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This study evaluates the individual, as well as relative and joint value of indices obtained frommagnetic resonance
imaging (MRI) patterns of brain atrophy (quantified by the SPARE-AD index), cerebrospinal fluid (CSF) biomarkers,
APOE genotype, and cognitive performance (ADAS-Cog) in progression from mild cognitive impairment (MCI) to
Alzheimer's disease (AD) within a variable follow-up period up to 6 years, using data from the Alzheimer's Disease
Neuroimaging Initiative-1 (ADNI-1). SPARE-AD was first established as a highly sensitive and specific MRI-marker
of AD vs. cognitively normal (CN) subjects (AUC = 0.98). Baseline predictive values of all aforementioned indices
were then compared using survival analysis on 381 MCI subjects. SPARE-AD and ADAS-Cog were found to have
similar predictive value, and their combination was significantly better than their individual performance. APOE
genotype did not significantly improve prediction, although the combination of SPARE-AD, ADAS-Cog and APOE
ε4 provided the highest hazard ratio estimates of 17.8 (last vs. first quartile). In a subset of 192 MCI patients who
also had CSF biomarkers, the addition of Aβ1–42, t-tau, and p-tau181p to the previous model did not improve predic-
tive value significantly over SPARE-AD and ADAS-Cog combined. Importantly, in amyloid-negative patients with
MCI, SPARE-AD had high predictive power of clinical progression. Our findings suggest that SPARE-AD and
ADAS-Cog in combination offer the highest predictive power of conversion from MCI to AD, which is improved,
albeit not significantly, byAPOEgenotype. Thefinding that SPARE-AD in amyloid-negativeMCI patientswas predic-
tive of clinical progression is not expected under the amyloid hypothesis and merits further investigation.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Alzheimer's Disease (AD) is the most common form of dementia
and a major health and socioeconomic concern (Hurd et al., 2013);
therefore, early detection and disease modifying drug development
are critically important. Mild cognitive impairment (MCI), in particular,
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has been an increasingly common target of potential therapeutic trials.
However, the neuropathological substrates of MCI are heterogeneous
(Schneider et al., 2009) and, despite the high rate of conversion to AD,
a significant number of MCI patients remain stable (Petersen et al.,
2009), or even revert to being cognitively normal (CN) (Manly et al.,
2008). Developing predictors of an MCI individual's likelihood to
progress clinically is therefore important. In addition to biomarkers
of neurodegeneration (e.g. structural magnetic resonance imaging
(sMRI)), the new research criteria for MCI incorporate the use of bio-
markers of Aβ deposition to define MCI due to AD (Albert et al., 2011).
Aβ deposition can be measured using PET tracers (Clark et al., 2012a;
Ikonomovic et al., 2008) which correlate with decrease in Aβ1–42 in
CSF (Fagan et al., 2009; Toledo et al., 2011). Both measures show a
high accuracy for predicting AD neuropathology (Clark et al., 2012a;
Shaw et al., 2009; Silverman et al., 2001; Toledo et al., 2012). CSF
concentrations have shown promise in predicting conversion from
MCI to AD (Hampel et al., 2010a, 2010b; Schuff et al., 2009; Shaw
et al., 2009). However, when combined with other biomarkers, CSF
ved.
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Table 1
Characteristics of ADNI1 subjects included in the study.

AD CN MCI

Subjects, n 200 232 381
Average age 75.6 ± 7.72 76.0 ± 5.01 74.8 ± 7.32
Gender (male/female) 103M, 97F 120M, 112F 244M, 137F
Average MMSE 23.3 ± 2.05 29.1 ± 1.00 27.0 ± 1.78
Average modified ADAS-Cog (85
point)

28.0 ± 9.51
(188)

9.5 ± 4.19
(229)

