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Abstract: Traditionally, the discovery of new materials has often depended on scholars’ computational
and experimental experience. The traditional trial-and-error methods require many resources and
computing time. Due to new materials’ properties becoming more complex, it is difficult to predict
and identify new materials only by general knowledge and experience. Material prediction tools
based on machine learning (ML) have been successfully applied to various materials fields; they are
beneficial for modeling and accelerating the prediction process for materials that cannot be accurately
predicted. However, the obstacles of disciplinary span led to many scholars in materials not having
complete knowledge of data-driven materials science methods. This paper provides an overview
of the general process of ML applied to materials prediction and uses solid-state electrolytes (SSE)
as an example. Recent approaches and specific applications to ML in the materials field and the
requirements for building ML models for predicting lithium SSE are reviewed. Finally, some current
obstacles to applying ML in materials prediction and prospects are described with the expectation
that more materials scholars will be aware of the application of ML in materials prediction.

Keywords: machine learning; solid state electrolyte; new materials discovery; lithium battery

1. Introduction

Materials science often focuses on the study of materials’ processing, properties and
applications. Since ancient times, materials scientists have wanted to predict and apply
materials from scratch [1]. The traditional way of deploying new materials is through
the experience of materials scientists who gather and perform theoretical calculations and
experimental confirmation, which is inefficient, resource-intensive and expensive in today’s
information explosion. The fierce competition in the manufacturing industry and the rapid
economic development of the sector have posed a new challenge to scholars in materials
science: how to shorten the product and market application cycle of new materials.

Since the 1990s, the integration and intelligence of large-scale data using computers
have become a topic of great interest. As an essential branch of artificial intelligence, ML
has been applied with great success in various fields such as psychological science [2],
earth science [3], biomedicine [4] and communication technology [5]. The combination
of big data and artificial intelligence has been called the “fourth paradigm of science” [6].
To date, ML has also been widely used in predicting novel materials; ML at its core is
a statistical algorithm, which is the same as the researcher’s thinking but much faster
than the researcher’s intuitive predictions [7]. The ML can also significantly reduce the
prediction time and accelerate the prediction process for the traditional input structure
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whose properties are calculated by approximating the Schrödinger equation to solve the
linear computation, for example, Wang et al. predicted new materials with reduction of
about 95 years by ML assisted analysis [8].

How does ML improve statistical speed to accelerate the computational cycle of
predicting new materials? The main reason is that it is not like traditional computing
methods that generally use hard-coded algorithms provided by human experts but based
on a large amount of data and specific algorithmic rules so that the computer can simulate
the human learning process and through learning to make intelligent decisions to achieve
the purpose of the final prediction. The learning process of humans is firstly to accumulate
knowledge, summarize the experience and obtain the laws, optimize and construct the
model of their knowledge theory system and, finally, reach the degree of flexible application
and even innovation. ML applied to materials science is almost the same as the logic of
human thinking.

The first stage is knowledge accumulation, i.e., data collection. The adequacy of the
data set often dramatically affects the construction and application of the algorithm model.
The original collected data set often have different forms. We need to process the original
data set to obtain its main features and convert it into a data format that is more suitable
for the constructed model, which we call descriptors (fingerprints). The more compatible
features are certainly more beneficial to our prediction process for new materials. This
pre-processing process of obtaining data features is called feature engineering. After we
have got enough material features, we must learn the fingerprints we have received. The
so-called model learning process uses specific algorithms to analyze the data fingerprints,
which are used to explore the implied relationships among data. We can train the model
by increasing the data set and evaluating the model’s accuracy according to the training
results, optimizing the algorithm model according to its evaluation and finally, using the
optimized optimal model to analyze and predict the unknown materials.

In shortly, the ML applied in the material field mainly consist of following steps: data
acquisition, feature engineering, model construction, analysis and the targeted injection
of new data for optimization progress [9] and, finally, form a complete and self-consistent
system (Figure 1A), which can be continuously and adaptively improved and ultimately
achieve the purpose of predicting new materials.

