thiery and Sleeman, 2006). Overcoming years
of speculations about the reactivation of reversible EMT and
MET program during cancer progression, compelling evidences
from in vitro, in vivo and clinical findings support the
crucial roles of EMT and MET during cancer progression
(McInnes et al., 2015; Santamaria et al., 2017; Francart et al.,
2018; Rios et al., 2019; Williams et al., 2019). In brief,
acquisition of mesenchymal trait through EMT is regarded as an
essential feature for epithelial-derived cancer cells to successfully
metastasize the surrounding tissues and distant organs. Being
a pivotal gatekeeper of epithelial integrity, GRHL2 suppresses
EMT in a multipronged manner across cancer entities. Firstly,
multiple independent investigations have shown that GRHL2
controls the ZEB1/miR-200 regulatory axis. The EMT inducer

ZEB1 and epithelial-phenotype reinforcing microRNA-200 (miR-
200) family members reciprocally control the expression of each
other generating a double-negative feedback loop (Brabletz and
Brabletz, 2010). The expression of ZEB1 drives the cancer cells
to undergo EMT, whereas restoration of miR-200 expression is
vital for cells to undergo epithelial differentiation or MET. On
one hand, GRHL2 directly suppresses the expression of the EMT
inducer ZEB1 in breast (Cieply et al., 2012; Werner et al., 2013),
ovarian (Chung et al., 2016), bladder cancers (Shen et al., 2020),
and sarcoma (Somarelli et al., 2016). On the other hand, GRHL2
activates the expression of miR-200 family members through
direct promoter binding in oral (Chen et al., 2016), ovarian
(Chung et al., 2016) cancers and sarcoma (Somarelli et al., 2016).

Secondly, GRHL2 suppresses TGF-β mediated migratory and
invasive capabilities of gastric (Xiang et al., 2017), breast (Cieply
et al., 2012; Werner et al., 2013), and oral (Chen et al., 2018b)
cancer cells, where the activation of TGF-β signaling cascade is a
significant inducer of EMT in tumor progression (Heldin et al.,
2012). Thirdly, re-expression of GRHL2 in mesenchymal-like
cells induces MET effects by restoring the expression of epithelial
components such as E-cadherin, ZO-1 and downregulating
mesenchymal markers including Vimentin, Snail, Slug and ZEB1
(Chung et al., 2016; Yang et al., 2019; Shen et al., 2020).
Fourthly, GRHL2 expression suppresses stemness properties in
CD44high/CD24low mesenchymal subpopulation cells of breast
cancer cells and restores the anoikis sensitivity by altering
intracellular H2O2 ROS levels (Cieply et al., 2012; Farris et al.,
2016).

EMT-TFs Snail and ZEB1 are known to recruit epigenetic
remodelers such as the DNA methyltransferases (DNMTs)
and/or polycomb repressive complex 2 (PRC2) to generate
a repressive chromatin around epithelial genes (Dong et al.,
2012; Fukagawa et al., 2015). GRHL2 also interacts with
multiple epigenetic regulators to dually suppress EMT and
to induce MET phenotypes. GRHL2 significantly inhibits
the histone acetyltransferase coactivator p300 and its activity
on mesenchymal genes, which interfered with the branching
morphogenesis and EMT of Madin–Darby canine kidney
(MDCK) cells (Pifer et al., 2016). In addition, GRHL2 interaction
with the histone methyltransferases KMT2C and KMT2D
induces MET and ICAM-1 expression in cancer cells, which
sensitizes these cells for optimal natural killer (NK) cells mediated
activation and target cell killing, suggesting a potential link
between the epithelial phenotype and cellular susceptibility to NK
killing (MacFawn et al., 2019). Furthermore, using a set of ovarian
cancer cell lines, we have shown that during the reactivation
of epithelial genes, the presence of GRHL2 is essential for
the modification of the epigenetic landscape into a permissive
chromatin to allow the transcription of key epithelial genes such
as E-cadherin, ESRP1 and OVOL2 (Chung et al., 2019).