18.5 ± 6.64

Percentage having APOE ε4 alleles 66.0% (188) 26.6% (229) 54.1%

Parentheses show the subjects for which both ADAS and APOE ε4 alleles were available.
AD = Alzheimer's disease dementia; APOE = apolipoprotein E; CN = cognitively nor-
mal; MCI = mild cognitive impairment; MMSE = Mini mental state examination; mod-
ified ADAS-Cog = themodifiedAlzheimer's Disease Assessment Scale, cognitive subscale.
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has lower predictive power, especially compared to measures of brain
atrophy (Davatzikos et al., 2011; Gomar et al., 2011; Vemuri et al.,
2009a; Walhovd et al., 2010; Westman et al., 2012). It has been
suggested that the presence of amyloid heightens the risk of conversion
to AD, perhaps due to changes taking place in an early stage and follow-
ed by a ceiling effect (Jack et al., 2010a, 2013b). Alternatively, it is possi-
ble that there is another, non-causal, mechanism by which amyloid
plaques and atrophy are related. These interpretationswould be consis-
tent with the relatively weak correlation between amyloid burden and
cortical atrophy in regions typically associated with AD in cognitively
normal individuals (Becker et al., 1996; Driscoll et al., 2009, 2011),
and the similar amyloid levels between amnesticmild cognitive impair-
ment (aMCI) and CN individuals, despite respective hippocampal
volumes being different (Jack et al., 2008b), albeit some studies have
shown stronger association between amyloid deposition and atrophy
patterns (Tosun et al., 2011).

MRI-derived markers have been of central interest in characterizing
brain structure in AD (Davatzikos et al., 2008a, 2008b, 2009; Fox and
Schott, 2004; Jack et al., 2003; Kloppel et al., 2008; Schuff et al., 2009;
Vemuri et al., 2009a; Wolz et al., 2011), and patterns of brain atrophy
obtained from MRI have been shown to be relatively good predictors
of conversion from CN to MCI (Davatzikos et al., 2008b, 2009; Driscoll
et al., 2009; Vemuri et al., 2009b) and from MCI to AD (Adaszewski
et al., 2013; Davatzikos et al., 2011; Eskildsen et al., 2012; Plant et al.,
2010). The most commonly used sMRI biomarker is hippocampal
volume, which is severely affected by AD (Fox et al., 1996; Jack et al.,
1992, 2010b; Schuff et al., 2009). Hippocampal volumes alone, however,
have limited accuracy for individualized diagnosis and prediction, as
there is considerable overlap between hippocampal volumes of CN
and AD individuals, and even more with MCI (Fan et al., 2008). As a
result, hippocampal volumes do not capture the entire pattern of
brain atrophy in AD or its prodromal stages (Dickerson and Wolk,
2012; Dickerson et al., 2009; Wolk et al., 2010).

Relatively recent literature has shown that pattern analysis
methods are powerful diagnostic and predictive tools (Aksu et al.,
2011; Costafreda et al., 2011; Davatzikos et al., 2009; Dickerson
and Wolk, 2012; Duchesne et al., 2008; Hinrichs et al., 2009;
Kloppel et al., 2008; Liu et al., 2004; McEvoy et al., 2009, 2011;
Plant et al., 2010; Vemuri et al., 2009b; Wolz et al., 2011). One such
index, the SPARE-AD score, calculated using a pattern classification
method described in (Davatzikos et al., 2009; Fan et al., 2007), has
been previously determined to be a good predictor of MCI to AD con-
version (Misra et al., 2009) as well as of conversion from CN toMCI in
healthy older adults (Davatzikos et al., 2008b, 2009).

Herein we present analysis of all ADNI-1 baseline images available
by March 2013, and subsequently focus on a subset of MCI participants
with at least 3-month, and up to 6-year clinical follow-up. We investi-
gate the value of the SPARE-AD index in predicting 3-year stability
from baseline scans, as well as its combination with APOE genotype,
CSF biomarkers, and ADAS-Cog data. The main contributions of this
work are 1) the analysis of 813 participants, providing a large number
of subjects for the training and testing datasets and enabled us to estab-
lish the value of such pattern analysis methods as highly sensitive and
specific imaging biomarkers of AD; 2) the combination of imaging,
APOE genotype, CSF biomarkers, and ADAS-Cog allowed us to evaluate
individual, as well as combined value of different types of AD bio-
markers; 3) a longer follow-up using the larger cohort (mean follow-
up time was 30 months),as opposed to most previous studies using
ADNI. Our work largely builds upon the results of the study in Landau
et al. (2010), where relative diagnostic and prognostic values of various
AD biomarkers were examined on the same ADNI cohort. Our work is
different in two respects: 1) we perform extensive survival analysis
using data up to a 6-year follow-up period, instead of 1.9 years, thereby
assessing the value of various biomarkers for predicting longer-term
clinical stability; 2) we use the SPARE-AD score to capture spatial pat-
terns of brain atrophy, which has been shown in several previous
studies (and replicated herein) to offer high diagnostic and predictive
value on an individual basis.