Lithium-ion batteries (LIBs), as representatives of modern high-performance batteries,
are now widely used in our lives, ranging from aerospace to small applications in personal
electronics [10]. The present LIBs use liquid organic electrolytes, which often results in
safety hazards [11]. The development of more advanced energy storage technologies is one
of the significant trends in energy storage field. Scholars are exploring SSE with high ionic
conductivity, high mechanical strength and non-flammability [12] and expecting to be able
to apply it to all-solid-state batteries [13] (Figure 1B).

The earliest discovery of fast lithium-ion conducting solids began in the 1970s and con-
tinues to today [14]; the ideal SSE material should have high ionic conductivity
(>0.1 mS/cm), low electronic conductivity (<10−7 mS/cm), expansive electrochemical
windows (>4 V), solid electrochemical stability and high mechanical properties (shear and
bulk modulus) [15]. In the past decades, only very few SSE have been able to achieve room
temperature lithium ionic conductivity (>10−2 S/cm) like that of liquid electrolytes [16].
However, the high ionic conductivity SSE often face various problems such as narrow
chemical windows or poor mechanical properties. Under such strict standards, although
many materials scholars have done a lot of works in various aspects, it is still a considerable
challenge to design SSE that can be commercially applied [17].

With the gradual application of ML in the materials field, scholars have started to use
ML in SSE’s screening work. ML has demonstrated its ability to identify high-performance
SSE quickly compared to traditional SSE experimental + computational methods. In last
decade, many high ionic conductivity SSE have been predicted and some of them have
been confirmed by first-principles calculations, which has undoubtedly shortened the
experimental prediction period of SSE significantly (referring to Refs. [12,13]). In this
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review, we will introduce and discuss the recent progress of ML application in SSE from
several aspects, such as the acquisition of data sets, selection of suitable descriptors and
algorithmic application of training data, respectively, so that more scholars in the materials
field, who do not possess knowledge background of ML, can have a more intuitive feeling
about ML.
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tives for future studies on solid-state batteries. Reprinted from Reference [13] with permission from
American Chemical Society.
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2. Data Sets

Data sets are the most fundamental resource for driving ML models and extracting
knowledge [9]. Because data sets, also called “big data”, are too much and too complex
for traditional humans, the discipline of “material informatics” has been developed to
describe how to seek the structure-property relationship [18]. Many material scientists
would like to see how to store relevant material information in one “library” that can be
retrieved and searched at any time. The first attempts to develop computer coupled phase
diagrams and thermochemistry—the CALPHAD database—were born in the 1970s as the
enhancement of computational capabilities [19]. After this, with the further development
of extensive density flooding theory calculations relying on quantum mechanics and
electromagnetism [20,21], researchers also started to narrow the number of experiments for
predicting materials using high throughput screening [22,23].

In 2011, the U.S. government officially announced the launch of Materials Genome
Initiative (MGI), meaning that a materials discovery paradigm driven by data and in-
formation science is gradually shaping. With various efforts to promote materials data
worldwide, a large platform of materials data was built up. More and more materials
data became openly accessible, gradually forming plentiful materials science database,
which became a significant turning point for materials science. Materials databases became
the infrastructure of materials discovery platforms [9]. Most current materials databases
are implemented based on first-principles calculations, which can accurately calculate
various electronic structures and total energy-related data. It can predict the properties at
finite temperatures after considering contributions such as the electron-scale vibrations and
the hot electron entropy. Within the last few decades, the electronic structure calculation
codes have reached a certain level of maturity [24,25]. Current materials databases can
be automated to extend first-principles calculations for many compounds with the only
limitations of computational resources [26].

Appropriate databases can significantly reduce the difficulty of accessing materials
data. Table 1 lists the materials databases that have been applied by scholars in materi-
als science for the screening of SSE. Some of these databases provide REpresentational
State Transfer (REST), Application Programming Interface (API) [27] interfaces for down-
loads, such as the Materials Project Database (MP) [28]. In addition, the Python Materi-
als Genomics (pymatgen) library [26]—a powerful open-source python software library
(Figure 2A) developed by MP for materials analysis, can obtain valuable materials data
and perform complex analysis of materials data through MP’s API interface. Owing to
the transport properties of ionic conductors are essential for the performance of SSE, Shi
et al. proposed the Matgen database (Figure 2B)—a database containing crystal struc-
ture information, ion migration channel connection information and 3D channel maps of
over 29,000 inorganic compounds [29]. The Matgen database may be more appropriate in
screening ionic properties of SSE.

