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Abstract: Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes,
thereby causing abnormal cation movement and deterioration of the function of membrane voltage-
gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all
cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus
on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved
OS biochemistry, and the associated key biological effects.
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1. Introduction

Oxidative stress (OS) generation, expressed by the production of reactive oxygen/nitrogen
species (ROS/RNS), has been linked to the exposure of animals and cells to man-made EMF.
The related key experimental studies of the last decade have been presented elsewhere [1].
However, the biochemical specifics of the biological mechanisms involving the generation
of OS are unclear, with the most well studied mechanisms being those involving ion
channels. The main hypothesis underlining these mechanisms portrays EMF (RF 900, 1800,
1900, 2450 MHz, ELF 0–3000 Hz) exerting their oscillatory forces on every free ion on both
sides of any biological membrane, thereby causing the ions, cations, in particular, to pass
through at abnormal rates. Such abnormal cation movement can alter the biochemical
properties of membranes and can cause deterioration of cation channel functions, especially
those of the voltage-gated (VGC) ones [2–8]. These, in turn, can trigger an increase of OS,
leading to the impairment of most cellular functions and DNA damage [9,10] as well as to
numerous associated diseases including carcinogenesis [11–13]. In this review, we examine
(i) the main mechanisms of OS generation by EMF-induced VGCs and their association
with the ROS-generating NADPH oxidase (NOX) and the voltage-gated calcium channels
(VGCC), (ii) the involved OS biochemistry, and (iii) the VGC-OS-originating key biological
effects. We conclude with the need for research to unequivocally prove that non-ionizing
EMF can directly generate ROS.

2. EMF Effect on Membrane Function and Cation Channels Can Induce OS

Disruption of the electrochemical balance and cation channel function of the cell
membrane by EMFs and the generation of OS can involve the following mechanisms:

EMF disturbance of membrane function and cation channels: Abnormal function of
cell membranes and ion channels by EMFs primarily take place by means of the following
mechanisms:

• EMFs can act on membrane-associated free ions by means of a forced-vibration mech-
anism, which acts on the voltage-gated channels using the vibrations that EMFs cause
on the transported ions [2,3]. These are the K+ leak channels, the Na+ leak channels,
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and the leak channels of other cations such as Ca2+. Briefly, the open or closed state
of these channels is determined by the electrostatic interaction between the voltage
sensors of the channels and the transmembrane voltage, and they change between
their open and closed state when the electrostatic force on the electric charges of their
voltage sensors exceeds a critical value. Alternating electric fields exert a periodic
force on all of the free ions passing across voltage-gated channels and can distort the
electrochemical equilibrium state of every oscillating ion due to its site-displacement
from the developed electrochemical gradient. This results in a periodical displacement
of the electric charge, which will exert force on every fixed charge, such as those exist-
ing on the voltage sensors of the voltage-gated channels. Specifically, voltage-gated
channels contain transmembrane a-helices in parallel, forming pores through which
ions pass in their dehydrated state. The voltage sensors of these channels are four
positively charged symmetrically arranged transmembrane alpha-helical domains (des-
ignated S4). It is known that small voltage changes of about 30 mV in the membrane
potential are able to gate this kind of channel [14,15]. Such a change can be caused by
the displacement of a single ion by 10−12 m from the electric field of the EMF and in
the vicinity S4 of the voltage-gated channels. Hence, EMF-induced oscillating ions can
disturb the electrochemical balance of the membrane via the gating of such channels,
and those ions crossing such channels can change their normal positions and can
produce a false signal for the gating such channels with their charge. This mechanism
can also explain the biological action of oscillating magnetic fields by replacing the
force of the electric field with the force exerted by an alternating magnetic field and
also by accounting for the induced electric field, which is always generated by the
pulsed magnetic one. The mechanism concludes that oscillating electric or magnetic
fields with frequencies lower than 1.6 × 104 Hz (ELF and VLF fields) can be bioactive,
even at very low intensities [2,16]. It is also claimed that pulsed EMFs can even further
amplify their biological action compared to continuous EMFs [16–18].

