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Abstract

The causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with

MS in observational studies and is often thought of as an environmental risk factor. We used

two-sample Mendelian randomization (MR) to examine whether this association is causal

using genetic variants identified in genome-wide association studies (GWASs) as associ-

ated with smoking. We assessed both smoking initiation and lifetime smoking behaviour

(which captures smoking duration, heaviness, and cessation). There was very limited evi-

dence for a meaningful effect of smoking on MS susceptibility as measured using summary

statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-anal-

ysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect

of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confi-

dence interval [CI] 0.92–1.61; lifetime smoking: OR 1.10, 95% CI 0.87–1.40). These findings

suggest that smoking does not have a detrimental consequence on MS susceptibility. Fur-

ther work is needed to determine the causal effect of smoking on MS progression.

Background

Smoking is an avoidable environmental cause to many life-threatening diseases such as lung

cancer and heart and respiratory disorders [1,2]. There is emerging evidence linking cigarette

smoke to conditions negatively affecting the central nervous system (CNS), like multiple scle-

rosis (MS) [3,4]. MS is a chronic neurological disorder causing autoimmune breakdown of the
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myelin sheath surrounding axons in the CNS [5]. The disease is characterised by periods of

disease activity followed by remission and/or progressive neurological decline, resulting in

increasing disability [6]. Like most autoimmune conditions, there is no known specific cause;

however, we know there is an interaction between genetic and environmental factors in sus-

ceptible individuals that go on to develop the disorder [7]. Unfortunately, there is no cure for

MS [8], and people diagnosed with MS often live with extreme disability [9]. There are emerg-

ing treatments aimed at modifying the disease course [10], but they are not universally effec-

tive particularly with regard to the progressive form of the disease. Therefore, it is important to

continue targeting prevention by means of establishing causal links.

Evidence from observational epidemiological studies suggests that smoking increases MS

risk [11]. It is hypothesised from experimental studies that exposure to chemicals in cigarette

smoke alters the immune cell balance in the lung [12,13], which, in turn, can lead to general-

ised pro-inflammatory effects that trigger autoimmunity [14,15], in genetically susceptible

individuals [16,17]. In addition, cigarette chemicals may contribute mechanistically to MS

pathobiology. Specifically, nicotine is suggested to increase the permeability of the blood–

brain barrier [18], cyanide may contribute to demyelination [19], and nitric oxide could cause

degeneration of axons [20]. There is evidence for an association between smoking and worsen-

ing symptoms, number of relapses, lesion load on magnetic resonance imaging (MRI), brain

atrophy rate [15], and the rapidity of disability progression in MS patients [4,21,22].

However, it is hard to make causal inferences from observational studies, which can be

biased by issues of reverse causation and residual confounding. One method which can be

used to reduce these sources of bias is Mendelian randomization (MR) [23]. MR can be imple-

mented through instrumental variable analysis that uses genetic variants to proxy the exposure

(e.g., smoking) and estimate a causal effect of that exposure on the outcome (e.g., MS). The

MR method makes 3 important assumptions: (1) the genetic variants must robustly predict the

exposure; (2) the genetic variants must not be associated with any confounders; and (3) the

genetic variants must only affect the outcome through the exposure [24]. To satisfy the first

assumption, we selected the most recently available genetic instruments from previously con-

ducted genome-wide association studies (GWASs) associated with smoking behaviour (smok-

ing initiation [25] and lifetime smoking [26]) that can be implemented in a two-sample MR

context (Fig 1A). The latter 2 assumptions can be violated by horizontal pleiotropy, which

occurs when the genetic variants affect the outcome other than through the exposure. We test

for this possibility using multiple sensitivity analyses. In order to examine the association

between smoking and MS, we chose to investigate smoking behaviour using 2 specific pheno-

types relating to the initiation and a lifetime use of tobacco. Smoking initiation indicates

whether an individual had ever smoked regularly and the lifetime smoking exposure which

captures both smoking initiation (i.e., ever and never smokers) and, among ever smokers,

takes into account smoking duration, heaviness, and cessation.

