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Abstract: The integration of mixed ionic–electronic conducting separation membranes in catalytic
membrane reactors can yield more environmentally safe and economically efficient processes. Con-
centration polarization effects are observed in these types of membranes when O2 permeating fluxes
are significantly high. These undesired effects can be overcome by the development of new mem-
brane reactors where mass transport and heat transfer are enhanced by adopting state-of-the-art
microfabrication. In addition, careful control over the fluid dynamics regime by employing compact
metallic reactors equipped with microchannels could allow the rapid extraction of the products, min-
imizing undesired secondary reactions. Moreover, a high membrane surface area to catalyst volume
ratio can be achieved. In this work, a compact metallic reactor was developed for the integration of
mixed ionic–electronic conducting ceramic membranes. An asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3–δ

membrane was sealed to the metallic reactor by the reactive air brazing technique. O2 permeation
was evaluated as a proof of concept, and the influence of different parameters, such as temperature,
sweep gas flow rates and oxygen partial pressure in the feed gas, were evaluated.

Keywords: metallic compact reactors; MIEC membranes; catalytic membrane reactors; O2 separation

1. Introduction

Process intensification aims to increase the production capacity, to decrease the en-
ergy consumption and to reduce waste with the subsequent reduction of the production
costs. The development of new processes and equipment is a key factor to reach these
goals. In this context, the integration of catalytic membrane reactors employing mixed
ionic–electronic conductors (MIEC) based separation membranes could yield more envi-
ronmentally safe and economically efficient processes. These membrane reactors allow for
the controlled removal or feeding of O2, and consequently, enable to surpass equilibrium
conversion or increase product selectivity in reactions, such as oxidative dehydrogenation
of hydrocarbons, oxidative coupling of methane or partial oxidation of methane [1–8].
MIEC materials allow the transport of oxygen ions and electrons through their crystal
structure. The O2 separation is then driven by the O2 partial pressure gradient across the
membrane. Some of the needed targets for these types of membranes are listed: (a) high
permeation fluxes; (b) low cost and (c) stability and durability.

Amongst the different MIEC materials, perovskites (ABO3–δ) and fluorites (AO2 where
A is a cation such as Zr4+ or Ce4+) based compounds are the most promising as oxygen
permeable membranes [9,10]. The most studied perovskites are based on Sr(Co,Fe)O3–δ
(SCFO) and Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF) materials. In order to improve their O2 per-
meation and stability, they can be tailored by substituting the metal cations [11–14]. In
addition, O2 transport can also be improved by decreasing the membrane thickness, giving
rise to important oxygen permeation fluxes [15–17]. These thin membranes are normally
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deposited on a porous substrate for ensuring the mechanical stability. This support results
in an additional mass transport resistance, giving rise to a reduction of the expected O2 flux
because of a decrease in the O2 partial pressure difference over the actual membrane. This
limitation has been partially overcome by using supports with engineered porosity [18–20].
The highest O2 flows by using MIEC-based membranes have been achieved with thin
membranes made of BSCF with a thickness of around 30 µm [15]. Lower but important
O2 fluxes and improved stability were obtained for LSCF (La0.6Sr0.4Co0.2Fe0.8O3–δ) thin
film membranes [15]. Another possible limitation is a slow catalytic surface exchange
that becomes the limiting step for O2 permeation at temperatures below 700 ◦C. This can
be overcome by the deposition of porous activation layers on the membrane faces [3,21].
However, concentration polarization can also occur when O2 permeating fluxes are high
due to the gas phase mass transport resistance. This causes an increase in the oxygen con-
centration on the membrane surface in the permeate side, which subsequently decreases the
driving force. This last drawback could be alleviated by the development of new membrane
reactors where mass transport and heat transfer are enhanced by adopting state-of-the-art
microfabrication. In addition, careful control over the fluid dynamics regime in the reactor
could also allow for a more rapid extraction of the products in a catalytic membrane reactor,
minimizing secondary reactions [22]. The integration of microchannels in these metallic
compact reactors provides a high membrane surface area to catalyst volume ratio [23].

