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Neuromodulations are an important component of extracellular electrical potentials (EEP),

such as the Electroencephalogram (EEG), Electrocorticogram (ECoG) and Local Field

Potentials (LFP). This spatially temporal organized multi-frequency transient (phasic)

activity reflects the multiscale spatiotemporal synchronization of neuronal populations

in response to external stimuli or internal physiological processes. We propose a novel

generative statistical model of a single EEP channel, where the collected signal is

regarded as the noisy addition of reoccurring, multi-frequency phasic events over time.

One of the main advantages of the proposed framework is the exceptional temporal

resolution in the time location of the EEP phasic events, e.g., up to the sampling

period utilized in the data collection. Therefore, this allows for the first time a description

of neuromodulation in EEPs as a Marked Point Process (MPP), represented by their

amplitude, center frequency, duration, and time of occurrence. The generative model

for the multi-frequency phasic events exploits sparseness and involves a shift-invariant

implementation of the clustering technique known as k-means. The cost function

incorporates a robust estimation component based on correntropy to mitigate the

outliers caused by the inherent noise in the EEP. Lastly, the background EEP activity

is explicitly modeled as the non-sparse component of the collected signal to further

improve the delineation of the multi-frequency phasic events in time. The framework is

validated using two publicly available datasets: the DREAMS sleep spindles database

and one of the Brain-Computer Interface (BCI) competition datasets. The results achieve

benchmark performance and provide novel quantitative descriptions based on power,

event rates and timing in order to assess behavioral correlates beyond the classical

power spectrum-based analysis. This opens the possibility for a unifying point process

framework of multiscale brain activity where simultaneous recordings of EEP and the

underlying single neuron spike activity can be integrated and regarded as marked and

simple point processes, respectively.

Keywords: electrocoticogram (ECoG), electroencephalogram (EEG), local field potentials (LFP), marked point
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1. INTRODUCTION

Extracellular electrical potentials (EEP) from the brain can
be recorded at distinct levels—from cm2-scale non-invasive
electroencephalographic signals from the scalp (EEG) to invasive
mm2-scale cortical activity recorded by subdural grid electrodes
(ECoG) or even at localized deeper anatomical brain regions
by inserting electrodes or silicon probes into the brain (LFP)
(Buzsáki et al., 2012). This type of activity reflects the average
spatiotemporal interaction of neuronal assemblies and, therefore,
constitute a coarser scale (mesoscopic) measure beyond single-
cell recordings (action potentials or spikes) that can play
a complementary role to relate multiscale brain activity to
more overt types of cognitive phenomena and psychological
constructs, such as behavior, perception and learning. Moreover,
these extracellular electrical potentials have been thoroughly
studied in both clinical and research fields and further associated
to complex processes, such as sleep (Rechtschaffen et al.,
1968; Borbély et al., 1981), epilepsy (Nakasatp et al., 1994;
Iasemidis et al., 2003), Parkinsons’s disease (Soikkeli et al., 1991;
Handojoseno et al., 2015), distributed perception (Gray et al.,
1989; Tallon-Baudry and Bertrand, 1999), memory consolidation,
spatial navigation and cognition (Llinas and Ribary, 1993;
Kahana et al., 2001; Buzsáki, 2002), and stimuli processing by
top-down influences (Engel et al., 2001).

Neuromodulations or phasic events in the EEP are the
direct result of spatiotemporal synchronization of local neuronal
populations in the form of distinctive, organized, reoccurring,
transient (phasic) patterns that differ from the noisy featureless
background in EEP, which is known to display a 1/f power
spectrum (Freeman, 1975; Buzsaki, 2006). These phasic events
have beenwell documented in the literature under the concepts of
induced potentials and event-related oscillations (Tallon-Baudry
and Bertrand, 1999; Freeman and Quiroga, 2012), e.g., gamma
oscillations in the olfactory bulb of cats and rabbits after odor
presentation (Freeman, 1975), characteristic sleep-stage-related
patterns in humans (Rechtschaffen et al., 1968) and sharp-
wave ripples in the hippocampus associated to cognition and
memory processes (Buzsáki, 2015). The concept of transient
events has been throughly echoed in the literature (Rechtschaffen
et al., 1968; Nakasatp et al., 1994; Friston, 2000; Hopfield
and Brody, 2001; Freeman and Rogers, 2002; Freeman et al.,
2003); specifically, brain dynamics constantly shift between
complex and predictable states by means of synchronization and
oscillations (Buzsaki, 2006). Moreover, there is a growing clinical
interest in Parkinsons’s disease and synchronized transient events
that could explain the freezing of gate phenomenon and other
related mechanisms (Hammond et al., 2007; Lewis and Barker,
2009). Unlike evoked potentials, another well-known type of
organized activity, event-related oscillations are characterized by
latency and onset variability, which demand for fine temporal
resolution and special attention when it comes to processing and
further interpretation.