2. Material and methods

2.1. Subjects

Data from ADNI1 participants [www.adni-info.org] were used. All
baseline images available for download on ADNI's website [adni.loni.
ucla.edu] in pre-processed forms by March 2013 were included (232
CN individuals, 200 AD, and 381 MCI patients). Subject characteristics
are summarized in Table 1.

2.2. MRI acquisition

Acquisition of 1.5-T MRI data at each performance site followed a
previously described standardized protocol that included a sagittal
volumetric 3D MPRAGE with variable resolution around the target
of 1.2 mm isotropically. The scans had gone through certain correc-
tion methods such as gradwarp, B1 calibration, N3 correction, and
(in-house) skull-stripping. See www.loni.ucla.edu/ADNI and Jack
et al. (2008a) for details.

2.3. Collection and analysis of CSF biomarkers

CSF biomarker collection is described in detail under (www.adni-
info.org/ADNIStudyProcedures.aspx). Briefly, lumbar puncturewas per-
formed with a 20-gauge or 24-gauge spinal needle as described in the
ADNI procedures manual after written informed consent was obtained,
as approved by the Institutional Review Board (IRB) at each participat-
ing center. Aβ1–42, total tau (t-tau) and tau phosphorylated at residue
181 (p-tau181) were measured in each of the 416 CSF ADNI baseline al-
iquots using the multiplex xMAP Luminex platform (Luminex Corp,
Austin, TX) with Innogenetics (INNO-BIA AlzBio3, Ghent, Belgium; for
research use only reagents) immunoassay kit-based reagents as de-
scribed by (Shaw et al., 2009). Abnormal CSF levels were determined
via a model combining t-tau, Aβ1–42 and p-tau181p (Shaw et al., 2009)
and pathological Aβ1–42 levels were considered to be levels below
192 pg/mL. AD-like CSF signature was described by (Shaw et al., 2009).

2.4. Image pre-processing

The images were processed with a freely-available pipeline
(Davatzikos et al., 2001) (for software, see www.rad.upenn.edu/
sbia). Briefly, images were segmented into 3 tissue types: gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). After a high-
dimensional image warping to an atlas, regional volumetric maps for
GM, WM and CSF were created, referred to herein as RAVENS maps.
RAVENSmaps are used for voxel-based analysis and group comparisons
of regional tissue atrophy, as well as for constructing an index of AD
brain morphology.

http://www.adni-info.org
http://adni.loni.ucla.edu
http://adni.loni.ucla.edu
http://www.loni.ucla.edu/ADNI
http://www.adni-info.org/ADNIStudyProcedures.aspx
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http://www.rad.upenn.edu/sbia
http://www.rad.upenn.edu/sbia


Fig. 1. (a) Visualization of the regionsused to build the SPARE-AD index,when all 3 (GM,WMandbrain CSF) RAVENSmapswereused jointly. (Left) Temporal lobe and hippocampus of the
left hemisphere; (right) temporal lobe and hippocampusof the right hemisphere. Images are in radiology convention. The color scale is graded (low tohigh) based on relevance of different
brain regions for classification into AD/CN, hereinmeasured by the frequency bywhich a regionwas selected by the 10models producedby the 10-fold cross-validation. (b) ROC curve and
performance graph of AD and CN classification results using GM,WMand brain CSF tissue densitymaps, obtained via fully cross-validated procedures. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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2.5. The SPARE-AD index as morphologic phenotype of AD

SPARE-AD has been extensively described elsewhere (Davatzikos
et al., 2009; Fan et al., 2007). For SPARE-AD computation, the method
looks for the combination of brain regions,which can forma unique pat-
tern that maximally differentiates between AD and CN and then trains a
nonlinear support vector machine (SVM) model that measures this
pattern. This model is then evaluated on a new scan: positive values in-
dicating presence of AD-like characteristics and negative values con-
versely. After determining the classifier that separates AD/CN, this
classifier was applied to baselineMCI patients' scans, thereby providing
SPARE-AD scores. Although our previous analyses have reported the
SPARE-AD score using smaller samples, which had been trained on
data from 66 CN individuals and 56 AD patients, all ADNI participants
(Fan et al., 2008), we retrained the same algorithm on this significantly
larger set of data from 232 CN subjects and 200 AD patients, in order to
obtain the best possible stability and generalization potential. SPARE-
AD scores were also derived for the CN and AD individuals. However,
since these individuals were part of the model's building, their scores
were derived using 10-fold cross-validation (10% of the data was left
out for the outer loop/test set for testing and assessing the area under
the curve (AUC) of the receiver operating characteristic (ROC) curve,
the rest was treated as the training set; parameters were optimized in
this 90% of the sample by splitting it into training and validation
datasets, using leave-one-out and a parameter grid-search; optimized
SVM parameters included kernel size and slackness parameter (C); op-
timized models were applied exactly as determined from the training
set to the remaining 10%, and classifications were recorded. This proce-
dure was repeated 10 times, so that each sample gets a classification
score).