Results

Smoking initiation

The inverse-variance weighted (IVW) MR estimate (odds ratio [OR] 1.03, 95% confidence

interval [CI] 0.92 to 1.16) revealed no strong evidence for a causal effect of the genetic risk of

smoking initiation on the incidence of MS (Fig 2). This was consistent across all MR methods

employed, providing further support for the result as each MR method has different assump-

tions and therefore tests for different violations of those assumptions. Indeed, the weighted

median and weighted mode only allow single nucleotide polymorphisms (SNPs) in the largest

homogeneous cluster to contribute to the overall estimate and provide estimates with CIs
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overlapping the null (Fig 2 and Fig A in S1 Data). The 371 SNPs used as genetic proxies for

smoking initiation (Fig 1B and Table A in S1 Data) had an F statistic of 44.90, indicating a

strong instrument and that weak instrument bias was unlikely to be influencing the effect esti-

mates. There was evidence of heterogeneity with a large Cochran Q statistic of 559.48,

p = 6.65 × 10−6 and the MR-pleiotropy residual sum and outlier (PRESSO) global test value of

562.12, p< 0.000125. However, this not indicative of directional horizontal pleiotropy given

the consistent MR–Egger estimate (OR 1.13, 95% CI 0.67 to 1.91), small intercept (0.0017,

Fig 1. Schematic of MR analysis. (A) Directed acyclic graph of the MR framework investigating the causal relationship between smoking and

MS. Instrumental variable assumptions: (1) the instruments must be associated with the exposure; (2) the instruments must influence MS only

through smoking; and (3) the instruments must not associate with measured or unmeasured confounders in the smoking to MS relationship. (B

and C) Flowchart for selection of genetic variants associated with smoking initiation (B) and lifetime smoking (C). GSCAN, GWAS &

Sequencing Consortium of Alcohol and Nicotine use; GWAS, genome-wide association study; IMSGC, International Multiple Sclerosis

Genetics Consortium; IV, instrumental variable; LD, linkage disequilibrium; MR, Mendelian randomization; MS, multiple sclerosis; OR, odds

ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pbio.3000973.g001

PLOS BIOLOGY Smoking exposure and multiple sclerosis risk

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000973 November 30, 2020 3 / 13

https://doi.org/10.1371/journal.pbio.3000973.g001
https://doi.org/10.1371/journal.pbio.3000973


p = 0.73), and symmetrical funnel plot (Fig B in S1 Data). Similarly, MR-robust adjusted pro-

file score (RAPS) is robust to systematic and idiosyncratic pleiotropy, accounting for weak

instruments, pleiotropy, and extreme outliers and gave a similar causal estimate (OR 1.05, 95%

CI 0.93 to 1.17). Furthermore, MR-PRESSO removes individual outlier SNPs that contribute

to heterogeneity disproportionately in order to correct for horizontal pleiotropy. The

MR-PRESSO outlier corrected causal estimate was 1.040 (95% CI 1.040 to 1.041). Therefore,

the second instrumental variable assumption (known as the exclusion restriction assumption)

of MR has not been violated, and directional pleiotropy is unlikely to be biasing the estimates,

even though the outlier removal automatically leads to over precise estimates. Leave-one-out

and single-SNP analyses (Fig C and D in S1 Data) were conducted as sensitivity tests sequen-

tially omitting 1 SNP at a time and performing MR using a single SNP, respectively, to assess

the sensitivity of the results to individual variants. These indicated that there is not a single

SNP driving the association whose effect is being masked in the overall analysis. The exclusion

of exposure variants located within the major histocompatibility complex (MHC) did not alter

the null association between smoking initiation and the incidence of MS (Table B in S1 Data).