• In the other mechanism [7,8], low intensity EMFs cause abnormal hypersensitivity on
voltage-gated calcium channels (VGCC), with consequent increases in intracellular
Ca2+ (and OS) acting on the structure of the aforementioned voltage sensor (and its
20 electrically charged groups that are equally distributed on its 4 alpha-helixes), which
actually regulates the opening of the channel. They transverse the lipid bilayer of the
membrane and their disturbance by the EMFs relies on the following very important
and distinct reasons: The EMF forces on the voltage sensor are 20 times higher since
they act on all 20 charges, and according to Coulomb’s Law of physics, they are
inversely proportional to the dielectric constant of the fatty part of the membrane,
which is about 120 times less than the forces on the charges in the aqueous parts of
the cell. Thus, the forces exerted on the 20 electrically charged groups of the VGCC’s
voltage sensor by the electric field of the RF EMF will also be about 120 times stronger
(or 2400 times stronger, accounting for all 20 charges), which is only because of the
dielectric constant of the fatty region of the cell membrane where the voltage sensor’s
20 charges are located. A third, even more important, reason is based on the fact that
the cell membrane has a very high electrical resistance, which acts as amplifier of
the electrical gradient (the difference in electrical charge across the cell membrane),
amplifying it by about 3000 times. Combining these three distinct reasons, it is implied
that the total amplification of the exerted forces by the RF EMF electric fields on the
VGCC voltage sensor’s 20 electrical charges is equal to 20 × 120 times (due to the
dielectric constant of the fatty inner space of the membrane) × 3000 times (due to the
electrical gradient of the membrane), totaling 7,200,000 times. That is, the forces exerted
on the VGCC voltage sensor by the RF EMFs are about 7.2 million times stronger than
those in the electrically charged groups that are in the hydrophilic environment of our
cells, which is where the safety guidelines for the RF EMF are set by ICNIRP.

EMFs act via the activation VGCC in the plasma membrane, producing excessive Ca2+,
which leads to the pathophysiological effects associated with ROS, such as nitric oxide (NO),
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superoxide radical (O2
•−), and peroxynitrite (ONOOH) [6]. Studies on the mechanisms

related to VGCC and to the associated pleiotropic effects are presented elsewhere [1].
OS generation by EMF disturbance of membrane function: NADPH oxidase (NOX)

is a plasma membrane enzyme and has activity that is very likely associated with the
increased generation of OS, upon membrane voltage-gated channel function interaction
with EMF. NOX (found in the plasma membrane the neutrophil white blood cells) normally
generates OS (or respiratory burst) to eliminate invading microorganisms by means of the
production of reactive oxygen species (ROS) [19]. Specifically, NOX produces intracellular
O2
•−, which is dismutated to H2O2, and can be used by myeloperoxidase as substrate

for the two-electron oxidation of Cl− to the cytotoxic and highly reactive ROS oxidant
hypochlorous acid (HOCl) (Figure 1) [20]. Alternatively, H2O2 can move extracellularly or
to any intracellular site, where it can be converted to the most potent biological oxidant
hydroxyl radical (•OH) (Table 1, reaction 1), which can oxidatively damage all biological
molecules, including DNA (see below).
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Figure 1. Superoxide radical (O2
•−) generated by NOX VGC/NOX H+-C gp91phox/NOX-

coordinating H+-VGC Hv1, which is dismutated to H2O2, which is then used by myeloperoxidase
(MPO) as substrate for the two-electron oxidation of Cl− to cytotoxic ROS hypochlorous acid (HOCl).

Table 1. Reactions involved in the biochemistry of ROS.

Fe2+/Cu+ + H2O2 → Fe3+/Cu2+ + •OH + HO− (1)

Fe3+ + O2
•− → Fe2+ + O2 (2)

Fe3+ + H2O2 → Fe2+ + H+ + HO2
• (3)

2 Fe3+ + AH2 → 2 Fe2+ + A + 2 H+ (4)

AH− + H2O2 → A•− + H2O + •OH (5)

NO + O2
•− + H+ → ONOOH (6)

ONOOH→ •OH + •NO2 (7)

NOX is the only membrane bound enzyme with channel voltage-gating associated
ROS production increase by EMF (3-fold in HeLa plasma membranes exposed to 875 MHz
at 0.240 mW/cm2 for 10 min; i.e., ~4-fold below the ICNIRP limit). However, this EMF-
induced activity increase does not correspond to a proportional increase of NADPH
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oxidation but is instead displayed in comparison to its inhibition by the oxidase’s specific
inhibitor diphenyleneiodonium (DPI) [21]. Nonetheless, this EMF effect on NOX may
be indirect and is exerted on an oxidase-associated voltage-gated channel that is blocked
by DPI, given that DPI acts not only as an inhibitor of the oxidase but also as a cation
channel blocker [22]. This suggests that the NADH oxidase’s direct response to particular
EMF exposure may not be conclusive [23] and that its activity is indirectly associated or
controlled by neighbouring cation voltage-gated channels. There are studies that support
such cation voltage-gated control of NOX activity. It has been known that electron flux
within NOX (from NADPH through a redox chain comprising FAD and two haems) is
electrogenic and that it rapidly depolarizes the membrane potential by ~100 mV during
respiratory burst, necessitating the need of proton (H+) channels for the reduction of
extracellular O2 to O2