Evidences have shown that GRHL members are the
gatekeepers of early phenotype transition. Our assessment
on a heterogeneous ovarian cancer cell line panel revealed
the presence of intermediate cellular phenotypes that dually
expressed epithelial and mesenchymal markers (Huang et al.,
2013). Consequently, the concept of an ‘EMT spectrum’ has
emerged, whereby EMT is regarded as a continuum consisting of
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multiple, transient intermediate phenotypes collectively referred
as the EMT spectrum (Nieto et al., 2016; Yang et al., 2020). The
prevalence of multiple intermediate EMT states is observed in
breast (Grosse-Wilde et al., 2015; Yamashita et al., 2018), prostate
(Ruscetti et al., 2015), and non-small lung cancer (Fustaino et al.,
2017). GRHL2 knockdown in ovarian cancer cell lines harboring
the epithelial phenotype results in a specific shift of subcellular
E-cadherin localization with unaltered total E-cadherin protein
abundance, generating a partial EMT phenotype (Chung et al.,
2016). In lung cancer cells, GRHL2, OVOL2 and miR-145 play
crucial roles in stabilizing the intermediate EMT phenotype
(hybrid E/M), while transient knockdown of GRHL2 in cells
with hybrid E/M phenotype switches to a complete EMT as
evidenced by the disruption of partial EMT specific collective
cell migration phenotype to a single cell migration phenotype
(Jolly et al., 2016). Moreover, through computational modeling,
the same study has predicted that GRHL2 promotes the
association of hybrid E/M phenotype with high-tumor initiating
stem-like traits, which might be helpful in stratifying patients
with higher metastatic risk. Using a genetically engineered
mouse model of squamous cell carcinoma, another recent study
has identified spontaneous EMT and multiple intermediate
EMT subpopulations with characteristic cell surface marker
expressions (Pastushenko et al., 2018). Assay for transposase-
accessible chromatin using sequencing (ATAC-seq) of these EMT
subpopulations revealed the specific enrichment of a GRHL1
motif on the differentially expressed genes especially during
the epithelial to early hybrid EMT state but not observed in
the late hybrid EMT state or in mesenchymal subpopulations.
Although tumor cells dynamically switch between epithelial,
mesenchymal and intermediate E/M phenotypes through EMT
and MET processes, mechanisms underlying the reversibility
or irreversibility of such events are slowly emerging. In an
inducible mammary EMT system (HMLE-Twist1-ER), epithelial
clonal population (high GRHL2 expression) were susceptible
to acquire a hybrid E/M phenotype and showed transient,
reversible changes in chromatin accessibility when compared to
the mesenchymal clonal population (low GRHL1/2 expression)
(Eichelberger et al., 2020). In particular, ATAC-seq of the
mesenchymal subpopulation revealed that the specific loss of
chromatin accessibility along GRHL1/2 motifs governing loci of
epithelial genes is crucial for these cells to enter an irreversible
mesenchymal cell state or to resist trans-differentiation. Similarly,
via mathematical modeling, another independent study has
proposed two mechanisms that drive epithelial cells to resist
undergoing EMT or enabling irreversible MET: (i) GRHL2
mediated epigenetic feedback on inhibition of ZEB1 and (ii)
stochastic partitioning of biomolecules during cell division to
generate different phenotypic subpopulations in regards to EMT
(Jia et al., 2020). Altogether, these studies have unraveled
that GRHL factors play crucial roles in establishing the EMT
spectrum and moderating the EMT/MET dynamics during
cancer progression. Importantly, comprehending the biology
of such intermediate or hybrid trans-differentiation states is
essential to combat clinically challenging issues such as metastatic
aggressiveness and therapeutic resistance (Santamaria et al., 2017;
Jolly et al., 2018, 2019; Williams et al., 2019).

GRHL Family in Other Human Diseases
Craniofacial development encompasses the patterning of bones,
muscles and vasculatures of face, skull and jaws, governed
by highly coordinated migration signals and spatiotemporal
regulation of genetic and molecular factors. Owing to the
gene nomenclature, Drosophila larvae carrying grh mutations
have pronounced deformation in the chitinous head-skeleton
morphology generating a granular head appearance (Bray and
Kafatos, 1991). Similarly, deregulation of Grhl/GRHL factors
are also heavily associated in the etiology of craniofacial
malformations in mammals (Carpinelli et al., 2017). The
failure of cranial neural tube closure in these mutants resulted
in anterior spina bifida, prematurely apposed skull bones,
split-face, defective neural fold elevation, cranioschisis and
exencephaly, lumbosacral spina bifida (open neuropore) and a
curled tail phenotype. Accordingly, multiple independent reports
have observed that patients with craniofacial malformations
are associated with microdeletions of a gene cluster at the
chromosomal region 8q22.2-q22.3, comprising clinically relevant
genes including GRHL2 (Kuechler et al., 2011; Kuroda et al.,
2014; Sinajon et al., 2015; Chen et al., 2017; Hoebel et al., 2017;
de Vries et al., 2020). Dominant-negative mutations in GRHL3
have been reported in the congenital disorder Van Der Woude
syndrome, which is characterized by cleft lip and/or cleft palate
(Peyrard-Janvid et al., 2014; Wang et al., 2016; Eshete et al., 2018).