Lifetime smoking

There was no clear evidence for a causal effect of the genetic risk of lifetime smoking on the

incidence of MS (Fig 3). The 125 SNPs used as genetic proxies for lifetime smoking (Fig 1C

and Table C in S1 Data) had an F statistic of 44.05, indicating a strong instrument that is

unlikely to cause the effect estimates to be affected by weak instrument bias. The IVW MR

analysis estimate (OR 1.10, 95% CI 0.87 to 1.40) revealed no strong evidence for a causal effect

of the genetic risk of lifetime smoking on the incidence of MS and was consistent across all

Fig 2. Two-sample MR estimates of the association between smoking initiation and the incidence of MS. A two-sample MR analysis was undertaken to obtain

causal estimates of genetically predicted smoking initiation on MS susceptibility. MR and sensitivity analyses were performed using the TwoSampleMR R package

with a comparison across 5 different methods. ORs are expressed per unit increase in log odds of ever smoking regularly (smoking initiation), with a 1 SD increase

in genetically predicted smoking initiation corresponding to a 10% increased risk of smoking. The genetic variants used to proxy smoking initiation are the

conditionally independent genome-wide significant SNPs taken from the GSCAN consortium detailed in Table A in S1 Data. The estimates of their association with

MS are taken from the 2019 MS Chip IMSGC meta-analysis. CI, confidence interval; GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine use;

IMSGC, International Multiple Sclerosis Genetics Consortium; MR, Mendelian randomization; MS, multiple sclerosis; OR, odds ratio; p.val, p-value; RAPS, robust

adjusted profile score; SD, standard deviation; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pbio.3000973.g002
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MR methods employed (Fig 3 and Fig E in S1 Data). While the MR–Egger estimate deviated

somewhat from that of the IVW and other sensitivity analysis, this was explained by its

reduced power as evidenced by the wide CIs, which still overlapped the null (OR 1.34, 95% CI

0.49 to 3.65). There was evidence of heterogeneity among the individual SNP effect estimates

for lifetime smoking with a large Cochran Q statistic (156.18, p = 0.02) and MR-PRESSO

global test estimate of 158.4895, p = 0.03. However, this was not supported by the symmetrical

funnel plot (Fig F in S1 Data) nor by any outliers detected in the MR-PRESSO test. Further-

more, the small MR–Egger intercept (−0.003, p = 0.69) suggests that the magnitude of potential

bias from directional pleiotropy is low. Furthermore, there was no single SNP driving the asso-

ciation whose effect is being masked in the overall estimate as demonstrated by the leave-one-

out and single-SNP sensitivity analyses (Fig G and H in S1 Data). MR excluding the lifetime

smoking–associated variant located within the MHC region yielded consistent results overlap-

ping the null (Table D in S1 Data).

A bidirectional analysis shows that there was no clear evidence that a genetic predisposition

to MS is associated with either smoking initiation or lifetime smoking (Table E and F in S1

Data). A sensitivity MR of using MS-associated variants located within the MHC region

yielded consistent results overlapping the null (Table G and H in S1 Data).

Discussion

This study uses the MR method to estimate the causal effect of smoking on risk for MS. Using

a two-sample MR design in 14,802 MS cases and 26,703 controls, we found little evidence that

Fig 3. Two-sample MR estimates of the association between lifetime smoking and the incidence of MS. A two-sample MR analysis was undertaken to obtain

causal estimates of genetically predicted lifetime smoking on MS susceptibility. MR and sensitivity analyses were performed using the TwoSampleMR R package

with a comparison across 5 different methods. ORs are expressed per 1 SD increase of the lifetime smoking index. A SD increase in the lifetime smoking score is

equivalent to an individual smoking 20 cigarettes a day for 15 years and stopping 17 years ago or an individual smoking 60 cigarettes a day for 13 years and stopping