An important goal is to discriminate in time the phasic events
(that resemble wave packets) from the temporally disorganized
but spatially structured background activity, which appears as
“noise” for the signal processing algorithms applied to each lead.

This task is particularly challenging when considering the specific
dynamics and statistical properties EEP recordings display, e.g.,
correlated colored noise, non-linear generation mechanisms,
and non-stationarity. Early in the history of computer-based
EEG analysis, there were two competing methods (Niedermeyer
and da Silva, 2005): the time based quantification methods
that used the properties of the EEP in the time domain, such
as Hjorth parameters (Hjorth, 1970) or zero crossing analysis
(Gaillard, 1987), and anthropomimetic methods that attempted
to quantify the events electroencephalograhers recognized by eye
balling on the strip charts for clinical applications (Smith et al.,
1975). The latter were used to recognize epileptic spikes, K-
complexes, spindles in the alpha, sigma, beta and gamma bands,
and runs of theta and delta waves. Moreover, analog computers,
hybrid analog digital computers, and, then, microprocessor-
based systems were utilized for time domain analysis in epilepsy
(Ktonas and Smith, 1974; Principe and Smith, 1982) and sleep
staging (Smith and Principe, 1988). They were basically built
by analog bandpass filters, followed by zero-crossing detectors,
amplitude measurements and wave counts per unit of time
for pattern matching. These methods are the precursors to
the method proposed in this paper. They were online (and
even compressed time) but required engineering teams to build
and operate special purpose computers. The spectral approach
started earlier (Grass and Gibbs, 1938) and was solidified in
Walter (1963). It became widespread with the advent of the
Fast Fourier Transform (FFT) algorithm and minicomputers to
estimate in real time the power spectral density (PSD) of the
EEP over windows. In the third author’s opinion, this simplicity
overshadowed their limitations and led to slow progress in
computer-based EEG analysis—for more details see Principe and
Brockmeier (2015).

Indeed, the PSD-based methods hides a major shortcoming:
the time-frequency uncertainty relation proved by Gabor (1946),
which states that the product of the time and frequency
resolutions is lower bounded by a constant, i.e., one has to
trade-off time resolution by frequency resolution. Since the
EEPs are non stationary, the window size has to be sufficiently
short to capture the stationary segments at the expense of poor
frequency resolution (i.e., the ability to differentiate rhythms
that are close together in frequency). The Time-Frequency (TF)
decompositions provide the best compromise (Cohen, 1995),
while the wavelets improve slightly on this limit (Unser and
Aldroubi, 1996; Mallat, 1999). However, both methods still have
a major problem: the time resolution of an event quantified by
a peak in the PSD is given by the window length because the
location in time that contributes to the power at a particular
frequency is unknown, i.e., the phase of the PSD is constant
over such window. Therefore, the PSD analysis is a bottleneck
to provide sufficient time resolution to analyze the EEP in the
cognitive brain; a potential alternative, though very inefficient
computationally, would be window staggering. One could exploit
the Hilbert transform (Bracewell, 1986) to improve on the Gabor
uncertainty, but the problem of phase unwrapping and further
interpretation is problematic, even presently.

This paper introduces an EEP model that not only
incorporates neurophysiological principles, but also achieves
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exceptional temporal resolution limited by the sampling period
alone (a direct consequence of its transient model-based
approach). The relevant phasic events in the EEP are modeled by
a set of temporal filters and an additive noise term using a training
set obtained by sufficiently long single-channel records of EEPs
from the desired conditions. Once the filters are obtained and
the noise is characterized, the model can be applied to a test set
producing as output a set of delta functions from each one of the
filters, giving rise to a Marked Point Process (MPP) description
for neuromodulation timing and amplitude organized by filter
type. This point process interpretation resembles the work done
by Tagliazucchi et al. (2012) and Wu et al. (2013) that applied
deconvolution techniques to BOLD time series in fMRI data to
estimate order parameters and functional connectivity in resting
states of the brain, respectively. We devised robust techniques to
effectively discriminate and separate in an unsupervised manner
the background noise from the phasic event component that,
ideally, contains only event-related oscillations for a particular
frequency band. Furthermore, the modeling step requires only
two free hyper-parameters (to be set by the users) and provides
quantification of EEPs based on amplitude of phasic events
and their timing per bandpass filter. In this way, we propose a
model that goes beyond the conventional EEP spectral power
decomposition techniques and integrates neurophysiological
principles into a robust unsupervised learning method. This
approach is relevant because the MPP description of the EEP
serves as a mesoscopic representation of brain activity that
can be easily combined with microarray single-spike recordings
with which it shares the point process nature; this facilitates a
multiscale representation of brain activity. Moreover, the fine
temporal resolution of the MPP is also crucial to relate brain
activity with cognitive events measured in the external world.