On the other hand, tested ceramic membranes are mostly placed in ceramic or quartz
housings, which are prone to damage because they are brittle and breakable. The use of
compact metallic reactors could help to overcome the abovementioned drawbacks and to
enable high-pressure operation. Furthermore, this membrane reactor concept could enable
an easier use and scale-up of ceramic membranes in a stable housing [24]. One of the major
challenges of the integration of ceramic membranes in metallic reactors is the sealing of the
membrane to the metal parts due to the difference of the thermal expansion coefficients.
Brazing techniques seem to be the most promising option to get a high temperature sealing
of ceramic and metals [25]. Several successful attempts have been obtained in the last years
by using Ag-CuO based pastes, allowing for a robust sealing [21,22].

This study is based on the manufacturing and testing of a metallic membrane module
for the integration of ceramic membranes. This work is divided into several steps: (a)
development of a compact metallic membrane reactor that allows it to work at high pressure
and high flow velocity; (b) development of the sealing process by a brazing technique; and
(c) O2 permeation measurements with an asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF)
membrane as a proof of concept.

2. Materials and Methods
2.1. Membrane Reactor

A compact metallic membrane reactor was designed to integrate ceramic oxygen
permeable membranes (Figure 1). The reactor consisted of a housing with two separated
parts that provided inlets and outlets for sweep gas (permeating chamber) and feed gas
(feed chamber) (Figure 1a). The housing was made of high temperature resistant metal alloy
(Nicrofer® 3220H/Alloy 800 (1.4876), ThyssenKrupp, Essen, Germany). The membrane
module consisted of a rectangular plate made of Inconel alloy 625 with a disk holder
as shown in Figure 1b. The module separated both chambers of the reactor (sweep and
feed) and allocated the membrane. Inconel alloy 625 was selected due to the similar
thermal expansion coefficient (TEC) compared to La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) as shown
in Figure 2 where TEC of LSCF, Inconel 625 alloy and Ag (used in the brazing) are plotted.
The disk holder used in this work had an external diameter of 13 mm and an internal
diameter of 7 mm, which was the effective area of the membrane. In addition, modules
with different holder geometry were also developed. The membrane module was leak-tight
integrated in the housing by using phlogopite mica sealings, which can be observed in the
schematic of the membrane reactor.
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Figure 1. Housing (a), membrane module (b) and schematic of the membrane reactor (c).

The membrane reactor worked in two different configurations: (a) co-current: where
inlets of the sweep and feed sides were located in the same extreme of the reactor and (b)
counter-current: inlets were in opposite extremes. These two different configurations can
play an important role in the heat transfer and mass transport during the different reactions
of interest where MIEC membranes can be integrated [26–29].
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Figure 2. TEC of LSCF, Ag and Inconel 625 alloy [27,30–32].

2.2. Membrane Manufacture

An asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) membrane was employed in this
study. The LSCF membrane consisted of a dense layer of 22 ± 1.6 µm thickness and a
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support of 810–840 µm thickness with a porosity of 38 ± 1.6%. It was manufactured by
tape casting, following the procedure described in a previous study [15]. A porous LSCF
layer with a thickness of 13 ± 5 µm and a porosity of 37 ± 1 was also applied on the free
surface of the dense membrane, aiming to improve the surface exchange kinetics of the
membrane [3].

2.3. Membrane Sealing

Sealing of the LSCF membrane to the membrane module was made by reactive air
brazing (RAB) using an Ag-based paste with a composition of 91.5 wt% Ag, 8 wt% CuO
and 0.5 wt% Ti(H) (Innobraze GmbH, Esslingen am Neckar Germany). The paste was
applied to the cavity of the membrane module by brushing, and the asymmetric membrane
was placed and loaded with 20 g weight. It was heated to 750 ◦C (heating rate of 6 K/min),
and then to 950 ◦C (heating rate of 10 K/min) where brazing took place for 1 h. Afterward,
it was cooled to room temperature with a cooling rate of 100 K/h.

Before the sealing, the membrane module made of Inconel was annealed at 800 ◦C for
5 h in air to generate a Cr–oxide protective layer in order to prevent diffusion of the metal
cations into the braze and evaporation.