Defects in neural tube closure generate severe congenital
morbidity and mortality in human, which occurs at a high rate of
1 in every 1000 human pregnancies (Bhandari and Thada, 2020).
Murine models carrying Grhl2 and Grhl3 conditional deletions
are embryonically lethal with severe defects in organogenesis,
dorso-lateral hinge point formation during neurulation and
neural tube closure (Ting et al., 2003; Rifat et al., 2010; Werth
et al., 2010; Pyrgaki et al., 2011; Menke et al., 2015; Goldie et al.,
2016). Gene targeting in mice have demonstrated that the lack
or surplus of Grhl2/Grhl3 expression could interfere with spinal
neural tube closure (Gustavsson et al., 2007; Brouns et al., 2011;
Nikolopoulou et al., 2017; De Castro et al., 2018). In particular,
Grhl2 mediates the upregulation of cell-cell junction proteins via
modulating the local actomyosin-dependent mechanical stress,
which is essential for spinal neural tube closure (Nikolopoulou
et al., 2019). The regulation of GRHL2 in the transactivation
of OVOL1/2, ESRP1/2, miR-200 family and the suppression of
ZEB1 expression during MET is also recapitulated during palate
closure (Carpinelli et al., 2020). Furthermore, mouse models
carrying Grhl3 dependent gene manipulation in the surface
ectoderm showed severe defects in neural tube closure and open
spina bifida (Camerer et al., 2010; Kimura-Yoshida et al., 2015;
Molè et al., 2020).

Hearing impairment is another pathologic condition linked to
GRHL2 mutation, where sequencing of the gene loci DFNA28
on chromosome 8q22 in a large American family is associated
with progressive autosomal dominant hearing loss (Peters et al.,
2002). The study initially identified a frameshift mutation 1609-
1610insC generating the GRHL2 transcript with a premature
stop codon in exon 14. A decade later, a second novel
splice site mutation in GRHL2 – c.1258-1G > A resulting
in p. Gly420Glufs0111 frameshift mutation in exon 10 was
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associated with age-related, post-lingual hearing loss (Vona et al.,
2013). Subsequent studies have reported that mutations and/or
gene polymorphisms in GRHL2 are implicated in hereditary and
acquired hearing loss such as age-related hearing impairment,
non-syndromic hearing loss, sudden sensorineural hearing loss
and noise-induced hearing loss in Chinese, Korean, Roma and
Hungarian populations (Kim et al., 2015; Zhang et al., 2015; Lin
et al., 2016; Xu et al., 2016; Li X. et al., 2019; Matyas et al., 2019;
Wu et al., 2020). Although mutations and gene polymorphisms
of GRHL2 are associated with multiple hearing abnormalities,
substantial association of GRHL2 in the development of the inner
ear is not yet demonstrated. However, a recent examination
of deafness genes in the non-human primate model marmoset
(Callithrix jacchus) has revealed that GRHL2 expression is
prevalent in cochlear duct lining cells, hair cells, and supporting
cells of the inner ear (Hosoya et al., 2016), denoting that the
definitive role of GRHL2 in the inner ear development needs
further investigations.

EPIGENETIC CONTROL OF
GRAINYHEAD AND GRHL MEMBERS

On top of gene expression regulations through cis- and
trans-regulatory elements, epigenetic modifications such as
methylation of DNA cytosine and extensive post-translational
modifications occur on the core octamer histone proteins
collectively modulate chromatin landscape of underlying
genes, and thereby regulate gene expression. Although
methylation of DNA is a global phenomenon, concentrated
methylation on short patches of CpG dinucleotide repeats (CpG
islands) are often observed in genes that are suppressed
at a particular cell state/type (Suzuki and Bird, 2008).
A staggering number of histone modifications occur on the
flexible N- and C-terminal ‘tail’ domains. These include
prominent alterations such as lysine acetylation, lysine/arginine
methylation, serine/threonine/tyrosine phosphorylation as
well as many under-examined, minor changes such as lysine
ubiquitination/sumoylation, citrullination, ADP-ribosylation,
and proline isomerization (Bannister and Kouzarides,
2011). Alterations of CpG methylation patterns and histone
modifications are observed in a variety of important cellular
processes such as during cellular growth, differentiation, and
cancer progression (Rothbart and Strahl, 2014; Audia and
Campbell, 2016). GRHL factors have been shown to induce
changes in CpG methylation levels and histone modifications
during development.