•− by the oxidase (Figure 1) [24–26]. Indeed, it has been shown that
the activities of NOX and voltage gated H+ channels present (especially the H+ channel
Hv1) in many cells (immune cell types, including neutrophils, eosinophils, B-lymphocytes,
T-lymphocytes, macrophages and microglia) appear to be coordinated [27]. The voltage-
gated H+ channels Hv1 contribute the majority of the charge compensation required for
high-level NOX-dependent O2

•− [28,29]. Concomitant K+ release elimination only occurs
at maximum O2

•− production, while the reversed membrane potential inhibits Ca2+ entry
(e.g., by VGCC), thereby preventing the cells from becoming overloaded with Ca2+. Thus,
a clear correlation exists between the rate of O2

•− production by NOX and the extent of
plasma membrane depolarization and inhibition of Ca2+ entry. Disturbance of this limiting
mechanism by EMFs may contribute to OS-associated disease [30].

Besides the voltage-gated H+ channels Hv1 coordinating/associating with NOX ac-
tivity, the oxidase itself may act directly as a proton channel due to its gp91phox trans-
membrane component (Figure 1), which has been demonstrated to be capable of acting
as an oxidase-associated H+ channel and functioning as a voltage-gated H+ conductance
pathway [31].

Nonetheless, electric fields exert their oscillatory force on any subcellular membrane
as well, especially if the abnormal function of their ion channels may be associated with
increased OS. This is especially true for the mitochondrial ion channels/transporters
since they also function as sensors and regulators of cellular redox signaling [32,33]. An
abnormal OS increase can take place at two main sites in the oxidative phosphorylation
electron-transport chain; at the proton transporter complex I (NADH dehydrogenase) and
at complex III (cytochrome bc1), leaked single electrons reduce O2 and generate O2

•− in the
mitochondrial matrix, which, in turn, may activate inner-membrane anion channels and
may (through O2

•− dismutation to cell membrane permeable H2O2) affect neighboring
mitochondria or cytosolic targets as well [32]. The inner mitochondrial membrane ion
channels that have been intensely researched are the Ca2+ Uniporter (the primary route
of Ca2+ into the matrix) and the Permeability Transition Pore (PTP; has a quite high
conductance, ~1 nS; is a non-selective transporter of solutes up to 1500 Da), which are
considered to be among the channels that contribute the most to mitochondria dysfunction
under stress. An increased Ca2+ flow in the mitochondrial matrix by the Ca2+ Uniporter
stimulates oxidative phosphorylation (thus, OS increase) in one or more sites of the electron
transport chain as well as in sites of the Krebs Cycle. PTP is considered to be activated
by depolarization, Ca2+, and OS [32]. Irrespective of their cellular sites, EMF-induced
cation channels can act as ROS sources for the redox modulation of cation voltage-gated
channels in general. Intracellular redox status has been known to significantly alter the
gating properties of Ca2+ channels (L-, T-, P/Q-type) and Na+ and K+ channels [34], with
the oxidative modulation of voltage-gated K+ channels being the most studied [35].

3. Biochemistry of ROS

The main cytotoxic ROS is •OH and its production involves the transition metal-
catalyzed oxidation of H2O2 (Fenton reaction [36]), which, once formed, can freely move
intra-/extra-cellularly and cross the nuclear and sub-cellular membranes, and can therefore
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reach DNA. The ROS-associated main source of H2O2 is the dismutation of O2
•− (which

can be generated either by the plasma membrane NOX or by O2 after the uptake of single
electrons that have been leaked during oxidative phosphorylation). In turn, H2O2 can be
converted to •OH by free Fe2+ (or Cu+) via the Fenton reaction (Table 1, reaction 1), and
its association with the cell’s response to EMF in relation to DNA damage has been also
suggested [37]. To sustain the production of •OH, Fe2+ (and Cu+) must be regenerated via
reduction by O2

•− or H2O2 (Table 1, reactions 2 or 3, respectively) [38–40] and by ascorbic
acid (AH2) (Table 1, reaction 4) [41].

Nonetheless, •OH is not the sole product of the Fenton reaction in the presence
of bicarbonate (HCO3

−, even present at low concentrations, i.e., under physiological
conditions), since—in the presence of the Fenton reactants Fe2+ and H2O2—the carbonate
radical anion (CO3

•−) is the active oxidizing product [42]. CO3
•− can then migrate over

long distances and can reach DNA, where as a potent one-electron oxidant (as •OH is also),
it can generate base radical cations, which ultimately generate 8-oxo-7,8-dihydroguanine
(since guanine is the most oxidatively sensitive base in DNA [43]).