2.4. Oxygen Permeation Measurements

Oxygen permeation studies were conducted in the metallic membrane reactor as
described above. Argon was used as sweep gas on the dense membrane layer side (per-
meate side), and oxygen containing atmospheres were fed on the support side (feed side).
The choice of this configuration was based on previous works on self-supported thin
membranes [15,16]. The absolute pressure on the sweep side of the reactor was 2 bars,
while it was 1.6 bars in the feed. A thermocouple was attached to the membrane in order
to control the temperature. The O2 flux (J(O2)) was studied for various sweep gas flow
rates and different oxygen partial pressures (pO2) in the feed. The O2 concentration in the
permeate was analyzed by using a micro-GC Agilent 490 equipped with Molsieve 5A and
Pora-Plot-Q glass capillary modules. Membrane gas leak-free conditions were ensured by
continuously monitoring the nitrogen concentration in the sweep gas stream (permeate
side). The detected N2 was always lower than 5% of the O2 detected in the sweep gas
stream. Measurements were performed after 1 h of stabilization, and the GC analysis for
each condition was repeated three times to minimize the analytical error. The standard
deviation observed in the measurements ranged between 0.0005 and 0.014. Oxygen perme-
ation was measured from 750 ◦C to 650 ◦C. The membrane was under operation for a total
of 450 h. SEM and EDX analyses of the membrane cross-sections (as produced and after
permeation measurements) were performed using a Zeiss Ultra 55 instrument (Zeiss, Jena,
Germany). The samples were embedded at 300 mbar in a resin and subsequently polished
to mirror finish.

3. Results
3.1. Oxygen Permeation Results

Oxygen permeation was measured using an asymmetric LSCF membrane with a
thickness of 22 ± 1.6 µm. A porous LSCF layer was coated on the dense side of the
membrane in order to improve the catalytic activity of the surface and consequently the O2
permeation [4]. Micrographs of the cross section of the whole membrane and a detail of the
porous catalytic layer and the support are shown in Figure 3. Sealing of the membrane to
the metallic membrane module by RAB was successful, and no leaks between either side
of the membrane were detected based on GC analysis of the effluent gases.
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Figure 3. SEM micrographs of the cross-section of the membrane (a), catalytic layer (b) and support (c) after O2 permeation
measurements.

An exhaustive study of the sweep flow rate and the feed side concentration influence
on the O2 permeation was performed in co-current configuration. First, O2 permeation
was measured between 750 ◦C and 650 ◦C by feeding 300 mL·min−1 of synthetic air at the
support side and varying the sweep flow rate from 300 to 700 mL·min−1. O2 fluxes obtained
as a function of the sweep flow rate at different temperatures are plotted in Figure 4a. The
O2 flux remains practically constant with the increase in the sweep flow below 700 ◦C
because no important gas diffusion resistances are expected due to the low O2 permeation
flux. On the contrary, at temperatures above 700 ◦C, an increase in the O2 flux with the
sweep flow is observed, this improvement being around 12% for 700 mL·min−1 argon
sweep at 750 ◦C. The improvement is related to the dilution of oxygen in the permeate
side. This gives rise to a higher oxygen driving force and an improvement of the mass
transfer from the gas phase to the external surface of the porous activation layer [15,16].
The apparent activation energy (EA) remained almost constant regardless of the sweep
flow rate, being 1.88 eV and 1.89 eV for 300 mL·min−1 and 700 mL·min−1, respectively, as
observed in Figure 4b. This indicates that gas phase concentration polarization was not
rate controlling. However, the activation energy is well above than what is reported for
bulk diffusion in LSCF, i.e., 1.41 eV, which indicates a significant influence of the surface
exchange kinetics. [33] For comparison, similar asymmetric LSCF membranes measured
under analogous conditions [15] at temperatures between 600 ◦C and 700 ◦C showed an
apparent activation energy of ~179 kJ/mol (1.86 eV) when no catalytic layer was applied,
whereas this decreased to ~137 kJ/mol (1.42 eV) when an activation layer was coated. The
EA of 1.88 eV, thus, indicates important surface exchange limitations. Since the surface
activation layer in our study does not change the activation energy, these surface exchange
limitations do not result from the free membrane surface, but the low surface area at the
membrane/support interface. These limitations can be alleviated by the improvement of
the support and the catalytic layer by optimizing their structural parameters, especially the
increase in the surface area and by infiltration of catalytic nanoparticles [19,20,34,35].
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Figure 4. O2 flux as a function of the sweep flow rate (a) and as a function of the reciprocal temperature (b). Qfeed (synthetic
air) = 300 mL·min−1.