In mouse kidney cells, depletion of active histone marks
H3K4me3 and H3K9/14ac are observed at the E-cadherin
promoter region exclusively in Grhl2-knockdown cells, denoting
that Grhl2 expression is essential to sustain activating histone
marks at the promoter (Werth et al., 2010). Selective expression
of uroplakin II (UpkII) in mouse bladder epithelial cells is
also regulated through Grhl3-mediated active H3K9ac mark
enrichment on the UpkII promoter (Yu et al., 2009). During
the development of kidney ureteric buds and collecting ductal
epithelia, GRHL2 strongly associates with the active H3K4me3

mark of target genes (Cdh1, Rab25, Ovol2, and Cldn4) that
are essential for lumen expansion and barrier formation (Aue
et al., 2015). Besides direct transcription controls, GRHL2
imposes several epigenetic modifications on selected epidermal
differentiation genes. GRHL2 overexpression in normal human
epidermal keratinocytes leads to the inhibition of methylation
at the CpG island of the hTERT promoter and restores
hTERT expression, potentially by hindering the activity of
DNA methyltransferase DNMT1 (Chen et al., 2010). In
addition, GRHL2 overexpression in normal human epidermal
keratinocytes also leads to the enrichment of H3K27me3
repressive mark, while simultaneously inhibiting the recruitment
of histone demethylase Jmjd3 to the cognate promoters of
epidermal differentiation genes such as involucrin (IVL),
keratin 1 (KRT1), filaggrin (FLG) and cyclin dependent kinase
inhibitor 2A (INK4A) (Chen et al., 2012). During epidermal
differentiation, GRHL3 binds directly to the TGM1 promoter
to control the expression of transglutaminase (TGM1) (Hopkin
et al., 2012), a Ca2+-dependent enzyme is essential for the
formation of cornified cell envelope (Eckert et al., 2005). GRHL3
further recruits the Trithorax complex components MLL2 and
WDR5 to the target promoter and increases the active H3K4
methylation mark and drives TGM1 expression during epidermal
differentiation (Hopkin et al., 2012). These studies substantiate
the notion that GRHL factors have the potential to epigenetically
modify chromatin states during cellular differentiation.

PIONEER ACTIVITY OF GRAINYHEAD
AND GRHL FAMILY

About two meters long, the double stranded DNA is condensed
and packed into a typical eukaryotic interphase nucleus that only
measures about six micrometers in diameter. This composite
level of condensation starts primarily by wrapping the DNA
around an octameric protein complex made of four core histones
into a structure called nucleosome. Arrays of nucleosomes
undergo further condensation into higher-order chromatin
structures that functionally demarcate the chromatin boundaries
into densely condensed heterochromatin and relatively less
compressed euchromatin units. Although the high level of DNA
packaging significantly deals with containing the genetic material
in a miniscule space, DNA access to gene regulatory proteins
during key cellular process such as transcription is greatly
restricted. In this context, one crucial question is “How do TFs
find their way to gene regulatory elements that are repressed or
latent amidst these convoluted nucleosomal barriers in order to
initiate transcription for diverse cellular processes?” A new set of
regulatory proteins called ‘pioneer factors’ have been identified to
accomplish this phenomenal task (Zaret and Carroll, 2011).

Pioneer factors belong to a unique class of TFs that can
recognize and bind specific cis-regulatory units within permissive
heterochromatin, and subsequently prime the chromatin for
additional factors to bind, prior to transcription initiation
(Zaret and Mango, 2016; Mayran and Drouin, 2018). The
pioneer factors display few salient characteristics that are usually
lacking in general TFs: (i) the ability to destabilize chromatin
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compaction (nucleosomes) and to bind to otherwise inaccessible
heterochromatin regions, in a cell type/state-specific manner;
(ii) the potential to alter pre-existing epigenetics modifications
(such as DNA methylation and histone modification) to enhance
DNA accessibility; and (iii) the remodeling of adjacent chromatin
landscape to facilitate the binding of non-pioneer TFs prior
to transcription initiation. In mammals, pioneer factors such
as FOXA1, FOXD3, GATA-3, and PU.1 have crucial roles in
development, cell fate conversions and deregulation of such
factors in also implicated in cancer (Magnani et al., 2011;
Iwafuchi-Doi and Zaret, 2016). Compelling evidences have
accumulated to illustrate the novel role of Grainyhead and GRHL
family proteins as pioneer factors in multiple cellular contexts.