However, •OH can be produced even without transition metal mediation. That is,
it can be produced either via the oxidation of the ascorbate monoanion (AH−) by H2O2
(Table 1, reaction 5) [44] or by a sequence of reactions involving the reactive nitrogen species
(RNS) nitric oxide radical (•NO). The latter, upon reaction with O2

•−, produces the biotoxic
RNS ONOOH (Table 1, reaction 6), the decomposition of which, besides •OH, produces
the RNR radical nitrogen dioxide (•NO2) (Table 1, reaction 7) [45,46].

Considering O2
•− and H2O2 balance in vivo, it has been suggested that cell survival

is promoted by an intracellular increase of O2
•−, which is a conjugated base that sustains

a cytosolic pH that is mildly alkaline. On the other hand, apoptosis is promoted by
intracellular H2O2 production accompanied by a decrease in O2

•− levels and concomitant
cytosolic acidification, while an excessive production of both O2

•− and H2O2 induces
necrotic cell death [47].

4. EMF-Induced OS, and Biological Effects

The primary biological effect of EMF involves increased OS, which is demonstrated
by the elevated levels of ROS/RNS in exposed experimental models. EMFs have been
reported to be associated with many downstream effects that can lead to cancer. These
involve DNA damage (single/double strand DNA breaks, oxidized DNA bases); increased
ornithine decarboxylase, NF-kappa B, tumour promotion (via degradation of gap junction
proteins, and DNA breaks/gene amplification), tissue invasion/metastasis (via increased
tight junction protein degradation), CaMKII (via protein oxidation), cellular oncogene tran-
scription (by Ca2+), and CaMKII (via produced Ca2+); lowered melatonin levels; activation
of Ca2+-dependent phosphatidylserine flippase and c-src (by calcium/calmodulin); and
calpain activation of tumour migration, tissue invasion, and metastasis [7].

Through these events, several indirect changes may occur that can alter the physiology,
e.g., of brain cells, and can cause translation–transcription interference [48] (through
protein conformation changes [49]), cellular metabolism dysfunction, and membrane
dyspermeability [50]. The association of the plasma membrane and mitochondrial cation
channels with OS-induced damage and their potential participation in pathological liver
conditions has been reviewed elsewhere [11].

It has been proposed that RF EMFs invoke a mechanism that involves the rapid activa-
tion of ERK/MAPKs (mitogen-activated protein kinase), which is mediated in the plasma
membrane (of Rat1 and HeLa cells) by NADH oxidase, followed by a rapid generation of
ROS [21]. In this mechanism, ROS accumulation-induced OS leads to a signal transduction
pathway involving ERK kinase activation [21,51], cation channel disturbance [21,52], heat
shock protein activation [21,48,53], and enzyme conformation change [54]. This, in turn,
may affect gene overexpression/suppression [53], possibly through transcription factor
activation/deactivation [55], which is random, given the non-targeted impact of EMF. As
an end result, stress response related functions may be triggered, including the altered
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expression of proteins, some of which are related to neural plasticity, whereas others are
involved in general metabolic processes [56].

Recent evidence indicates that ROS/RNS-induced OS is among the main intracel-
lular signal transducers, sustaining lysosomal autophagy and nuclear DNA damage re-
sponse [57,58]. In general, DNA base damage by ROS involves the formation of single
lesions in the pyrimidine and purine bases, intra/inter-strand cross-links, purine 5′,8-
cyclonucleosides, and DNA-protein adducts formed by the reactions of the 2-deoxyribose
moiety and/or the nucleobases with ROS such as singlet oxygen (1O2), •OH, and HOCl [59].
Even the oxidant role of the ROS singlet oxygen, 1O2, on DNA damage was suggested
three decades ago [60], and its physiological consequences have been highlighted since 1O2
is produced in human tissues and human neutrophils [61]. However, •OH is considered
as the most potent oxidant of DNA, as verified by extensive studies on the oxidative
modifications on DNA bases, strand breakage, and DNA structure [62–64]. Additionally,
ROS production by mitochondria leads to mtDNA exposure to OS and subsequent damage
(being higher compared to that of nucleic DNA [65]), the accumulation of which leads to
further increased production of ROS/RNS and damaged mitochondria. The elimination
of the latter by lysosomes, so called mitophagy, has been reported to take place both in
yeasts and mammals [66]. The mechanisms of oxidative DNA damage leading to mutations
and disease are also well known [67,68], and OS-induced DNA damage [69,70] has been
reviewed elsewhere [71].