2.6. Statistical methods

In our survival analysis,we included 381MCI subjects (mean follow-
up time = 30 months, SD = 18.6, 25th percentile 12 months, median
24 months, 75th percentile 48 months). To perform the survival analy-
sis of various combinations of markers, we utilized a separate linear
support vector machine (SVM) (Vapnik, 1998) trained (implemented
in weka public domain software (Hall et al., 2009)) using a combination
of SPARE-AD scores and other relevant markers such as ADAS-Cog,
APOE ε4 and CSF biomarkers. This is independent of the SVM trained
in the algorithm used for generating SPARE-AD scores. We chose the
SVM's slackness parameter (C) using cross-validation while training
the classifier on AD and CN; the optimized classifier was then applied
to the (separate) MCI set, providing a continuous index between 0
and 1 which was used as a predictor in the survival analysis. Using
this continuous index as a predictor, we compared the magnitudes of
the association between predictors and time to conversion from MCI



Fig. 2. Survival curves for (a) SPARE-AD index alone; (b) ADAS-Cog alone; (c) the combination of SPARE-AD and ADAS-Cog; (d) the combination of SPARE-AD and APOE ε4; (e) the com-
bination of ADAS-Cog and APOE ε4, and (f) the combination of SPARE-AD, ADAS-Cog and APOE ε4.

167X. Da et al. / NeuroImage: Clinical 4 (2014) 164–173
to AD using Cox proportional hazards models. Cox models were used:
1) treating the predictor as a continuous measure, and 2) splitting the
predictor into quartiles. To compare across models, each of the predic-
tors was standardized by subtracting its mean and dividing by its stan-
dard deviation. In a subset of subjects (192MCI patients, 100 converted
Table 2
Hazard ratios of MCI to AD progression by standardized predictors in 381 MCI individuals.

SPARE-AD ADAS SPARE-AD + ADAS

HR 95% CI p HR 95% CI p HR 95% CI p

Continuous 2.2 (1.8,2.6) b0.001 2.0 (1.7,2.4) b0.001 2.8 (2.2,3.6) b0.0
Quartiles b0.001 b0.001 b0.0
2nd quartile 3.2 (1.8,5.5) 3.3 (1.9,5.8) 4.7 (2.5,8.9)
3rd quartile 5.8 (3.4,9.8) 4.9 (2.9,8.4) 9.0 (4.8,16.6)
4th quartile 8.1 (4.7,14.0) 6.7 (4.0,11.5) 13.6 (7.3,25.2)
to AD) who also had CSF biomarkers, the aforementioned survival
analysis was repeated, albeit now considering combinations of markers
including CSF biomarkers. For each pair-wise comparison, we tested for
differences in the effects of two predictors using the cross-model testing
method described by Weesie (Weesie, 1999) with Cox proportional
SPARE-AD + APOE ε4 ADAS + APOE ε4 SPARE-
AD + ADAS + APOE ε4

HR 95% CI p HR 95% CI p HR 95% CI p

01 2.6 (2.0,3.2) b0.001 2.1 (1.7,2.4) b0.001 2.9 (2.2,3.6) b0.001
01 b0.001 b0.001 b0.001

4.4 (2.5,7.8) 4.3 (2.4,7.7) 5.8 (3.0,11.3)
6.2 (3.5,10.9) 6.1 (3.4,10.8) 9.7 (5.0,18.7)

10.6 (5.9,18.9) 9.0 (5.1,15.8) 17.8 (9.2,34.4)



Table 3
p-Values comparing magnitudes of association between (continuous) predictor and outcome using 381 MCI individuals.