Table 1. Overview of some material databases.

Name Website Overview

ICSD fiz-karlsruhe.de/icsd
Provides information on the crystal structures of all
inorganic compounds without C-H bonds, except for

metals and alloys [30]

Material project materialsproject.org Uses high-throughput computing to uncover the
properties of all known inorganic materials [28]

AFLOW aflowlib.org The library is mainly composed of chalcogenide
data; users can download the whole database [31]

OQMD oqmd.org The library is mainly composed of chalcogenide
data; users can download the whole database [32]

Computational Materials Repository cmr.fysik.dtu.dk
Supports the collection, storage, retrieval, analysis

and sharing of data produced by many
electronic-structure simulators [33]
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Table 1. Cont.

Name Website Overview

Crystallography Open Database crystallography.net

Provides capabilities for all registered users to
deposit published and so far unpublished structures

as personal communications or pre-publication
depositions. Such a setup simultaneously enables
the COD database extension by many users [34]

MATGEN matgen.nscc-gz.cn
Contains crystal structure information, ion migration

channel connectivity information and 3D channel
maps for over 29,000 inorganic compounds [29]

Ionic conductivity and shear and bulk moduli are complicated and missing in most
databases. Therefore, in addition to obtaining datasets from databases and compiling
them by themselves based on previous experimental data [35], some scholars in the field of
materials science have also attempted to automatically collect material synthesis parameters
from tens of thousands of academic publications [36] using text mining, i.e., ML and natural
language processing techniques, to integrate and compile them into usable datasets for ML
and have successfully performed practical applications [37] (Figure 2C).
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modules, or classes. Reprinted from Reference [26] with permission from Elsevier. (B) The architecture
of the ionic transport characteristics database. Reprinted from Reference [29] with permission from
John Wiley and Sons. (C) Schematic overview of zeolite data engineering, including (1) literature
extraction from sources such as NLP from body text, parsing of HTML tables and regex matching
between text and tables, (2) regression modeling and (3) zeolite structure prediction. Reprinted from
Reference [37] with permission from American Chemical Society.

3. Descriptor

ML models expect the input data to be in the form of letters or numbers. However,
the large amount of feature data about the materials we obtain in the original dataset is
unsuitable for ML. Therefore, we need to encode and convert material structure data into
descriptors (also called feature vectors in ML terminology) that computers can understand
through feature engineering. Mapping structure and composition into descriptors that can
be easily transported to the ML process is crucial in predicting materials [38]. The input
descriptors are more appropriately, the better the ML algorithm can map to the final output
data [39]. Depending on the problem under study and the prediction accuracy required,
descriptors can be defined as: the higher expected precision needs data-intensive and less
conceptual model and laborious learning framework. Therefore, coarser descriptors should
usually target a fast and rough initial screening of the material [40].

Descriptors should be able to map the atomic description into the form of a matrix
operation [41]. The essential properties must have been the differentiability of atomic shifts
and invariance to the fundamental symmetries of physics: rotation, reflection, translation
and alignment of atoms of the same species [42]. Descriptors are generally distinguished
as global or local descriptors, where global descriptors can usually be used to predict
properties related to the whole structure, such as band gaps [43], molecular atomization
energies [44], etc. In contrast, local descriptors are generally applied to predict local proper-
ties such as adsorption energies [45]. Usually, the screening process for crystalline solids
typically considers mainly global properties and secondarily local features [46]. However,
for the screening of high ionic conductivity of SSE, many properties have an impact on
them, which is difficult to determine when the mechanistic link between descriptors and
properties is not clear [47]. To predict the properties of high ionic conductivity and high
mechanical strength of SSE, it is generally necessary to construct the corresponding descrip-
tor sets containing several descriptors based on different properties of the dataset and ML
algorithms [7,48]. Table 2 lists common descriptors that materials scholars expect to use in
the process of screening SSE-related properties using ML and provides a brief description
of them.

Table 2. Overview of some common descriptors.

Descriptor Overview

Coulomb matrix (CM)
It represents an atom-by-atom square matrix. The structure is encoded according to
the Coulomb force between each pair of atomic charges, in which the off-diagonal

element is the Coulomb nuclear repulsion term between atomic pairs [44].