In order to test the model quality, we select two well-known
EEP applications: single-channel EEG sleep spindle detection
and multi-channel ECoG gamma-related motor correlates; both
datasets have been throughly analyzed in the literature using
power spectrum techniques and serve as model validation.
These tests also illustrate the potential of the MPP analysis of
EEPs, which provide information similar to PSD but can also
address questions that normally require muchmore complex and
invasive setups (such as propagation delays and conditioning of
EEP events in spike firings). The rest of the paper continues
as follows: section 2 explains the novel model framework for
EEP and the corresponding methods. Section 3 details the two
applications and the main results, while section 4 concludes
the paper by summarizing the main ideas, discussing potential
drawbacks, and proposing future work.

2. METHODS

2.1. Transient Model for EEP
As we have discussed, the concept of phasic events is well
established in Clinical Neurology as well as in Computational
Neuroscience. Therefore, our goal is to develop a generative
model for a single EEP channel that captures the concept of
transient (phasic) events so useful in brain science. Generative
models can be implemented using statistical inference to learn the

joint distribution of data and labels (Bishop and Lasserre, 2006)
or using information theory principles to minimize redundancy
(Barlow, 1961). The latter approach is very appropriate for
this task because the goal is to explain the essential features
of the input data without requiring labels and by exploiting
the non-stationary dynamics of the underlying sources; a
noteworthy example of such architectures is the well-known
Independent Component Analysis (ICA). They were first applied
to Computational Neuroscience by Olshausen and Fields in
vision (Olshausen and Field, 1996), then Lewicki proved similar
concepts for audition (Lewicki, 2002), and they have also
been appropriate in the quantification of the sympathetic
and parasympathetic contributions to the heart rate variability
(Lucena et al., 2011). Brockmeier and Principe were the first
to apply this general idea to EEP analysis (Brockmeier and
Príncipe, 2016), and the present paper is the first description of
the model for the general audience of brain scientists. It also
improves on the practicality of the early work by simplifying the
training procedure and including a noise model, which facilitates
quantifying the ever present spontaneous EEP activity.

Previous applications of generative models have been
restricted to the solution of a set of coefficients for a linear or
nonlinear model, without imposing architectural constraints to
codify the prior knowledge of the phenomenon under analysis.
Our approach is different because we want to obtain an analysis
procedure that mimics the neurophysiology knowledge of phasic
events that occur into specific frequency bands, superimposed
on a featureless spontaneous activity background with a 1/f
spectrum (Freeman, 1975). Another important assumption is
based on the linearity of electromagnetic wave propagation in
cortical tissue (Niedermeyer and da Silva, 2005), and the fact
that the phasic events are sparse and reoccurring throughout
the EEPs. All these assumptions are used in our definition of
the model architecture that constitutes a generative model for
EEPs (Figure 1). The collected and digitally sampled EEP data,
x[n], is modeled as a sum of a noise term, n0[n], representing
the spontaneous EEP activity with the outputs of a set of linear
models, yi[n], i.e.,

x[n] = n0[n]+ x̂[n] = n0[n]+

L∑

i=1

yi[n] (1)

yi[n] =

ni∑

j=1

∞∑

m=−∞

αi,jδ[n− τi,j −m]di,ωj [m] (2)

where yi[n] constitute the frequency-specific temporal
contributions of weighted Dirac delta functions convolved
with an indexed family of Finite Impulse Response (FIR) linear
bandpass filters, {di,ωj}, i.e., a filter bank which constitutes a
dictionary (Di = {di,ωj}) of time domain signatures representing
the neuromodulations under analysis. Each dictionary is
naturally assigned to one of the L frequency bands or rhythms
under study for EEP modeling, i.e., delta, theta, alpha, sigma,
beta, gamma bands, and ripples to simplify parameter learning.
Each EEP rhythm band is further represented by K different
bandpass filters with diverse central frequencies and/or different
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FIGURE 1 | Transient Model for EEP. A single-channel, single-trial EEP trace is modeled as the noisy addition of reoccurring, transient patterns over time in a

frequency-band specific approach.

lengths; this constitutes one of the hyper-parameter of the model.
Each dictionary entry includes another hyper parameter, M ,
corresponding to the duration of the transient events (i.e., the
FIR filter order) in number of samples. Unlike previous attempts
to use dictionary learning in EEG analysis (Durka and Blinowska,
1995) where the temporal signatures were handpicked from fixed
basis (wavelets), here the FIR filter coefficients will be learned
directly from data in a training phase. This Multiple Input Single
Output (MISO) model resembles Freeman’s wave packets ideas
regarding the organization of EEG (Freeman and Rogers, 2002),
among others. An important component of our model is the
explicit modeling of the additive noise component, no[n], that
is characterized by the EEP’s statistical properties. The MISO
model assumes that there are a set of delta functions produced
by the cognitive brain that excite the filter bank at certain times
and with a given amplitude. As we demonstrate below, we do not
need this specific information during model training, it is only
necessary that each filter be sufficiently and sparsely excited in
the EEP data used for training.