Experimental studies on RF EMF-induced OS effects in various cellular systems,
molecules or model organisms have been reviewed by Yakymenko et al. 2016 [72]. Indica-
tive ones are on sperm [73,74] and Drosophila [75] (body/ovaries [76]). Near-field EMF
GSM (at 900 MHz, “modulated” via speaking vs. nonspeaking emission) decrease the
reproductive capacity of Drosophila by 50–60% vs. 15–20% (after exposure for 6 min/day
during only the first 2–5 days of adult life) [77], the oogenesis of which has been proposed
as a biomarker for EMF sources [78]. Extending research in the chronic whole body expo-
sure of mice Balb/c to EMF (GSM at 900 MHz for 3 h/day and by wireless DECT base for
8 h/day), proteome changes (overexpression/downregulation) were recorded in the frontal
lobe, hippocampus, and cerebellum [56]. More distinct changes in all of these brain regions
were those for synapsin-2 and NADH dehydrogenase, while for some others are indicative
of OS increase in the nervous system [79]. In human neuroblastoma cells, low-level GSM
EMFs cause alterations on Amyloid Precursor Protein processing and cellular topology,
and changes in monomeric alpha-synuclein accumulation and multimerization, which can
happen concurrently by means of the induction of OS and cell death, which are possibly
linked to Alzheimer’s and Parkinson’s diseases [80]. Neurological abnormalities by RF
EMF (GSM) are extended to effects on transient and cumulative memory impairments [81]
and on short-term memory in mice (by impairing them to pass successfully the Object
Recognition Task [82]), possibly due to disturbance of cation channels, particularly that
of Ca2+ (as also suggested by the EMF effect on the calcium binding protein [83]), and to
proteome expression changes in the mouse brain hippocampus and other memory-related
brain regions [56].

5. Conclusions

On the basis of the above findings, an EMF mechanism can involve ROS formation due
to membrane and voltage-gated cation channel function deterioration [2,3,7,8] followed
by stress activation and heat-shock protein overexpression [56], which may be associated
with behavioural and physiological effects such as blood–brain barrier disruption, memory
malfunction, changes in gene expression [53], autophagy, apoptosis [53,84] (especially due
to modulation [85]), lifespan reduction, DNA damage, and cancer [18].

6. Theory and Research Perspectives for a Conclusive Linking of EMFs with ROS/RNS

EMF induction of OS via increased concentration of free radicals, has been challenged
(by ICNIRP) mainly due to (i) the claimed non-ionizing nature of EMF (ELF/RF), where no
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covalent bonds are broken at non-thermal intensities, or so the argument goes, and because
(ii) the measurement of OS is performed by non-specific methods. Indeed, OS is measured,
either by methods that are not specific to the identification of generated free radicals, or
indirectly by certain oxidative modifications they cause on key biological molecules (e.g.,
DNA damage, lipid/protein peroxidation, etc.).

Man-made EMFs do not possess high enough energy to generate free radicals, e.g.,
on freely moving single H2O molecules by a single photon. However, the individual EMF
of such photons are fully synchronized (in terms of frequency, polarization, phase, and
propagation direction), thereby producing cumulative macroscopic electric and magnetic
fields and electromagnetic radiation (EMR). Nonetheless, these may be additively high
enough to break covalent bonds and may directly generate free radicals. Secondly, con-
centrations of naturally occurring free radicals can increase by the prevention of either
(i) reactions between them (e.g., appearing as the aforementioned reactants •NO + O2

•−

and products •OH + •NO2), or (ii) the reassociation of free radical pairs generated enzymi-
cally as transition states. Such prevention can be assisted by the EMF-induced free radical
pair mechanism [86,87]. Here, EMFs can prevent the reassociation of free radical pairs by
reversing the spin direction of the single electron in one of these free radicals by flipping the
direction of its magnetic field component. Thus, the magnetically affected free radical pair
ends up consisting of two free radicals, the electron spins of which have become parallel,
thereby preventing their re-binding and indirectly increasing their concentration. The free
radical pair mechanism has been accounted for by the International Agency for Research
on Cancer for the classification of the RF EMFs in the Group 2B category of “possibly
carcinogenic to humans” [88]. These two mechanisms of free radical-concentration increase
corroborate with the preliminary finding that ELF EMFs increase the concentration of O2

•−

by many fold in various organs of mice exposed to the ICNIRP limit of 100 µT at 50 Hz
(pending publication by Dr. Georgiou’s lab).

Therefore, methods for the in vivo specific detection of the key biological free radicals
•OH and O2

•− ([89,90]) are needed in order to unequivocally prove the generation of
carcinogenic OS by EMFs.
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