22 years ago. The genetic variants used to proxy lifetime smoking are the independent genome-wide significant SNPs taken from the GWAS of lifetime smoking

performed by Wootton and colleagues detailed in Table C in S1 Data. The estimates of their association with MS are taken from the 2019 MS Chip IMSGC meta-

analysis. CI, confidence interval; GWAS, genome-wide association study; IMSGC, International Multiple Sclerosis Genetics Consortium; MR, Mendelian

randomization; MS, multiple sclerosis; OR, odds ratio; p.val, p-value; RAPS, robust adjusted profile score; SD, standard deviation; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pbio.3000973.g003
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both genetically predicted smoking initiation and lifetime smoking are associated with MS

risk. These findings suggest that smoking is not a clear environmental risk factor for MS sus-

ceptibility and are in line with a recent independent study [27]. That study similarly found that

smoking initiation and lifetime smoking were not associated with increased MS risk using a

two-sample MR approach within the same MS susceptibility GWAS. The authors also investi-

gated the association between smoking heaviness and MS, although the interpretation of this

exposure in the absence of stratification by smoking status is unclear. Indeed, stratification in

this context is important as the effect of the smoking heaviness, proxied by the genetic instru-

ment, should be examined among current smokers only, not never smokers. An important dif-

ference with our study is the additional sensitivity analyses performed herein to assess

potential bias from pleiotropy, which is especially important given that pleiotropy can only be

tested indirectly. Indeed, we obtained MR estimates excluding smoking-related variants in the

MHC region due to its high potential for pleiotropy, in line with previous MR studies in MS

[28]. We also report results from MR-RAPS and MR-PRESSO analyses. Consistent estimates

across these additional pleiotropy robust MR methods increase the validity of our findings.

Moreover, our analysis included an increased number of variants as we used an r2 threshold of

0.8 instead of 0.9 for identifying proxies and did not exclude palindromic variants (given that

all genetic datasets are on the same genome build), resulting in slightly narrower CI. Although

a small effect cannot be entirely excluded, the relatively narrow CIs, particularly for smoking

initiation (0.92 to 1.16), make a clinically relevant effect less likely.

This contradicts previously reported observational studies that show an association with

MS risk among smokers, compared to nonsmokers, of a meta-analysed effect estimate OR of

1.5 [4,11]. The studies included limitations such as self-report MS diagnosis [29], participation

rate less than 80% [30–32], and loss to follow-up [33]. Additionally, observational studies may

have heterogenous results due to how smoking status was defined [11]. The strength of associ-

ation and causality between smoking and MS risk has been suggested due to a dose-dependent

relationship in duration and intensity of smoking [4,34] as well as from the interaction

between compounds present in cigarettes and specific genetic HLA variants, which include the

presence of HLA-DRB1�15, the absence of HLA-A�0201 [35], and specific N-acetyltransferase

1 (NAT1) polymorphisms [36]. Smoking status may strongly influence the risk of developing

MS associated with these genetic variants. This is thought to be through facilitation of epitope

cross-reactivity and subsequent activation of T cells. However, other studies have failed to rep-

licate this interaction [37,38]. In order to test this interaction in an MR casual inference con-

text, a factorial MR design in MS patients with and without those alleles would be required.

This was not possible in the present study due to the use of GWAS summary statistics. Obser-

vational estimates may have also been biased by residual or unmeasured confounding from

factors influencing both smoking status and MS. For example, comorbidities and socioeco-

nomic status may influence the likelihood of being a smoker and having MS [15,39].

In as much as we could, we ensured that there was no sample overlap between participants

(case and controls from the MS GWAS) in the exposure and outcome GWAS by using con-

sortiums that comprised completely separate cohorts. Indeed, the MS GWAS did not include

the UK Biobank, ensuring no overlap between lifetime smoking and MS GWAS cohorts.

There is a potential for overlap between the controls included in the smoking initiation

GWAS, and those of the MS GWAS, however, will not lead to bias.

Reverse causality arises if preclinical aspects of a disease affect the risk factor; in this case,

preclinical aspects of MS might influence the likelihood of a person smoking. This could partly

explain the discrepancy between our MR results and observational studies especially as MS

onset may occur long before the first clinical symptoms [39]. For instance, this prodromal

phase is characterised in part by a higher risk of depression and anxiety up to 10 years prior to
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MS diagnosis [40], and these, in turn, are associated with a higher rate of smoking. This study

sought to reduce bias from confounding and reverse causation by using an MR design given

genetic variants are much less associated with confounders than directly measured environ-

mental exposures [41] (here smoking), and genetic variants are fixed over our lifetime-ensur-

ing directionality of effect. This is a major strength of this study in establishing causality in the

relationship between smoking and MS risk. Additionally, MR reverse direction was performed

and showed that reverse causation is unlikely to be playing a role. A further strength of this

study is the use of robust genetic instruments, which are strong predictors of smoking behav-

iour. Finally, we used multiple MR methods and sensitivity analyses to test for bias from direc-

tional horizontal pleiotropy. Our estimates were consistent across these multiple methods,

strengthening our conclusions.