Once the generative model is trained (Figure 2A), it can
be applied to analyze a single channel EEP as shown in
Figure 2B; this architecture will be called here the test model.
If multiple channels are available, the same test model can
be replicated for each available channel, providing a spatial
temporal quantification of the brain in cognitive tasks, using
EEPs. Functionally, the test model is simply the dual of the
MISO model presented in Figure 1. The incoming EEP signal is
first denoised by exploiting the noise model and then presented
to a set of the bandpass filters to estimate the occurrence of
neuromodulation; the output is a set of events in time that
represent the time, amplitude and dictionary-related index of the
phasic events that appear in the EEP channel under analysis. We
select the occurrence of the events as the timing of the largest
peak of the neuromodulation in each activated filter using an

amplitude threshold; this creates, for each EEP channel, an event-
dependent spike train that carries amplitude and frequency-
specific information, unlike current spike train models of neural
activity. The temporal resolution of the occurrence of the spikes
in the test model is given by the sampling period selected by the
digitization of the EEP, which is a great asset of the proposed
technique, e.g., for 500 Hz, one can determine the occurrence of
a phasic event (neuromodulation spindle) with 2 ms. resolution.
This is similar to the resolution of the early SAMICOS for
sleep analysis (Principe and Smith, 1986) but with a much
improved statistical modeling approach of the EEPs. Therefore,
the test model output can be further analyzed by exploiting the
mathematical concept of Point Processes (Daley and Vere-Jones,
2007); specifically, the Dirac deltas can be regarded as a temporal
Marked Point Process (MPP) with timings τi and at least bivariate
attributes of amplitude and center frequency from the filter bank
(αi, fi).

Finally, we would like to address in more detail the differences
between the current MISO model and the early work of
Brockmeier and Príncipe (2016) in order to provide context
and alternatives for the difficulties involved in this approach.
Conceptually, generative models attempt to represent an input
signal x[n] by an internal, linear or nonlinear, static or dynamic
model with output y[n] = f (Ax[n]), such that the reconstruction
error is as small as possible, i.e., |x[n] − y[n]| ≈ 0, according
to some loss function. Essentially, one attempts to learn a set
of basis functions that span the input space, and the “dream”
is to create a set of orthogonal basis in a functional space,
which cover the most volume in solution space for a given
dimension. This approach short-circuits the need to find a
priori a set of hand-picked features that, albeit convenient
for model training, always lose information and have been a
source for non-optimal performance in EEG data analysis for
many years. The generative learning approach is computational
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FIGURE 2 | (A) Training of Generative Model. A set of single-channel EEP traces corresponding to a particular condition is denoised and its dictionary atoms are

estimated in a frequency band-specific approach. (B) Test of Generative Model. A single-channel, single-trial recording is represented as sparse MPPs for each

oscillatory rhythm under consideration.

expensive in the training because the optimization needs to
construct the essential representation for the incoming data
using an unsupervised framework (the input is indeed the
target response of the learned model). In order to facilitate the
learning of essential features, one has to introduce a penalty
in the optimization such that the columns of A, which can be
thought of as the basis of the representation space, are sparse
and generalize well. Moreover, one should also consider that
the learning system architecture, i.e., the mapper that defines
f (.), can also help define proper solutions for the learning
problem by incorporating prior knowledge about the domain.
Our MISO generative model is a good example of this, where
we constrained the mapper to be a simple linear dynamical
system—the FIR filter bank. Moreover, a mapper tuned to the
application simplifies the user’s selection of hyper parameters,
which inevitably arises to tune the model performance, i.e., they
tend to be related to neurophysiology and the specific goals of the
analysis.

There are two basic family of approaches to learn the
dictionary elements, also known as atoms: dictionary learning
also called sparse coding (Elad, 2010), and Independent
Component Analysis (ICA). The first approach assumes a
generative model for the input with additional sparsity
constraints of the sources. The optimal solution complies with
such priors while minimizing the least-squares reconstruction
error. Previous studies have shown the plausibility of efficiently
estimating descriptors in the form filters in a data-driven
approach (Lewicki, 2002; Smith and Lewicki, 2006; Balcan and
Lewicki, 2009; Ekanadham et al., 2011). In particular, Matching
Pursuit (MP) (Mallat and Zhang, 1993) has been proved useful
in learning overcomplete basis in a greedy scheme (Aharon
et al., 2006) and has even been extended to the time-series
case (Mailhé et al., 2008). In these cases, the sources must be
explicitly estimated. The second approach avoids this explicit
estimation and exploits the statistical properties of the EEP.
Basically, the filters are estimated by exploiting a matrix-based
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projection pursuit algorithm, where windowed snippets from
the EEP are regarded as vectors in ICA. Hence, the learning
takes place without explicit source estimation nor appealing for
reconstruction cost functions. Other studies (Bell and Sejnowski,
1996; Davies and James, 2007) and our own (Lucena et al.,
2011) have showcased the potential of efficiently estimating
the basis exploiting the FastICA implementation (Hyvarinen,
1999). A comparison of the two family of approaches using
synthetic and real EEPs can be found in Brockmeier and
Príncipe (2016); this work shows that there are computational
advantages to the first method, while performance was only
slightly degraded. However, we can simplify the first approach
even further and reduce the computational complexity as well
as the number of free parameters by taking advantage of
the architectural constraints and the neurophysiology. First,
the generators of neuromodulation can be naturally organized
by frequency bands or rhythms, i.e., the same cell assembly
will not produce at the same time neuromodulations in two
different frequency bands; therefore, the parameter estimation
can be framed as an L independent Single Input Single Output
(SISO) model optimizations instead of the more complex MISO
case (Loza and Principe, 2017). Neuromodulations in EEPs
are temporally sparse, i.e., they rarely overlap, so they can be
represented by a single weighted M-sample-long FIR filter; this
last condition resembles the sparse decomposition assumptions
of MP. Finally, we can impose priors on the estimated filter
bank parameters, K and M. By visually analyzing the length
of the neuromodulation under analysis, we can properly set
M, e.g., sleep spindles usually last at least 500 ms, so the
filter order should be ≈250 for 500 Hz sampling. On the
other hand, the number of subfilters in each band (K) should
cover well the bandwidth of interest given the application (for
modeling, more filters should be used compared with detection).
Next, we detail the noise model and unsupervised learning
methods exploited to accomplish the aforementioned estimation
tasks.