Smooth overlap of atomic positions
(SOAP)

SOAP is a translation, rotation and arrangement-invariant descriptor for obtaining the
translation, rotation and arrangement of atomic groups, which is the basis for

developing various ML interatomic potentials [42].

Diffraction fingerprint The diffraction fingerprint emphasizes the global characteristics of infinite periodic
crystals, which are excited by the properties of the Fourier transform [49].

Topological descriptor
Commonly referred to as path-based fingerprints, chemical structures are encoded
according to combinations of atom types and paths between them (e.g., atom-pair

fingerprints). They are essentially graph-based descriptors [50].

Quantum descriptors

Based on first-principles calculations. The descriptors calculated from the wave
function include energy levels, dipole moments, polarizability, etc. The quantum

descriptors are often considered to be more versatile since they better represent the
properties, but more difficult and time-consuming to obtain than the other descriptors

for the structure [51].
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In the past decades, the primary descriptor in most calculations for SSE remains the
structural characteristics of single crystals [52]. However, the size distribution of grains,
short-circuiting grain boundaries can lead to inhomogeneous conduction pathways on
polycrystalline samples [53], which often depended on experimental conditions such as
sintering temperature [54]. The description of volume and grain boundary conductivity
is not sufficiently clear. In addition, there are very few reports on how to construct a
descriptor about the grain distribution and grain boundaries [55]. For accurate predicting
SSE, determining the appropriate descriptors is currently an extreme challenge for experts
in this field.

4. Construction of ML Model

Appropriate ML algorithms are undoubtedly fundamental in the prediction process.
They significantly impact the prediction outcome, but scholars have not found the best
method to be applied to all cases so far. The construction of a suitable ML algorithm model
is divided into two main stages: the first stage is to encode the data into feature vectors (i.e.,
descriptors) as model input data and the second stage is to use the algorithm to map the
input data [56] on the corresponding desired attributes and we usually refer to the output
data of this mapping as labels (Figure 3). By ML, we can find the mapping relationship
between features and brands. When there is unknown data input with features but no
labels, we can get the titles of the anonymous data by the existing relationship.
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In a broad sense, we can divide ML into three categories: supervised learning, unsu-
pervised learning and semi-supervised learning. The main difference between the three is
the type and amount of available data.

4.1. Supervised Learning Model

Each data in the training set already has features and labels, i.e., it has input data
and output data by learning the relationship between input data and output data in the
training set. Supervised learning requires a training set and a test set to find patterns in the
training set and test them in the test set. Supervised learning can predict output values in
continuous quantities (e.g., bulk modulus, bandgap, etc.) or discrete quantities (e.g., crystal
structure, etc.) [40] and building models for the former requires regression and the latter
involves classification, the exact difference between the two depending on the type of data
and the problem posed, respectively. Some computational techniques can be applied to
both regression and classification. Supervised learning is like distributing fruits to people,
where the fruits are given and the results of the fruit classification (what category each
fruit belongs to) are provided as reference answers. A part of the fruits is left as a control
test. By doing so, the training is usually adequate. Currently, the main application of the
SSE screening process is generally the supervised learning model [57] and the most critical
application of ML in the materials domain is also the supervised learning model [58,59].

4.2. Unsupervised Learning Model

In contrast to supervised learning models, unsupervised learning uses only feature
vectors and not labels, usually unknown in unsupervised learning models. Unsupervised
learning models need to reveal the patterns within the data themselves to help find them.
Unsupervised learning is the equivalent of assigning a reference standard to a person
without giving them a list of similarities to indicate which fruits are in the same category.
Unsupervised learning models are generally applied for classification purposes or reduction
of the dimensionality of the fingerprint vector. Unsupervised methods solve the problem
of being created from sparse datasets. Still, because of this, the accuracy of the data can
have a significant impact on the results of unsupervised learning models when applying
small dataset construction.

4.3. Semi-Supervised Learning Model

The function is generated by combining the data in the training set partly with features
and labels and partly with only features in the middle band of supervised and unsupervised
learning. The basic rule is that the local characteristics of some labeled data and the
overall distribution of unlabeled data are used to obtain acceptable or good classification
results [60]. Semi-supervised learning is equivalent to distributing fruits to a person,
classifying some of the fruits and letting the person explore the laws to organize the other
fruits by himself. Currently speaking, the use of semi-supervised learning in SSE prediction
is relatively rare.