Smoking phenotypes are correlated with BMI, and BMI has a causal effect on MS susceptibil-

ity [42]. This is an interesting and complex relationship. Multivariable MR allows for the adjust-

ment of 2 correlated exposures, here smoking and BMI, and investigating their effect on MS

susceptibility and would be an interesting follow-up study. Vandebergh and colleagues used

this framework to show that BMI but not smoking initiation had a causal effect on MS risk [27].

The current study cannot inform us about the effects of smoking on MS symptom severity,

disability, or progression of disease. Indeed, smoking shows an association with disease pro-

gression, disease activity (new lesions on MRI and clinical relapse rates), and brain atrophy

[15]. Observational studies have shown an association between smoking and progression from

relapsing remitting MS to secondary progressive MS with a dose–response relationship [43–

47] as well as a faster rate increasing Expanded Disability Status Scale (EDSS) [22]. However,

more research in this area is needed for a definitive conclusion of an effect and specific mecha-

nisms of action. As new methods are being developed to assess disease progression using MR

[48], when a GWAS of MS progression becomes available, future studies should explore the

association between smoking and the different measures of MS progression in an MR

framework.

The instruments predicting smoking initiation and lifetime smoking were broadly distinct

(only 9 SNPs overlapping). The measure of lifetime smoking exposure takes into account

smoking status and, among ever smokers, duration, heaviness, and cessation. Although our

lifetime smoking instrument captured smoking heaviness in part, however, we were unable to

explore whether there was a dose–response relationship between the number of cigarettes

smoked and the likelihood of developing MS in a two-sample MR context given that the MS

GWAS is not stratified by smoking status. Most, but not all [31,49,50], evidence to date seems

to suggest that there is a positive correlation between the amount smoked and the severity of

illness [4,32,38,44,51–54]. It might be that rather than a causal relationship between smoking

and MS risk, that smoking instead accelerates the disease process in those that would have

already developed MS.

Limitations of this study are, firstly, that although we assessed pleiotropy using MR meth-

ods that account for pleiotropic effects, pleiotropy can only be addressed indirectly, and some

SNPs may relate to MS risk through pathways other than smoking. We did not find evidence

for bias for horizontal pleiotropy using the MR–Egger intercept test nor the funnel plots,

which did not reveal evidence of directional, or unbalanced, pleiotropy. Secondly, this study

was a two-sample MR using MS meta-analysis summary statistics, and therefore, this does not

allow for gene–environment interaction or sex-stratified analysis.

In conclusion, we find no clear evidence for a causal effect of smoking on the risk of devel-

oping MS. Previous observational results may have been due to confounding factors, which we

have avoided through our analysis. Future research should focus on the effect of smoking on

the disease course of MS and its effect on progression.

PLOS BIOLOGY Smoking exposure and multiple sclerosis risk
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Methods

Genetic instruments for smoking

Smoking initiation. We used the most recent GWAS of smoking initiation from the

GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium, which

identified 378 conditionally independent genome-wide significant SNPs in a sample of

1,232,091 individuals of European ancestry. These genetic variants explain 2% of the variance

in smoking initiation [25]. A previous study from our group has shown that a polygenic risk

score for genetic variants for smoking initiation predict smoking behaviour (self-report smok-

ing initiation and ever e-cigarette use) in the Avon Longitudinal Study of Parents and Children

[55].