SPARE-AD ADAS SPARE-AD + ADAS SPARE-AD + APOE ε4 ADAS + APOE ε4 SPARE-AD + ADAS + APOE ε4

SPARE-AD 0.865 b0.001 b0.001 0.873 b0.001
ADAS 0.865 b0.001 0.052 0.491 b0.001
SPARE-AD + ADAS b0.001 b0.001 0.209 0.002 0.638
SPARE-AD + APOE ε4 b0.001 0.052 0.209 0.078 0.128
ADAS + APOE ε4 0.873 0.491 0.002 0.078 b0.001
SPARE-AD + ADAS + APOE ε4 b0.001 b0.001 0.638 0.128 b0.001
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hazards models on time to conversion fromMCI to AD. Besides the two
predictor values for each subject, the cross-model testing procedure re-
quires us to include the observed survival time twice for a given subject
in the Coxmodel. Since each pair-wise comparisonmodel included two
correlated outcomes per subject from each of the two predictors, robust
sandwich-type estimators to account for clustering (correlation)within
subjectwere used to estimate variances.Wald testswere used to test for
significant differences, which would indicate that the two predictors
had significantly different hazard ratios (HR) of time to conversion.
Finally, Kaplan–Meier survival function estimates were plotted using
quartiles of each predictor. All Cox models were adjusted for age,
gender, and education covariates. All statistical tests were two-sided.
Statistical significance was set at b0.05 level. Statistical analyses were
conducted using STATA version 12.0 (StatCorp; College Station, TX)
software.

3. Results

3.1. SPARE-AD as an MRI marker of AD

The best MRI-based diagnostic accuracy was achieved by jointly
considering the RAVENS maps of GM, WM and CSF, thereby forming a
SPARE-AD score by evaluating regional patterns of atrophy and ventricu-
lar enlargement. 3D visualizations (Fig. 1) help appreciate brain regions
participating in the diagnostic model (temporal horn and hippocampal
regions are not directly visible). Many temporal lobe brain regions,
as well as CSF regions largely being part of the temporal horn of the
ventricles, were used for evaluating the spatial pattern of brain atrophy
and ventricular expansion that was most distinctive of AD patients. The
10-fold cross-validated ROC curve obtained using the SPARE-AD score,
is also shown in Fig. 1.

3.2. MCI survival analysis

Survival curves for the SPARE-AD index alone, ADAS-Cog alone, the
combination of SPARE-AD and ADAS-Cog, the combination of SPARE-
AD and APOE ε4, the combination of ADAS-Cog and APOE ε4, and the
combination of SPARE-AD, ADAS-Cog and APOE ε4, all in quartiles, are
shown in Fig. 2. The plots show that those in the 1st (lowest) quartile
of predictor values have the lowest risk of conversion from MCI to AD
at any given time, and for higher quartiles, the risk of conversion at
any given time increases. Furthermore, compared to predictors based
on individual markers, predictors based on a combination of markers
Table 4
Hazard ratios of MCI to AD progression by standardized predictors using subset of 192 with CS

SPARE-AD + ADAS SPARE-AD + ADAS + APOE ε4

HR 95% CI p HR 95% CI p

Continuous 2.5 (1.7,3.4) b0.001 2.5 (1.8,3.5) b0.
Quartiles b0.001 b0.
2nd quartile 2.9 (1.3,6.4) 3.2 (1.4,7.1)
3rd quartile 5.2 (2.4,11.4) 5.2 (2.4,11.6)
4th quartile 8.7 (4.0,18.8) 10.8 (4.9,23.8)
show greater separation of survival curves, particularly of the 1st quar-
tile from other quartiles. MCI subjects had variable follow-up length
(mean = 30 months, SD = 18.6, median = 24 months): out of 381
MCI subjects, 188 progressed to AD (mean = 23 months, SD = 14.5,
median = 18 months). All of the 193 subjects who did not develop
AD were considered right-censored at last follow-up and included in
the analysis. Adjusted associations between different combinations of
markers and time from MCI to AD conversion are shown in Table 2.
For each predictor, adjusted hazard ratios (HR) from two Cox models
are shown: 1) treating predictor as continuous, and 2) splitting predic-
tor into quartiles. The HR for continuous measures represent the risk of
converting to AD from MCI at any given time point for a one unit in-
crease in the predictor value, given that age, gender, and education
are held constant. For models using quartiles, the reference group is
the 1st quartile. All predictors have a significant (p b 0.001) association
with time to conversion fromMCI to AD. As the value of each predictor
increases, the hazard of conversion increases, keeping age, gender, and
education constant. The p-values from the tests comparing the different
predictors across models are shown in Table 3. There was no significant
difference (p = 0.865) between the adjusted HR of time to conversion
from SPARE-AD (HR = 2.2) and the adjusted HR from ADAS-Cog
(HR = 2.0). The combination of SPARE-AD and ADAS-Cog was better
than either of the individual models in predicting time to conversion
(each p b 0.001). The inclusion of APOE ε4 to SPARE-AD significantly
improved prediction of time to conversion (p b 0.001), whereas the in-
clusion of APOE ε4 to ADAS-Cog did not yield significant improvement
(p = 0.491). Compared to the prediction of time to conversion based
on the combination of SPARE-AD and ADAS-Cog, the inclusion of APOE
ε4 presence did not significantly improve prediction (p = 0.638). The
analogous survival analysis in the smaller sample also having CSF bio-
markers is presented in Tables 4 and 5. Based on the comparison between
the models (Table 5), adding APOE ε4, CSF, or the combination of both
markers did not significantly improve any predictions of time to
conversion.