2.2. Noise Model
One of the most remarkable properties of spatio-temporal brain
dynamics involves the constant shifts between highly complex
unpredictable temporal chaos and a more robust, transiently
predictable, and oscillatory stage (Buzsaki, 2006). This state of
transitions is a special form of stability—criticality, which enables
inevitable reorganization of the brain dynamics due to either
external perturbations or internal processes; regardless of the
source, the final result is revealed as large synchronized events,
e.g., oscillations. Recent work (Luczak et al., 2009) has shown
that the background activity is spatially stable at a longer time
scale and may also be used as a signature for cognitive states.
However, the temporally disorganized spontaneous activity
effectively works as “noise” for the phasic events detection
algorithms. In the context of the goals of this paper, we can
discriminate two main components in the EEP: the background
noise or ongoing activity, and the oscillatory component, which
represents the synchronization of neuronal pools across space
and time. With this neurophysiological concept in mind, we

propose a decomposition for a particular bandpassed single-
channel, single-trial trace, ỹ[n]:

ỹ[n] = y[n]+ z[n] (3)

where y[n] is an ideal, noiseless contribution that only contains
neuromodulations (a phasic event component), while z[n]
represents a bandpass version of the noise component, n0[n],
in Equation (1) for the EEP rhythm under analysis. During
testing, the goal is to subtract z[n] before decomposing the
EEP time series. We exploit the statistical properties of z[n] in
order to separate both components in an unsupervised scheme
following Freeman suggestion that there is a strong correlation
between EEP Gaussianity and resting behavioral states (Freeman
and Quiroga, 2012). When the brain is actively processing
information, there are deviations from Gaussianity, which we
hypothesize are the neuromodulations that we strive to model.
The challenge is to find a methodology to estimate a threshold
that can quantify Gaussianity in EEPs independently of the
high variability of the neuromodulation and still discriminate
accurately between background and phasic event components.
As suggested by Freeman (Freeman and Quiroga, 2012), our
approach calls for higher-order statistical moments (kurtosis),
however, instead of being applied to individual time samples, we
propose its application to snippets of embedding vectors of size
M (M-snippet), whereM, in samples, is the selected filter length.

We begin by embedding the training signals inM dimensions,
the norm is computed for each vector, and, then, the statistical
test is applied. The embedding starts by extracting the obvious
M-sample-long modulated patterns first (neuromodulation)
through their instantaneous amplitude using the Hilbert
transform (Bracewell, 1986); then, the remaining unmodulated
samples are embedded in the M dimension as well. The norm is
computed for all the M-dimensional vectors and their density is
estimated, e.g., histograms or Kernel methods can be exploited
here. The distribution of these norms will resemble a skewed
density with the main lobe being close to Gaussian and the
long tail representing high-norm events. Lastly, the statistical
test exploits kurtosis to estimate the limit between the Gaussian
mode and the tail of the distribution. This test, however, is strong
only for a sufficiently large number of samples for M in order to
guarantee the resulting chi-square distribution (norms density)
resembles a Gaussian according to the Central Limit Theorem;
fortunately, this condition is not a limitation in our time-
based approach, where sampling frequencies and M values are
inherently large. The final result is a threshold parameter for each
rhythm under study, γi (Figure 2A), that plays an important role
on the overall methodology because it segments the training data
in regions that, with high likelihood, contain neuromodulations;
this, consequently, will improve parameter estimation. Therefore,
each of theM-snippet samples with norms below γi are removed
from the training set before starting parameter estimation, i.e.,
the EEP traces now display discontinuities due to the choice of
the embedding parameter. The remaining M-snippets are bona
fide phasic events that will be used for training the model. It
is worth noting that alternative approaches that preserve the
smoothness of the input can be utilized as well, however, they
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are more computationally demanding; for further references, see
Loza (2017).