Pioneering Role of Grainyhead and
GRHL in Remodeling Target Enhancers
Pioneer factors can remodel the chromatin landscape to
expose functional cis-regulatory elements (such as enhancers)
that recruit the binding of transcription factors, cofactors
and collectively form a stable regulatory complex. Promoters
are usually a minimal stretch of DNA sequences, located in
proximity to the transcription start sites within a nucleosome-free
chromatin landscape to enable easy access to the transcription
machinery. In contrast, enhancers tend to be located far (either
upstream or downstream) from the cognate promoters and
enhance transcriptional outputs in a cell-type/state specific and
spatiotemporal manner (Wittkopp and Kalay, 2012; Long et al.,
2016). As a pioneer factor, Grainyhead and GRHL proteins bind
to enhancers and regulate chromatin accessibility at the target
genes during several developmental processes. DuringDrosophila
eye development, the unbiased genome-wide characterization
of direct TF interactions with enhancer regions of target genes
have revealed a significant enrichment of Grainyhead in large
fraction of active enhancer regions, which further elucidates the
abundant Grh expression in the eye disc (Potier et al., 2014). The
utilization of high-throughput genome-wide association methods
such as the single-cell assay for transposable-accessible chromatin
using sequencing (scATAC-seq) and quantitative trait loci for
chromatin accessibility (caQTL) across a panel of Drosophila
strains have revealed that the pioneer binding of Grh is essential
for the opening and accessibility of epithelial cell enhancers
(Jacobs et al., 2018). In these Grh binding sites, about 75% of Grh
target sites are inaccessible due to the lack ofGrh expression in the
non-epithelial larval brain, whereas the ectopic overexpression of
grh in the larval brain tissue profoundly increases the chromatin
accessibility of these regions (Jacobs et al., 2018). These findings
reiterate that, in Drosophila, Grh is the chief pioneer factor of
the epithelial chromatin landscape. It potentially binds to the
recognition sites and alters the closed chromatin landscape of
non-epithelial tissues. In addition, the pioneering activity of Grh
is also subjected to spatio-temporal and tissue specific regulation.
Its pioneering activity has been reported to become essential
during and after gastrulation but not during early embryogenesis
(Nevil et al., 2020).

Investigations in mammalian GRHL factors also showed such
pioneering roles in modulating the chromatin landscape of

enhancers. During the early transition from the mouse naive
embryonic stem cells (ESCs) to the primed pluripotent epiblast-
like cells (EpiLCs), GRHL2 binds to latent enhancers (regions
with low or no histone marks) and restores the epigenetic
landscape toward an activation state (high levels of H3K4me1,
H3K27ac histone marks and depletion of nucleosomes) of key
genes that control the epithelial state and cell adhesion (Chen
et al., 2018a; Figure 2). Importantly, in the ESC state, a different
set of enhancers and TFs (such as KLF4, KLF5, and EKLF)
controls the expression of the above mentioned genes, whereas
in the EpiLCs, the control of gene expression switches toward
the GRHL2-bound enhancers. Assaying across 47 human cell
types, the positional distribution of TF binding motifs within
the nucleosome-depleted enhancer sites have shown that GRHL1
is one of the six transcription factors that modulate DNA
accessibility (Grossman et al., 2018). This study further elucidates
that GRHL1 stably binds to the DNA with prolonged occupancy
denoting that it may act in generating central anchor regions
for potential transcription initiation. These results posit that in
addition to pioneering the chromatin architecture, GRHL factors
potentially mediate a major enhancer-switching phenomenon
during cellular differentiation.