5. Algorithm Application

According to different data types and quantities, all three ML models are used to
construct a predictive SSE model. In most cases, the prediction process for SSE is the same as
other materials. Most SSE cases were using the supervised learning model. SSE are mainly
divided into different compositions such as oxides, sulfides, halides, etc. The descriptors
from various properties of SSE are difference reported in different literatures. Next, we
will specifically analyze the ML algorithms that have been applied in the prediction model
of SSE.

Kernel methods are a collection of pattern recognition algorithms; the most widely
used Kernel methods include support vector machines (SVM) [61] and Kernel ridge re-
gression (KRR). The core of Kernel methods is the use of Kernel functions. The Kernel
function is a function that converts the input data into a higher dimensional representation,
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reducing the computational complexity and making the problem easier to solve. Fujimura
et al. [57] used SVM regression to train an ML model with diffusion-related properties.
The authors predicted the ionic conductivity of 72 compounds at 373 K, finally predicting
that one of them, Li4GeO4, has the highest ionic conductivity. In this work, the phase
transition temperature (Tc), the diffusivity (D1600), the average volume of the disordered
structure (Vdiss) and the experimental temperature T were served as independent variables,
while the logarithm of the ionic conductivity as the dependent variable. The first-principles
calculations were performed iteratively and centrally, which significantly accelerated the
prediction process, suggesting potentially superior candidate lithium superionic conduc-
tors. The elastic tensor constants of the cubic-phase materials were trained using Kernel
ridge regression and gradient lift regression. The interfacial stability between the anode
and the SSE can also be used to find potential SSE [62], finally finding high mechanical
performance SSE such as LiOH, LiAuI4, LiBH4, Li2WS4, etc. These SSE have high ionic
conductivity properties while having interfacial stability. Cubuk et al. [63] performed
migration learning by SVM using descriptors with physical guidance, which allowed the
screening of 20 billion ternary and quaternary Li-containing compounds and proposed
some of them as promising SSE candidates.

The main idea of Sparse Gaussian Process Regression (SGPR) is to select a repre-
sentative subset of the available training data for the Gaussian Process Regression (GPR)
approximation model. GPR is a nonparametric model that uses a Gaussian process before
regressing the data, in which each point in the continuous input space is associated with a
normally distributed random variable. Hajibabaei et al. [64] applied SGPR to hundreds
of potential SSE, focusing mainly on ternary SSE and obtained 22 fast Li-ion conductors,
four of which have the same set of elements (Li-P-S). In this investigation, it was shown
that the models generated using the SGPR method can be more easily combined and can
be directly applied to model quaternary composite crystals, an approach that provides a
foundation for subsequent studies of SSE with complex elements.

A decision tree is a prevalent classification model representing a mapping relationship
between object attributes and values. Each node in the tree represents an object. In contrast,
each bifurcation path represents a possible attribute value. Each leaf node corresponds
to the entity’s value represented by the way experienced from the root node to that leaf
node [65]. Decision trees are often used in integration methods, which combine multi-
ple trees into a single predictive model to improve performance. For example, random
forests [66] or rotating forests [67], two algorithms commonly used in the materials field,
are attributed to decision tree models. Light Gradient Boosting Machine (LightGBM)-an
algorithmic framework that implements gradient descent trees (an iterative decision tree
algorithm), has been used to predict mechanically superior electrolytes [68]. With this
algorithm, physical properties were found to be the most influential features for predicting
mechanical properties (volume, density, space group number and atomic number) and the
17,621 SSE in the database were filtered to obtain 2842 SSE with high mechanical properties.
It is believed that this model and other data sets can accelerate finding the best SSE to
satisfy the sought mechanical conditions.