2.3. Unsupervised Learning of Model
Parameters
As it was previously mentioned, our learning scheme takes the
form of dictionary learning or sparse coding approaches, i.e.,
the sources (MPP) are explicitly estimated during the estimation
of the dictionary elements. Therefore, the goal of this step is
to estimate the K M-sample-long FIR filter parameters for each
oscillatory rhythm under study. There are two very distinctive
iterative stages: phasic event decomposition and dictionary
learning. The estimation begins with an initial filter bank, whose
parameters are obtained by a hand picked selection of M-
snippets recognized by the researcher as neuromodulation from a
bandpassed EEP corresponding to a particular channel, condition
and rhythm in the training set. These M-snippets become the
impulse responses of each of the K FIR filters in the filter
bank. To simplify the selection procedure, we recommend the
use of the Hilbert transform to isolate such modulated patterns
and provide the initial filter bank. Alternatively, a dictionary
from previous experiments can also be utilized. As a result,
this seed dictionary contains K FIR filters with relatively large-
norm impulse responses (90-th percentile) and clear modulation
patterns.

2.3.1. Phasic Event Decomposition

The adaptive unsupervised learning stage for the transient
model is inspired by a shift-invariant implementation of k-
means, the well-known clustering technique (Gersho and Gray,
1991). For each rhythm, the seed dictionary, with its K initial
dictionary elements become centers in k-means. The stage known
in k-means as cluster assignment is denoted as phasic event
decomposition for our learning approach (Figure 2A). Using a
procedure very similar to the greedy decomposition technique of
Matching Pursuit (Mallat and Zhang, 1993), the remaining M-
snippets in the training set are assigned to the closest center. We
use the Fast Fourier Transform (FFT) to efficiently assign each of
the M-snippets to the closest dictionary atom. Unlike previous
attempts that take advantage of greedy sparse decomposition
techniques (Durka and Blinowska, 1995), our proposed phasic
event assignment is much simpler (and, hence, faster) because of
the denoising step described above that explicitly discriminates
between neuromodulations and noisy background activity. This
novel methodology eliminates one of the free parameters of
MP when it is utilized in sparse approximation problems—the
sparsity of the decomposition; for our case, this value is always
equal to one, i.e., there is no over-representation of events.

It is worth noting that this phasic event decomposition
is the only step required in the testing phase; however, to
avoid potential confusion, we will denote the phasic event
decomposition algorithm as deconvolution in the testing
implementation (Figure 2B). The projection of a particular M-
snippet onto the closest dictionary atom in the test set (α or
Euclidean distance to closest center) is compared to γi; if α falls
below the threshold, the M-snippet is not considered a phasic
event; if it meets the criterion, then, the snippet is considered

a MPP event. Therefore, its amplitude (α), index of the closest
dictionary atom (ω), and timing (τ ) are noted. Specifically, they
provide the necessary information to create the marked point
process as the output of the model.

2.3.2. Dictionary Learning

The second stage exploits the elements of each cluster to update
the filter parameters with the signatures of all the similar M-
snippets via robust low-rank transformations (Loza and Principe,
2017). The M-snippets from the previous stage are grouped in
matrices according to their indexes, ω. Then, we apply scale-
invariant low-rank transformations to each matrix associated
with a dictionary element (center); in particular, Singular
Value Decomposition (SVD) provides a low-rank transformation
where the first component maximizes the represented variance
or power in the set; this first component would constitute
the updated dictionary atom. However, regular SVD optimizes
only second-order statistics and is prone to outlier effects.
In order to provide robustness to the framework, we utilize
correntropy as the cost function of the low-rank transform (Liu
et al., 2007). Correntropy is defined as a dependence measure
for random variables and has been throughly applied in non-
linear analysis, robust decomposition, and sparse approximation
(Gunduz and Principe, 2009; He et al., 2011; Loza and Principe,
2016a). The robust correntropy-based SVD technique utilizes the
Gaussian kernel in order to go beyond the benchmark of second-
order statistical moments. The addition of correntropy to the
framework does not add significant computational complexity
nor it requires a validation stage when it comes to the free
parameter introduced by the Gaussian kernel, σ , the kernel
width. In fact, previous studies have taken advantage of the
Silverman’s rule (Silverman, 1986) and have been successful
in mimicking the effect of kernel annealing and providing
robustness against outliers (He et al., 2011; Loza and Principe,
2016b). In this way, a robust dictionary learning technique
ensures that the updated FIR filters are not biased by outlier M-
snippet shapes while preserving the number of free parameters in
the overall model.

Both stages run in an iterative manner until a particular
terminal criterion has been reached, e.g., minimum variation of
dictionary atoms (e.g., Frobenius norm of successive parameter
estimations less than 10−2) or fixed number of iterations (in
practice, at least 20 for each initial condition has proven
effective). It is worth mentioning that, due to the greedy
nature of both stages, it is necessary to avoid suboptimal, local
solutions by running the iterative optimization with different
initial conditions. In the end, the set of atoms with the lower
mutual coherence (Donoho and Huo, 2001) will be chosen as the
optimal dictionary.