3.3. SPARE-scores in MCI stratified by CSF Aβ1–42

Finally, we studied the relationship between AD-like CSF signature
(Shaw et al., 2009) and longitudinal clinical diagnosis with SPARE-AD.
In order to evaluate the relationship between brain atrophy and amy-
loid burden, the values of SPARE-AD were examined in a subset of
MCI individuals who either converted to AD within at most 18 months
(short converters, MCI-SC) or remained stable for at least 36 months
F.

SPARE-AD + ADAS + CSF SPARE-AD + ADAS + APOE
ε4 + CSF

HR 95% CI p HR 95% CI p

001 2.7 (1.9,3.8) b0.001 2.6 (1.8,3.7) b0.001
001 b0.001 b0.001

3.5 (1.6,7.7) 4.6 (2.1,10.2)
5.6 (2.6,11.9) 5.8 (2.6,12.8)
9.3 (4.4,19.9) 11.5 (5.2,25.4)



Table 5
p-Values comparing magnitudes of association between (continuous) predictor and outcome, using subsample with CSF available.

SPARE-AD + ADAS SPARE-AD + ADAS + APOE ε4 SPARE-AD + ADAS + CSF SPARE-AD + ADAS + APOE ε4 + CSF

SPARE-AD + ADAS 0.533 0.205 0.271
SPARE-AD + ADAS + APOE ε4 0.533 0.229 0.271
SPARE-AD + ADAS + CSF 0.205 0.229 0.400
SPARE-AD + ADAS + APOE ε4 + CSF 0.271 0.271 0.400
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(long term stable, MCI-LS). In particular, out of this subset of MCI pa-
tients (MCI-LS plus MCI-SC), 28 (6 MCI-SC and 22 MCI-LS) had normal
Aβ1–42 levels (N192 pg/mL) and 84 (48 MCI-SC and 36 MCI-LS) had
pathological Aβ1-42 levels (≤192 pg/mL). We tested if the SPARE-AD
score was associated with the presence of pathological CSF values or
the longitudinal clinical diagnosis using a linear regression analysis.
Both MCI-SC clinical diagnosis (t = 4.96, p b 0.0001) and AD-like CSF
Aβ1–42 levels (t = 2.34, p = 0.02) were associated with higher
SPARE-AD scores. Having aMCI-SC diagnosis (Beta = 0.65) was associ-
ated with a larger effect size than the presence of low Aβ1–42 levels
(Beta = 0.36) (Fig. 3). There was no interaction between clinical and
CSF group (t = −1.92, p = 0.058). Mean group values are presented
in Table 6; SPARE-AD values were significantly different between MCI-
LS andMCI-SCwhichhad normal Aβ1–42 levels, underlying the high pre-
dictive value of SPARE-AD in this amyloid-negative group. Nevertheless,
subjects with normal Aβ1–42 levels showed distinct changes compared
to those with pathological levels (Fig. 4(a)). 3D renderings of group dif-
ferences betweenMCI-LS andMCI-SC are shown in Fig. 4(b) for both the
positive and the negative amyloid groups.

4. Discussion

The present study evaluated the integration and relative value of
spatial patterns of brain atrophy (SPARE-AD index), CSF biomarkers,
Fig. 3. Violin plot depicting baseline SPARE-AD scores stratified by clinical diagnosis,
MCI-SC (blue) and MCI-LS (red), and presence or absence of AD-like CSF Aβ1–42 values.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
measures of cognitive performance (ADAS-Cog), alongwith APOE geno-
type, in predicting the individual risk of converting from MCI to AD.
Moreover, the value of SPARE-AD as an MRI-derived marker of AD-
like atrophy was further investigated in a cohort of CN individuals and
AD patients, and was found to display excellent sensitivity and specific-
ity in classifying AD patients, with a cross-validated AUC of 0.98 in the
hold-out test set. As baseline predictors of conversion to AD, SPARE-
AD and ADAS-Cog were of similar predictive value, and their combina-
tion significantly improved the ability to predict risk of conversion to
AD (Hazard ratio of 13.6 between top and bottom quartiles) compared
with either of the predictors alone. Adding APOE genotype to the com-
bination of SPARE-AD and ADAS-Cog further improved the predictive
ability (Hazard ratio of 17.8 between top and bottom quartiles), albeit
the improvement was not statistically significant. This is consistent
with APOE ε4 being a risk factor for AD, however its value for individual
patient predictions is limited (Aguilar et al., 2013; Foster et al., 2013).
CSF offered marginal improvement to predictive power, which was
not statistically significant (Vemuri et al., 2009a; Walhovd et al., 2010;
Westman et al., 2012).