The logistic regression model is a generalized linear regression analysis model that
focuses on the relationship between the dependent and independent variables. To identify
potential superionic structures from a database using training data, Sendek et al. con-
structed a multivariate predictor of high ionic conductivity from feature vectors. This
work utilized a Logistic Regression model (LR) to differentiate and successfully screened
12,831 lithium-containing solid materials to 21 promising structures and proposed a simple
atomic descriptor function, which cannot provide predictive power for ionic conductivity
alone [35]. Sendek et al. analyzed the misinformation and compiled this information, which
is undoubtedly extremely necessary for the prediction of SSE. In addition, new data suggest
that halide-based SSE are more likely to meet the requirements of high ionic conductivity
and electrochemical stability compared to sulfides and oxides [69].
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Neural networks are constructed based on the neural network principle of the human
brain in biology, which can mimic the operation of the brain: a large number of neurons
(processing units) are interconnected and each connection between two neurons represents
a weighted value for the signal of that connection, which is equivalent to the memory of
the neural network. The interconnections of neurons from a complete net that processes
the input data layer by layer can convert them into a more closely related representation
to the output target [70] (Figure 4A). Thus, ANNs have a solid ability to capture complex
nonlinear relationships from large-scale datasets, but practical applications are less fre-
quent in screening SSE. Convolutional neural networks [71], which include convolutional
computation and have a deep structure, are now frequently used for material prediction.
Convolutional neural networks have more layers of neural networks, perform well with
more data and can be applied to both supervised and unsupervised learning. For better
application in materials, Xie and Grossman proposed a generalized crystal graph convolu-
tional neural network (CGCNN) framework by constructing neural networks on crystal
graphs generated from crystal structures [72]. Ahmad et al. successfully screened over
12,000 inorganic solids for shear modulus and bulk modulus using CGCNN, as already
mentioned in the previous section, which helped improve the mechanical properties of
SSE [62]. The crystal graph convolutional network illustration and the screening process of
high mechanical properties SSE using crystal graph convolutional neural network is shown
in Figure 4B.

The clustering algorithm is an unsupervised learning algorithm that requires only
data without labeling results. Clustering algorithm brings similar samples together and
similarity is defined by distance, with high similarity within groups and low similarity
between groups. The models can be clustered into classes. Hierarchical clustering in
clustering allowed to successfully distinguish fast lithium conductors from poor lithium
conductors [73]. Zhang et al. used a quantitative representation of the complex material
structure as input to train an unsupervised model (Figure 5a) and they classified the
modified X-ray diffraction (mXRD) using a clustering approach to define each anion lattice
and fully capture the anion crystal structure information (Figure 5b). They confirmed that
the symmetry and order of the mXRD-encoded anion lattice of SSE are closely related to the
ionic conductivity, which led to the prediction of 16 new compounds with high lithium-ion
conductivity, a few of which exceed 10−2 S/cm. Most of these newly discovered materials
are highly different from the currently known fast lithium-ion conductors in terms of
chemical composition and structure. It demonstrates the effectiveness of unsupervised
learning methods for finding new materials in an extensive range of material spaces and
reveals unique structure-property relationships between anion lattices and Li+ conductivity
in large material spaces. The workflow of unsupervised learning-guided solid-state lithium-
ion conductor discovery is shown in Figure 5c.

In addition to the above ML algorithms, several ML algorithms such as k-nearest
neighbor (KNN) algorithm [74], Naïve Bayes classifier [75], linear regression (LR) [76] and
gradient boosted regression (GBR) [77] have been used in the materials domain. However,
there are fewer prediction processes involving SSE, so we will not dwell on them too
much. All the algorithms are not independent of each other. The data can be analyzed
by comprehensive statistical tests of several algorithms in algorithm modeling [78] to
obtain the best results. We can note that in many of the above algorithms, neural networks
can learn layer by layer on the input and produce high learning rates, so neural network
algorithms are often combined with other algorithms to build prediction models and
thus obtain higher accuracy on the data results. The clustering method, which can find
complex patterns hidden behind multidimensional data, is well suited for predicting ionic
conductivity of SSE, but the clustering method relies more on high-precision data, which is
often difficult to obtain and is, therefore, less commonly used than other algorithms.
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Figure 4. (A) Diagram of a typical artificial neural network. The black, blue and red circles indicate
input, hidden and output layers. Each circle represents an artificial neuron and arrows indicate
connections from the output of one neuron to the input of another. Reprinted from Reference [70]
with permission from John Wiley and Sons. (B) Illustration of the crystal graph convolutional
neural networks and the screening process of high mechanical properties SSE using crystal graph
convolutional neural network. (a) Construction of the crystal graph. Crystals are converted to graphs
with nodes representing atoms in the unit cell and edges representing atom connections. Nodes and
edges are characterized by vectors corresponding to the atoms and bonds in the crystal, respectively.
(b) Structure of the convolutional neural network on top of the crystal graph. R convolutional
layers and L1 hidden layers are built on top of each node, resulting in a new graph with each node
representing the local environment of each atom. After pooling, a vector representing the entire crystal
is connected to L2 hidden layers, followed by the output layer to provide the prediction. Revised
from Reference [72] with permission from American Physical Society. Revised from Reference [62]
with permission from American Chemical Society.
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Figure 5. Schematics of the unsupervised discovery of solid-state Li-ion conductors. (a) Crystal
structures of known Li-ion conductors, showing a large diversity of design and chemistry. (b) mXRD
patterns of selected materials in comparison to those of ideal fcc (face-centered cubic), hcp (hexagonal
close-packed), bcc (body-centered cubic) lattices. (c) Workflow of unsupervised learning guided
discovery of Li-ion conductors. Reprinted from Reference [73] with permission from Springer Nature.