3. RESULTS

3.1. Sleep Spindles Detection
The first validation experiment comes from one of the most
distinctive EEG patterns of stage 2 non-REM sleep in humans—
sleep spindles. They have been associated to memory processes
(Schabus et al., 2004), cortical development (Khazipov et al.,
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2004), and have been regarded as potential biomarkers of
psychiatric disorders (Ferrarelli et al., 2010). However, most of
the detectors used in these modern studies (see Principe and
Smith, 1986 for an older review) rely on cross-validation schemes
to set a proper detection threshold, e.g., via the receiver operating
characteristics (ROC) curve. On the other hand, our approach
does not require previous enumerated data for free parameter
cross-validation, it rather utilizes neurophysiological principles
to estimate and model the precise temporal markers of sleep
spindles in single-channel EEG traces.

The data under study belongs to the TCTS Laboratory
of the University of MONS and the Sleep Laboratory in
the Université Libre de Bruxelles. The publicly available
DREAMS database (Devuyst, 2011) was utilized to validate
the proposed methodology via quantitative comparison to
sleep scoring annotations. Furthermore, the traces were
recorded using a digital 32-channel polygraph (BrainnetTM
System of MEDATEC, Brussels, Belgium) that includes two
Electrooculogram (EOG) channels (P8-A1, P18-A1), three EEG
channels (CZ-A1 or C3-A1, FP1-A1, and O1-A1) and one
submental Electromyography (EMG) channel. The records were
anonymized before being saved in the standard European Data
Format (EDF). The database provides one 30-min single-channel
EEG segment from whole-night recordings for each one of
the 8 patients in a sleep pathology study (different bipolar
electrodes per subject). The sampling frequencies range from 50
to 200 Hz, and, in an effort to reflect reality as close as possible,
these traces are not noise-free, pre-processed, nor manually
chosen. Lastly, two expert clinicians independently score the
30-min single-channel traces and provide annotations in the
form of timestamps and durations of sleep spindles. It is worth
mentioning that only the 6 patients with both scores available are
part of the present analysis.

In order to have proper comparisons to the ground truth, the
M parameter was selected as the median value of the durations
for each visual scorer per subject. This value ranged from 700
to 1,010 ms for the first expert, and it was equal to 1,000 ms
for the second scorer. K was chosen as a multiple of M for
each patient, i.e., K = ⌊K ′ ×M⌋, where M is in samples and
K ′ takes values from 0.125 to 1 with 0.125 intervals. In order
to individualize the sigma band, the only one interesting in
this study, the single-channel, single-trial EEG traces were pre-
processed via bandpass filtering in the sigma band (11–16 Hz)
utilizing a Butterworth filter with a designed quality factor close
to 2. Lastly, a total number of 20 different initial conditions were
given to the iterative optimization scheme for each combination
ofM, K, subject, and visual scorer.

Figure 3 depicts three representative 30-s segments from one
patient and its corresponding timestamps according to expert 1
alongside the estimated, unsupervised marks obtained from the
proposed framework; in general, there is a consistent agreement
between both criteria. We also analyze the True Positive Rate
(TPR) according to both scorers and its dependence on K ′,
i.e., the number of estimated FIR filters. Figure 4 summarizes
the results and depicts the cases where statistical association
was found (1-way ANOVA p < 0.01). The sensitivity peaks
at different values of K ′ for each case and reveals an unclear

consensus whether K ′, and therefore K, plays a major role for
this specific measure. The particular performance of subject 4 is
discussed in the final section of the paper.

Tables 1, 2 summarize the sensitivity and specificity of
the unsupervised detectors with respect to each visual scorer.
Specifically, the tables also evaluate the variation as a dependence
on the number of estimated dictionary atoms, K ′, i.e., K. The
sensitivity achieves maximums of 0.72 and 0.69 in comparison
to experts 1 and 2, respectively (median over subjects), which is
comparable to the benchmark of inter expert agreement reported
by the database authors (Devuyst et al., 2011)—0.7 TPR. On the
other hand, the specificity of our approach reaches 0.85 and 0.88
with respect to visual scorers 1 and 2, respectively, which falls
below the 0.98-mark reported by the database authors.