The influence of the O2 concentration in the feed was also evaluated. In addition, He
was used instead of N2 for diluting the O2 in order to assess the polarization resistance
of the porous support. The O2 flux variation by feeding different O2 concentrations as
a function of the reciprocal temperature is plotted in Figure 5. The O2 flux increases
with increasing pO2 due to the increase of the oxygen partial pressure difference between
both sides of the membrane as it is postulated by the Wagner equation. However, at
pO2 = 0.21 atm, the O2 flux increases when He is used instead of N2, ascribed to the faster
diffusion of oxygen through helium in the porous substrate compared to N2 due to the
higher gas diffusivity and lower viscosity [15].
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Figure 5. O2 permeation as a function of the reciprocal temperature and feed composition. Qsweep =
300 mL·min−1 and Qfeed = 300 mL·min−1.

Permeation follows an Arrhenius dependence, and the activation energies were 1.88 eV
(189.99 kJ·mol−1) and 1.71 eV (164.87 kJ·mol−1) in synthetic air and pure O2, respectively.
This decrease in the activation energy is attributed to the increase in the O2 concentra-
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tion, improving the surface exchange coefficient kex, which is typically proportional to
pO2

0.5 [15].
Depending on the reaction being conducted in the reactor, the flow mode, i.e., co- and

counter-current configuration, can play an important role. In this work, O2 permeation
was also measured in counter-current configuration. The O2 fluxes obtained in this config-
uration were practically the same as in co-current configuration and follow the same trend,
as observed in Figure 6,where O2 permeation as a function of the reciprocal temperature is
plotted (300 mL·min−1 of Ar and 300 mL·min−1 of synthetic air were used as sweep and
feed streams, respectively).
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Figure 6. O2 permeation flux as a function of the reciprocal temperature for co-current and counter-
current configuration. Qsweep = 300 mL·min−1 and Qfeed (synthetic air) = 300 mL·min−1.

These types of membranes and their integration in catalytic membrane reactors offer
several advantages as compared with the conventional technology. The oxygen separation
by using membrane technology is less energy intensive than conventional oxygen produc-
tion, such as cryogenic distillation. In addition, catalytic membrane reactors offer lower
unit/process volume, safe operation, minimization of secondary products (reducing the
separation steps) and consequently, energy saving [3,9].

In fact, the coupling of oxygen selective membranes with high temperature reactions,
such as oxidative coupling of methane and partial oxidation of methane, can offer different
benefits when compared with conventional reactors (where O2 is co-fed). In these reactions,
the distribution of oxygen allows to work at low oxygen concentration in the reactor,
maximizing the products yield, in addition to operating below the explosive limits for
CH4/O2 mixtures [9,36,37]. Furthermore, two different reactions could be performed in
the same membrane. An example of this coupling of processes was reported by Jiang et. al.
where water splitting and partial oxidation of methane were performed simultaneously by
using a MIEC hollow fiber [38].

3.2. Membrane and Sealing Characterization after Permeation Measurements

The membrane was characterized by SEM after 450 h on stream and several thermal
cycles. After the permeation measurements shown in the previous section, membrane leak
increased and consequently the measurement was stopped.
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The analysis of the joining was conducted on polished cross-sections using SEM and
EDX. An overview shows the metallic support made of Inconel, the oxide protective layer,
the Ag-Cu braze, the dense LSCF membrane layer and the porous LSCF support (Figure 7a).
The good adhesion of the Ag-Cu braze to the oxide protective layer and the dense LSCF
membrane is evident. However, microstructural changes in the protective and membrane
layer are visible in detailed images compared to non-exposed joints. Along the metal
surface (Inconel), a Cr-oxide protective layer was created in order to prevent diffusion of
the metal cations into the braze and evaporation. The BSE image of this protective layer
is shown in Figure 7b, where two phases are identified. The darker phase, which is in
contact with the metallic support, contains mainly Cr with small traces of Ni, Fe, and Mo,
as expected for the protective layer. Traces of Ag are found at the interface that could have
been introduced by the polishing process. The light phase of the protective layer, which
is in contact with the Ag-Cu solder, has Ni as main element and contains Cu and only
traces of Cr. It can be seen that the Cr-oxide protective layer has not completely stopped
the diffusion of metal cations toward the Ag-Cu solder.
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The Ag-Cu solder joint appears free of foreign phases. However, the contact surface
between the solder and the dense LSCF membrane shows bulge-like unevenness (Figure 7c)
compared to the previously smooth membrane surface.