Our survival analysis complements similar analyses (McEvoy et al.,
2011; Vemuri et al., 2009b), yet obtains better baseline-based predic-
tion using the combination of SPARE-AD and ADAS-Cog. Our results
also complement several studies that used a specific follow-up time as
cut-off for dichotomous conversion/stability outcome (Aksu et al.,
2011; Fan et al., 2008; Kloppel et al., 2008; Plant et al., 2010; Vemuri
et al., 2008, 2009b), albeit those results are not directly comparable to
ours as we do not have such dichotomous classification depending on
some pre-defined and somewhat arbitrary length of conversion time
(Hinrichs et al., 2011; Plant et al., 2010).

The relatively limited value of CSF biomarkers alone, especially of
Aβ1–42, in predicting clinical progression could be argued to reflect a po-
tential ceiling effect in amyloid deposition in the brain in early disease
stages (Fleisher et al., 2012; Jack et al., 2010a, 2013a, 2013b; Toledo
et al., 2013c), beyond which actual amyloid levels do not have predic-
tive value, whereas subsequent atrophy is a better predictor. Alterna-
tively, other neurodegenerative and vascular conditions in addition to
amyloid plaque deposition can potentially account for the cognitive
symptoms in MCI patients with normal Aβ1–42 and p-tau181 values
(Schneider et al., 2009). Importantly, the predictive value of amyloid
might be higher during early disease stages, which underlines the
need for building dynamic imaging markers in AD, since predictive
value of various markers is likely to depend on disease stage. The lack
of additive value for the tau markers over SPARE-AD is somewhat ex-
pected, as tau levels and brain atrophy tend to correlate well (Toledo
et al., 2013b), and potentially MRI-derived SPARE-AD index more di-
rectly captures neurodegeneration. However, one might have expected
Table 6
SPARE-AD values were significantly different between MCI-SC and MCI-LS both for the
Aβ1–42-normal MCI patients (top; p = 0.0008) and for Aβ1–42-pathological MCI patients
(bottom; p = 0.0005).

SPARE-AD
mean (St dev)

MCI-SC MCI-LS

Aβ1–42 N 192 pg/mL (normal) 1.31 (0.51) 0.13 (0.71)
Aβ1–42 b 192 pg/mL (pathological) 1.20 (0.59) 0.67 (0.72)



Fig. 4. (a)Maps of the p value produced by optimally-discriminative voxel-based analysis (ODVBA) (Zhang and Davatzikos, 2011) showing differences betweenMCI-LS andMCI-SC based
on thenormal Aβ1–42 subsample. SignificantlymoreGMatrophy for hippocampus, prefrontal lobe and precuneus inMCI-SC relative toMCI-LS. Themapswere thresholded at thep = 0.01
level. (b) 3D renderings of statistically significant differences between MCI-LS and MCI-SC. normal Aβ1–42 subsample (right); pathological Aβ1–42 subsample (left). The maps were
thresholded at the p = 0.01 level.
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higher predictive value of tau markers alone, relatively to what we
found.