Lifetime smoking. In order to incorporate measures of smoking heaviness without having

to stratify on smoking status (which is not possible in the two-sample MR context without a

stratified GWAS of MS), we used the GWAS of lifetime smoking conducted in 462,690 indi-

viduals of European ancestry from the UK Biobank [26]. Lifetime smoking is a combination of

smoking initiation, duration, heaviness, and cessation described in detail elsewhere [26]. This

GWAS identified 126 independent genome-wide significant SNPs that explain 0.36% of the

variance [26]. This instrument, generated by our group, was validated using positive control

outcomes of lung cancer, coronary heart disease, and hypomethylation at the aryl hydrocarbon

receptor repressor site cg0557592 1 [26].

Genetic variants associated with multiple sclerosis

Effect estimates and standard errors for smoking-associated SNPs on MS susceptibility were

obtained from the summary statistics of the discovery cohorts of the latest International Multi-

ple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703

controls [56]. All details relating to demographic characteristics, MS case ascertainment, and

eligibility criteria for the meta-analysis can be found in the original publication [56]. For SNPs

not available in the IMSGC dataset, we identified proxy SNPs in high linkage disequilibrium

(r2 > 0.8) using an online tool LDlink (https://ldlink.nci.nih.gov/?tab=ldproxy), giving a total

of 371 SNPs for smoking initiation instrument and 125 SNPs for lifetime smoking (Fig 1 and

Table A and C in S1 Data).

Mendelian randomization analyses. A two-sample MR was undertaken to obtain effect

estimates of genetically predicted smoking on MS susceptibility, using both initiation and life-

time proxy measures. MR and sensitivity analyses were performed in R (version 3.5.1) using

the TwoSampleMR R package (https://mrcieu.github.io/TwoSampleMR/) [57] with effect esti-

mates compared across 5 different methods: IVW, MR–Egger [58], weighted median [59],

weighted mode [60], RAPS [61] and PRESSO [62]. Given the different assumptions that each

of these methods makes about the nature of pleiotropy, consistency in the point estimate

across the methods strengthens causal evidence [63]. For instance, the MR–Egger method pro-

vides valid estimates even in the presence of pleiotropic effects as long as the size of these

effects is independent of the effect of the genetic variants on the exposure (known as the

INstrument Strength Independent of Direct Effect [InSIDE] assumption). The IWV method is

the main analysis, and the other methods provide sensitivity analyses. Instrumental variable

analysis of MR is based on a ratio of the regressions of the genetic instrument–outcome associ-

ation (weighted smoking–associated SNPs with MS from IMSGC) on the genetic instrument–

exposure association (smoking-associated SNPs with smoking initiation or lifetime smoking

in the independent smoking GWASs). For smoking initiation, the ORs are expressed per unit

increase in log odds of ever smoking regularly (smoking initiation), with a 1 standard
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deviation (SD) increase in genetically predicted smoking initiation corresponding to a 10%

increased risk of smoking [25]; for lifetime smoking, the ORs are expressed per 1 SD increase

of the lifetime smoking index. An SD increase in the lifetime smoking score is equivalent to an

individual smoking 20 cigarettes a day for 15 years and stopping 17 years ago or an individual

smoking 60 cigarettes a day for 13 years and stopping 22 years ago [26].

Additional sensitivity analyses were performed in order to formally test for potential viola-

tions of MR assumptions. The mean F statistic was calculated as an indicator of instrument

strength (a value of>10 indicates a strong instrument), and the Cochran Q statistic was

assessed as a measure of heterogeneity for the IVW method to estimate whether the individual

SNP effects of smoking on MS were inconsistent. The MR–Egger intercept was assessed to

detect directional pleiotropy where the genetic instruments would be influencing MS through

another pathway other than smoking. To identify potentially influential SNPs, which could be

driven for example by horizontal pleiotropy, we used leave-one-out and single-SNP MR analy-

ses. Additionally, due to the strong genetic signal for MS within the MHC region and high

potential for pleiotropy, MR analysis excluding exposure variants located within the extended

MHC region was performed (defined as base positions 24,000,000 to 35,000,000 on chromo-

some 6 [GRCh37]).
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