The BSE detail image of a bulge shows a dark contaminant phase in the lighter LSCF
matrix (Figure 8) The grain structure is already clearly dissolved. It is also visible that
the grain boundaries below the bulge are decorated with a dark contaminant phase. The
EDX examination shows that the dark phase (pointed as 1 and 5) consists mainly of Ni,
Cr, Cu and the elements of LSCF, while in the light grey phase (pointed as 2 and 3) Mo
is the main element detected while La and Sr are present, but neither Co nor Fe. Point 4
shows a light grey grain boundary decoration, which consists mainly of Mo. The diffusion
of the metal cations, mainly Mo, from the metallic support into the LSCF seems to change
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the structure of the membrane layer. Possibly, the Mo cations lead to a change in chemical
composition of the LSCF, which could explain the dissolution of the LSCF grain structure
and the compositions in point 2 and 3.
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Furthermore, the diffusion leads to an increase in volume in the membrane layer,
which induces compressive stresses. Those are compensated by the solder in the joining
area. Directly behind the joint, however, delamination of such a bulge occurs (see Figure 9).
The crack does not run along the interface between the dense and porous layer, as ex-
pected, but within the membrane. Here, too, the grain boundaries are occupied by the
Mo-rich second phase. Therefore, this phase seems to have a negative influence on the
mechanical strength.
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In summary, Ni, Cr and Mo can pass through the Cr-oxide protective layer of the
Inconel support. Mo seems to pass through the solder and damages the LSCF ceramic.
Here, the role of the Cu contained in the solder has not yet been considered. A detailed
investigation of the damage mechanisms will be the subject of further work.

4. Conclusions

The integration of MIEC ceramic membranes in compact metallic reactors allows the
operation of these types of membranes at high pressures and present the added advantage
of an enhanced mass transport and heat transfer. In addition, compact metallic reactors
can be equipped with microchannels allowing the rapid extraction of the products and
providing a high membrane surface area to catalyst volume ratio.

Because of these interesting features, a compact metallic reactor for the integration of
MIEC ceramic membranes was constructed. The reactor consisted of a housing made of
Nicrofer® 3220H/Alloy 800 with two separated parts provided of inlets and outlets for the
permeating and feed chamber. A membrane module that separates both chambers of the
reactor was developed to allocate the MIEC ceramic membrane.

In this study, the viability of the MIEC ceramic membranes integration in the devel-
oped compact metallic reactor was demonstrated. For this purpose, O2 permeation studies
were conducted using an asymmetric La0.6Sr0.4Co0.2Fe0.8O3–δ membrane. The membrane
was leak-tight integrated in the module by reactive air brazing (RAB) using Ag-based paste.
The influence of the temperature, sweep flow rates and oxygen partial pressure in the feed
on the O2 permeation flux was evaluated.

No important gas diffusion resistances were observed in the studied conditions. O2
permeation was mainly controlled by the surface exchange kinetics despite the applied
catalytic layer on the dense membrane. The low surface exchange kinetics are attributed to
the low specific surface area of the support in the proximity of the dense membrane layer.
In order to improve the surface exchange kinetics, the porous support and the catalytic
layer can be optimized by tuning the structural parameters, such as specific surface area,
porosity, tortuosity and average pore opening diameter. In addition, the infiltration of
catalytic nanoparticles can boost the surface exchange kinetics.

The MIEC membrane was continuously operating during 450 h without any detectable
leak and performance degradation. However, after this time, a leak was clearly observed.
The characterization of the membrane-metal joint by SEM evidenced a good adhesion of
the Ag-Cu braze to the oxide protective layer of the steel and the dense LSCF membrane
layer. However, microstructural changes in the protective and membrane layers were
detected. The Cr-oxide protective layer did not totally hinder the diffusion of metal cations
toward the Ag-CuO solder and the contact surface between the solder. In order to avoid the
diffusion of cations that hinders the long-term operation of the membrane, more studies are
needed. These studies should be based on the use of alternative metallic alloys, protective
layers or the development of thin membranes on porous metallic supports.

In summary, this work represents a proof of concept of the integration of ceramic
membranes in compact metallic reactors that are promising for the development of modular
catalytic membrane reactors.
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