GRHL proteins also exhibit the role of pioneering the
enhancer landscape in human cancers. Chromatin states that
denote the accessibility of the genomic region (such as active,
repressed, heterochromatin, bivalent and poised) could be
annotated using an automated ChromHMM algorithm (Ernst
and Kellis, 2012). In ovarian cancer, using experimental ChIP-
seq data derived from five major histone marks (H3K4me3,
H3K4me1, H3K9me3, H3K27me3, and H3K27ac), our group
has utilized this pipeline to show that upon the loss of
GRHL2, a radical shift from an active chromatin state toward
a latent, poised/bivalent, or repressed chromatin state occur
across intronic and intergenic regions at the GRHL2 binding
sites of epithelial genes such as MARVELD3, ESRP1, GRHL1,
RAB25, OVOL2 and MUC20 (Chung et al., 2019). Upon re-
expressing GRHL2 by using the inducible system, the chromatin
changes of these GRHL2 binding sites located at the promoter
and enhancer regions further shine the light on the pioneering
function of GRHL2. GRHL2 is highly effective to induce
MET in ovarian cancer cells with the intermediate phenotype.
This is achieved via the suppression of PRC2 activity and
to remove the repressive histone mark (H3K27me3) at the
promoters with the corresponding suppression of HDAC activity
at the enhancers to restore the H3K27ac mark (Chung et al.,
2019). However, the pioneering capacity of GRHL2 might differ
depending on cellular states along the EMT spectrum. The MET
reversibility of GRHL2 in the highly mesenchymal cells has
been quite limited suggesting that there would be state-specific
pioneering reprogramming mechanisms. In human breast cancer
cells, transient siRNA-mediated knockdown of all three GRHL
orthologs show a reduced chromatin accessibility on GRHL-
regulated enhancer elements that encode proteins required for
cell-cell adhesion such as protocadherin-1 (PCDH1) and serine
peptidase inhibitor 1 (SPINT1) (Jacobs et al., 2018). After
priming the chromatin into an accessible regulatory landscape
mediated by pioneer factors, tissue specific transcription factors
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FIGURE 2 | Continued
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FIGURE 2 | Emerging pioneering functions of GRHL2 during pathophysiology. Recent studies unearth the novel function of GRHL2 as a leading pioneer factor. (1)
Typical chromatin landscape comprises cellular DNA wrapped around the core histone complex to form a nucleosome. Over half of the genome remains either in a
latent/poised state with no histone marks/methylation status or in a repressed state studded with repressive chromatin marks (H3K27me3)/methylated CpG sites.
These epigenetic marks are mediated through epigenetic repressors such as polycomb repressive complex 2 (PRC2) complex, and DNA methyltransferases
(DNMTs). (2) Pioneer factors such as GRHL2 can potentially bind and activate latent chromatin in the context of ESC to EpiLC transition (6), or inhibit the activities of
epigenetic repressors in the context of EMT (5). (3) GRHL2 primed regions generate accessible chromatin with unmethylated CpG islands and permissive histone
marks (H3K4me3 – promoter; H3K4me1 – enhancer). (4) GRHL2 cooperates with pioneer factor FOXA1 at ER bound-active enhancer regions (studded with active
histone H3K4me1/me2 marks) to drive transcription of endocrine therapy resistant genes. (5) In the presence of GRHL2, epigenetic landscape of epithelial genes are
modified into a permissive chromatin (studded with H3K27ac and H3K4me3) at promoter and enhancer regions, whereas during cellular differentiation such as EMT,
lack of GRHL2 expression results in change of chromatin setting of epithelial genes to a repressed state (hypermethylated promoters and enrichment of repressive
H3K27me3 mark). (6) During ESC to EpiLC transition, GRHL2 associates with the cohesin component SMC1 on EpiLC-specific enhancer sites to facilitate transition.
(7) In epithelial ovarian cancer cells, GRHL2 associates with the cohesin component RAD21 and brings distantly located gene regulatory elements in close proximity,
to drive the expression of early epithelial genes such as ERBB3 and PERP. However, SNAI1-mediated EMT induction in these cells downregulates GRHL2
expression potentially disassembles cohesin structure, leading to reduced epithelial gene expression. Illustration created with Biorender.com.

and additional cofactors assemble to carryout gene expression.
Such regulation is observed in the specific recruitment of GRHL
factors to control steroid hormone-mediated gene expression
in hormone-dependent cancers. Estrogen receptor α (ER) is a
nuclear hormone receptor that drives over 70% of aggressive
breast cancers. GRHL2 expression significantly correlates with
ER-positive breast cancer tumors (Carroll et al., 2005; Xiang
et al., 2012; Werner et al., 2013). ChIP-seq profiling of ER and
phosphorylated ER at S118 (pS118-ER) occupancy sites shows
a significant overlap with GRHL2 binding motifs (Helzer et al.,
2018; Holding et al., 2019). This indicates that GRHL2 occupancy
in the ER binding sites potentially drives ER transcription
complex. The ER chromatin interaction and the subsequent gene
expression changes are mediated through the pioneering activity
of FOXA1 on cognate regulatory sites, independent of estrogen
hormone signaling (Hurtado et al., 2011; Glont et al., 2019).
Indeed, GRHL2 has been identified as the FOXA1 interaction
partner at the ER bound-active enhancer regions demarcated
with H3K4me1/me2 marks to promote tumor progression
(Jozwik et al., 2016). This cooperation between FOXA1 and
GRHL2 in ER driven breast cancer cells also contributes toward
the resistance to endocrine therapy via the upregulation of
LYPD/AGR2 (a receptor/ligand complex) making it a promising
targetable frontier in endocrine therapy-resistant tumors (Cocce
et al., 2019; Figure 2). These data clearly indicate the inevitable
role of Grainyhead and GRHL proteins in the remodeling of gene
regulatory units at the targeted sites.