6. Algorithm Optimization

After constructing a model, we may find a significant error when using the trained
model for prediction. It is time to optimize our model to reduce the error to the lowest
possible level. High bias (underfitting) occurs when the model is not flexible enough to
describe the relationship between input and predicted output or when the data is not
detailed enough to find patterns. High variance (overfitting) occurs when the model is
too complex, the sample size is too small, or other problems such as mislabeling [39]. In
simple terms, underfitting is occurred when the data features are not captured better. Thus,
the data cannot be fitted well, while overfitting is occurred when the model learns data
so thoroughly that the parts of the noisy data are also known. The balancing act between
overfitting and underfitting is called the bias-variance tradeoff and is usually controlled
by cross-validation (CV) and a more refined dataset design [79]. The basic idea of cross-
validation is to group the original data into a training set, a validation set and a test set and
then evaluate the accuracy of the model trained in the training set with the data from the
validation set, averaging the results of several evaluations as the final evaluation of the
model accuracy and using them to adjust the algorithmic model.

7. Views and Conclusions

ML has now started to be gradually and thoroughly applied to materials science
and has already brought many promising applications to SSE research. In the case of LIB
SSE prediction, we can see that ML algorithms perform well: helping researchers extend
datasets by text mining from the literatures [36,80], providing new tools for screening
SSE with high mechanical properties or high ionic conductivity. In terms of predicting
materials, the reduction of computational cycles is undoubted great importance. However,
it is undeniable that materials informatics derived from ML is still in its infancy and there
are still apparent challenges for materials experts.

The complete process from framing the model to the final prediction is very laborious.
ML is a multi-disciplinary discipline and for some materials researchers with little back-
ground in computing, there are significant barriers to entering the field. The integration of
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ML models into modules that can be useful to new scholars to the area is a considerable
challenge. Pu et al. [81] proposed an interactive system for experts to select appropriate
ML models, representing the progress that some scholars in this area have made.

ML requires a large amount of data for learning to ensure its accuracy. However, many
data are limited to hundreds, such as the screening process of SSE. Some data are even
qualified to tens, which affects the accuracy of screening results. Little attention has been
paid to reports of failure data in this field, but it has to be acknowledged that failure data
are also critical [82]. To solve the problem of little learning data from small samples, the
learning to learn model has been developed, which called meta-learning [83].

All fields suffer from a reproducibility crisis. The process of not reproducing data from
the literature and the need to explore it from scratch due to changes in software versions or
default variables can be excruciating for experts in the field. Artrith et al. suggest making
complete code or workflows available in public repositories that guarantee long-term
archiving [84] so that others and further refined can fully replicate them.

We have reviewed the general process of ML in materials prediction in an easy-to-
understand manner and described the latest approaches and specific applications of ML in
SSE prediction. Although there are still many challenges in this field, partial solutions have
gradually emerged in the literature. Recently, ML has been proposed as a successful model
for SSE prediction and can predict desired new materials, suggesting that the use of ML is
transformative for materials research. It is still a great challenge to make the models more
interpretable for scholars. Undoubtedly, the data-driven materials science will become a
significant future research trend. We expect more materials scholars to be aware of this
paradigm and pay attention to it.
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