An intriguing finding of our study was that in amyloid-negative
MCI patients, positive SPARE-AD values were predictive of conver-
sion indicating that SPARE-AD captures a pattern of atrophy that
characterizes clinical AD cases and is able to predict clinical changes
in amnestic MCI subjects with a non AD-like CSF signature. In partic-
ular, AD-like patterns of brain atrophy were more pronounced in
MCI-SC relative to MCI-LS (p = 0.0008), and included regions such
as the precuneus, which show early changes in AD. This finding
adds to a number of recent findings that indicate that considerable
percentage of both cognitively normal older adults (Driscoll et al.,
2011; Wirth et al., 2013) and preclinical AD (Jack et al., 2012) have
atrophy in regions affected by AD without the presence of amyloid.
An extensive review of the literature on the relationship between
amyloid burden, AD-like brain atrophy and cognitive function can
be found in (Fjell et al., 2010), where considerable concerns about
the widely accepted amyloid hypothesis, and therefore about the
utility of amyloid markers in predicting clinical progression, are
discussed based on a number of findings from the literature. However,
this finding can potentially be due to false negatives in the Luminex
platform, i.e., assumed amyloid-negative individuals might actually
have amyloid, or due to the presence of a different neurodegenerative
mechanism with similar pattern of atrophy and clinical manifestation
as AD. Moreover, the number of amyloid-negative MCI individuals
was small, hence these findings should be replicated in a larger sample.
Longitudinal studies in cognitively normal older adults are necessary
to elucidate potential dynamic interplays and causal relationships
between amyloid deposition, neuronal death, and cognitive decline, or
perhaps to discover other mechanisms that lead independently to
both amyloid deposition and neuronal death.
The spatial pattern of brain atrophy that differed between MCI-
SC and MCI-LS (Fig. 4) was in agreement with other literature in
the field using analogous methods (Whitwell et al., 2008). However,
in addition to temporal and posterior parietal regions, our study
identified significant prefrontal and orbitofrontal atrophy, especial-
ly in amyloid-negative subsample. 10% or more of the cases with a
clinical diagnosis of AD do not have an underlying AD when
assessed in neuropathological studies (Nelson et al., 2012; Toledo
et al., 2012) and this percentage increases in the MCI stage. Because
CSF biomarkers show a good correlation with AD pathology in the
brain (Tapiola et al., 2009), it is possible that some amyloid-
negative MCI individuals have a frontotemporal lobar degeneration
and therefore these patients can show a different pattern of atro-
phy. This would be in agreement with independent studies compar-
ing AD and frontotemporal dementia patients (Davatzikos et al.,
2008c; McMillan et al., 2013). In addition, several different pathol-
ogies can be present in a single subject as we recently described in
a small subset of ADNI subjects that came to autopsy that coincident
pathologies are a common finding (Toledo et al., 2013a).

The predictive value of SPARE-AD in MCI individuals complements
earlier studies that found similar AD-like patterns of brain atrophy
being predictive of cognitive decline in cognitively normal older adults
(Clark et al., 2012b; Dickerson and Wolk, 2012). Particularly relevant
is our previous study (Clark et al., 2012b), since it used the exact same
image analysis and SPARE-AD index. In that prospective longitudinal
study of aging over an 8-year period, the rate of change of SPARE-AD
was highly predictive of conversion from cognitively normal to MCI,
with a cross-validated AUC of 0.89. These patterns of brain atrophy are
therefore likely to progress slowly, yet steadily, many years before
they eventually lead to MCI and then to dementia. Methods for captur-
ing such relatively complex atrophy patterns, and combining themwith
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measures of cognitive decline, are therefore important biomarkers of
very early AD, potentially at stages in which interventions might be
more effective.

5. Conclusion

We found that SPARE-AD, which quantifies spatial patterns of brain
atrophy using pattern classification, was a highly sensitive and specific
imaging marker of AD (cross-validated AUC = 0.98 in a cohort of 432
AD/CN individuals). Moreover, combination of SPARE-AD, ADAS-Cog
and APOE genotype provided excellent predictive value in a cohort of
381 MCI individuals followed for a variable period of up to 6 years
(HR = 17.8 between top and bottom quartiles), albeit the additive
value of APOE ε4 presencewas not statistically significant over the com-
bination of SPARE-AD and ADAS-Cog. In addition to having implications
for enrollment in clinical trials, these findings are becoming increasingly
important in clinical settings where a variety of biomarkers are avail-
able. Thus, being able to provide prognostic information, including the
timeframe of potential change, is of obvious importance in discussions
with patients. Finally, the present findings related to CSF Aβ1–42 nega-
tive MCI patients also speak to questions concerning the proposed cas-
cade of biomarker change and the pathophysiologic process of AD.
Longitudinal studies starting relatively earlier in life would be necessary
for deeper understanding of the dynamics of AD progression.

Data and software availability

All SPARE-AD scores used herein have been uploaded to http://adni.
loni.ucla.edu/. All image processing software used to derive SPARE-AD,
importantly theDRAMMSdeformable registration andCOMPARE classi-
fication pipelines, are freely available for download under http://www.
rad.upenn.edu/sbia, and involve fully automated procedures.
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