Pioneering Role of GRHL Proteins in
Altering Chromatin Conformation
As mentioned earlier, folding of the chromatin into three-
dimensional structures are not only crucial for packaging DNA
but also contribute toward fine-tuning of spatiotemporal gene
regulation. For instance, in regulation of gene activity by cell-
specific enhancers, distal enhancers are brought into close
contact with its cognate promoters via DNA looping. Typically,
DNA loops can occur between genomic loci which are tens
to hundreds of kilobase pairs apart and are referred to as
topological associated domains (TADs). The presence of TADs
is evident across many species, ranging from Drosophila to
mammals, and is a conserved feature of the three-dimensional
chromatin architecture (Dixon et al., 2012; Hou et al., 2012;

Nora et al., 2012; Sexton et al., 2012). These domains are
demarcated by boundaries and often enriched in binding of
architectural proteins: (i) sequence-specific CCTC-binding factor
(CTCF) and (ii) cohesin protein complex, that serves to constrain
the DNA loops within the TADs (Parelho et al., 2008; Stedman
et al., 2008; Dixon et al., 2012; Rao et al., 2014). Therefore,
TADs provide a structural and functional architecture across
the genome, which permit short- and long-range chromatin
interactions between regulatory elements within the same TADs
(intradomain), while limiting interactions that span across the
TAD boundaries (interdomain) to ensure proper gene regulation
(Lupiáñez et al., 2015, 2016; Flavahan et al., 2016; Hnisz et al.,
2016; Weischenfeldt et al., 2017; Beagan and Phillips-Cremins,
2020). The functional consequence of DNA loops in engaging
promoters with its distal enhancers to drive transcriptional
output of genes have been studied and reviewed (Sanyal et al.,
2012; Long et al., 2016). In the context of the Grh family, a
handful of studies indicate that GRHL factors have the potential
to modulate chromatin looping structures and eventually affect
gene expression. During mouse early embryonic development,
intron 2 of the Cdh1 locus potentially functions as an enhancer
element that control epithelium-specific E-cadherin expression
(Stemmler et al., 2005). Using chromatin conformation capture-
based techniques, it was revealed that the recruitment of Grhl2,
Grhl3 and Hnf4α to multiple enhancers within intron 2 of Cdh1
resulted in functional DNA-loops to the Cdh1 promoter, thereby
increasing the expression of the epithelial gene (Werth et al.,
2010; Alotaibi et al., 2015). Formation of such DNA loops are
essential for activating E-cadherin expression in mouse inner
medullary collecting duct cells and thereby to induce epithelial
differentiation in non-tumorigenic mouse mammary gland cells.

The formation of DNA loops is mainly mediated by the ring-
shaped cohesin complex, which consists of four subunits – SMC1,
SMC3, SCC1/RAD21, and SCC3/SA1/SA2 that topologically
clasps chromatin into looping structures. As revealed by single-
molecule imaging studies, the cohesin complex binds to DNA in
a ring-shaped conformation and translocate along the chromatin
in an ATPase-dependent fashion until it is impeded by CTCF
(Davidson et al., 2016; Kanke et al., 2016; Stigler et al., 2016). It
has been shown the transient degradation of cohesin resulted in
the loss of DNA loops or loop domains, while CTCF degradation
lead to the loss of DNA loops at the TAD boundaries, leading to
subsequent loss of TAD insulation (Nora et al., 2017; Rao et al.,
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2017). Therefore, this highlights the role of cohesin complex lies
heavily in the formation of loops linking two genomic loci and
modulation of cohesin binding affects gene regulation during
development and disease (Remeseiro et al., 2013). Recent studies
have shown the direct interaction between GRHL factors and
members of the cohesin complex. During the transition process
of mouse ESCs to EpiLCs, Grhl2 predominantly associates
with the cohesin subunit SMC1 to perform its pioneering
function at enhancer regions of key epithelial genes to drive the
transition process (Chen et al., 2018a). In the investigation on
ovarian cancer cell lines, we also show that the co-occupancy
of cohesin subunit RAD21 and GRHL2 on the promoter and
enhancer elements of early epithelial genes (ERBB3 and PERP)
is crucial for their expressions (Sundararajan et al., 2020; Figure
2). Moreover, we show that the recruitment of RAD21 on
such enhancer regions are dependent on endogenous GRHL2
expression and the gradual loss of GRHL2 expression along
the EMT spectrum of ovarian cancer cell lines might loosen
up or alter the chromatin loop structures, which eventually
lead to epithelial dedifferentiation. These observations highlight
the identification of novel crosstalk between GRHL factors and
the chromatin architectural complexes, where the pioneering
activity of GRHL factors along the regulatory regions of epithelial
genes potentially serve as loop anchors to mediate long-range
functional chromatin interactions. Therefore, this mechanism
appears to be an essential phenomenon in establishing the
epithelial identity in development, while such interactions could
be altered during cancer progression under conditions such as
EMT. For example, in human sarcoma cells, ZEB1-associated
chromatin remodeling factor BRG1 suppresses E-cadherin
expression by blocking its promoter region (Somarelli et al.,
2016). Depletion of BRG1 in the context of GRHL2 expression
further upregulates E-cadherin expression, indicating that ZEB1-
mediated chromatin remodeling interferes with GRHL factors
associated pioneering function.

CONCLUSION AND FUTURE
PERSPECTIVES

Almost three decades ago, foundation studies using Drosophila
as a model organism have shown that the transcription factor
Grainyhead is a crucial determinant of the epithelial phenotype
and is involved in the development of vital fly organs such as
epidermis, trachea, wings, and exoskeleton. Subsequent studies
have identified that Grh potentially acts as a transcriptional
activator and a repressor to regulate target gene expression,
depending on the signaling events and its association with other
transcription factors or co-factors. Interestingly, a recent study in
the German cockroach (Blattella germanica) model has showed
that Grh functions as a transcriptional repressor to regulate
genes essential for the development of epithelium and molting
of old integument (ecdysis) (Zhao et al., 2020). This indicates
that the role of Grh in epithelial and epidermal differentiation
is fundamental and evolutionarily conserved. Future Grh
functional studies on other insect model systems might generate
the possibility of Grh-mediated pest control management.

The three mammalian descendants of Grh – Grainyhead
like 1-3 are also heavily implicated in the development of vital
organs such as the neural tube, epidermis, and craniofacial
skeleton. Although mutations and gene polymorphisms in Grhl
genes were implicated in multiple human abnormalities such
as hearing impairment, ectodermal dysplasia syndrome, and
cleft palate formation, somatic mutations in GRHL genes in
human cancer samples occur at a very low frequency (Kotarba
et al., 2020). Moreover, the dual functioning of GRHL factors
in carcinogenesis and tumor suppression indicate that GRHL
factors impose a greater level of control over their target
genes and miRNAs. In addition to directly controlling the
target gene expression through promoter/enhancer binding,
recent studies have shown that GRHL factors are potent
modulators of the epigenetic landscape of target genes, which
facilitate their spatiotemporal and cell type specific control. Such
regulation is prevalent in the maintenance of epithelial barrier
functions and the restoration of epithelial phenotypes during
EMT/MET fluidity.

Recent studies underline how Grhl factors are essential
during surface ectodermal neural lineage specification. Also,
members of the GRHL family are potent repressors of the EMT
program during development and cancer. These indicate that
GRHL factors are at the crossroads of controlling epithelial,
mesenchymal and neural-like phenotypes that determine cell
lineage and transdifferentiation programs. It is therefore fair to
hypothesize that tipping this balance during pathogenesis such
as cancer might derail lineage specification, resulting in adverse
phenotypes. Therefore, future studies on delineating GRHL
factors-mediated of cellular and lineage plasticity through lineage
tracing is worth exploring. Such investigations would shed light
on the contribution of GRHL factors to the generation of
neuroendocrine-like phenotypes, neuroendocrine differentiation
observed in several cancers.

Genome-wide research progress in the last decade has
brought a novel role of Grh/GRHL members as pioneer
factors in limelight. Being pioneer factors, Grh/GRHL2
potentially gain access to the latent and repressed chromatin
landscape of epithelial genes and prime such chromatin
elements toward transcription initiation. Furthermore, GRHL2/3
associate with protein complexes that control chromatin
3D conformation structures (e.g., cohesins) and potentially
regulate their access along the epithelial gene loci during
cellular differentiation/dedifferentiation. Of note, chromatin
conformational changes during EMT/MET programs during
development and cancer progression are starting to emerge
recently (Essafi et al., 2011; Yun et al., 2016; Sundararajan
et al., 2020). Since GRHL2/3 are recently implicated in
modulating the 3D chromatin architecture, future studies
employing advanced sequencing techniques like ATAC-seq,
FAIRE-seq, and Hi-C or Hi-ChIP would help us comprehend
the interplay between GRHL factors and the chromatin
accessibility during EMT/MET programs. Such investigations
would also clarify our understanding on the dynamic changes
of chromatin architecture along the EMT spectrum and
eventually pave way toward improved cancer diagnostics
and therapeutics.
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