3.2. Motor Correlates from ECoG
The second experiment corresponds to the Brain-Computer
Interface (BCI) Competition IV, dataset 4 (Blankertz, 2009;
Tangermann et al., 2012). In particular, three epileptic patients at
the Harborview Hospital in Seattle, Washington were implanted
with subdural electrode grids on the surface of the brain with
the main purpose of clinical motoring and localization of
seizure foci (different number of channels per subject). The
study was approved by the internal review board of Harborview
Hospital; in addition, the patient data was anonymized according
to internal review board protocols to comply with HIPAA
regulations. The recordings were amplified and digitized using
Synamps2 amplifiers (Neuroscan, El Paso, TX, USA). The BCI
system BCI2000 (Schalk et al., 2004) was utilized to provide
the visual stimuli, acquire the brain signals, and record the
flexion of individual fingers using a data glove (Fifth Dimension
Technologies, Irvine, CA, USA). The patients were asked tomove
a particular finger after visual cues in a computermonitor in front
of them. Each 2-s-long cue was followed by a 2-s-long rest period.
During each finger flexion task, the subjects typically performed
3–5 consecutive movements or taps. Particularly, the goal of the
challenge was to infer the finger flexion based on the multi-
channel ECoG traces alone corresponding to the contralateral
hemisphere of finger movement. Hence, timestamps of cued
visual stimuli, finger flexion kinematics, and digitized (sampling
frequency 1,000 Hz), bandpassed (0.15–200 Hz) ECoG traces
were provided in the dataset.

Even though the so-called Local Motor Potentials (LMP)
are discriminant when it comes to finger movement and other
motor tasks (Schalk et al., 2007; Kubanek et al., 2009), we
decided to focus on the high-frequency content of the ECoG
recordings due to their inherent short-lived, transient events that
can be properly modeled exploiting the proposed framework.
Specifically, we focus on the high-gamma band (76–100 Hz)
that provides more localized activity thanks to the short-lived
synchronization windows this rhythm allows (Tangermann et al.,
2012). Once again, a Butterworth filter with quality factor close
to 2 was utilized after downsampling the original recordings to
500Hz. Next, the two free parameters of the transient model are
set: M is chosen equal to 50 samples, or 100 ms, after thorough
visual inspection of the temporal traces and their corresponding
TF analysis. K is set as discrete values from 2 to 100 in order
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FIGURE 3 | Comparison of sleep spindle unsupervised detector and expert 1 (DREAMS database). Three 30-s segments show putative sleep spindles scored by the

clinician (black rectangles) and by the proposed unsupervised scheme (red rectangles). Subject 5.

to investigate the dependence of the metrics with respect to the
number of estimated dictionary atoms. The methods are ran
for each individual channel separately setting 5 different initial
conditions and 20 iterations maximum.

The first set of results focuses on amplitude coding using the
MPP properties, e.g., the density of spikes and their amplitudes.
In the test, after the MPP is obtained, each delta function
signifying an MPP is smoothed utilizing a truncated Gaussian
kernel (σ = 100, finite support of 200 samples) in order to obtain
comparable timescales between the Marked Point Processes
and the finger kinematics. Effectively, we are estimating the
MPP rate with this procedure. Then, the normalized cross-
correlation between the smoothedMPP and the fingermovement
is computed for each trial paying special attention to causal
results alone. Lastly, the average cross-correlation is obtained
for each sensor-finger pair (mean over finger flexion tasks or
trials). Figure 5 illustrates such relationship for one patient, and
it is evident that the smoothed MPP is spatially sparse and
localized. Moreover, similar trends are observed in the remaining
subjects with the only significant difference being the spatial
distribution due to specific electrode grid arrangements. Multiple
1-way ANOVA analyses for each value of K under consideration
(7 cases: 2, 5, 12, 25, 50, 75, 100) and all possible finger-patient
combinations (15 cases) reveal that 97% of the cases exhibit
at least one channel per finger, patient and fixed K that does
not conform to the equal mean hypothesis (p < 0.01).
Hence robustly, at least one channel contains phasic events with
timestamps that are positively correlated to a particular finger
movement. Lastly, we determined the potential relationship
between average cross-correlation (between smoothed MPP and

finger flexion) and the number of estimated dictionary atoms.
Specifically we focus on one channel per finger alone, i.e., each
motor task is associated to the electrode with higher average
cross-correlation; then, the statistical significance is computed
(1-way ANOVA) with respect to K. As Table 3 indicates, there
is not enough evidence to suggest a strong correlation between
the cross-correlation measure and the cardinality of the filter
bank.

One of the advantages of the exceptional temporal resolution
and point process nature of the MPP is the possibility to compute
the characteristic delay between brain activity and motor task
execution. Specifically, the time lags from the previous cross-
correlation analysis can be regarded as such estimated delays.
Table 4 shows the average temporal lags for the channel with the
higher normalized cross-correlation per finger for all the subjects
under study. The delay falls in the range of approximately
7–8.5 ms.

The next set of results pays close attention to the actual
learned FIR filters. The estimation process can be easily biased by
outlier shapes and noise-related phenomena that might distort
the nature of the “ideal” induced potentials. For this reason,
correntropy provides a sound safeguard and ensures robust
estimation of the prototypical M-snippet templates. Figure 6
depicts the learned modulatory patterns with a distribution
of their closest M-snippets in the form of box plots of
Euclidean distances. These distances are computed considering
the extracted M-snippets corresponding to each particular
dictionary atom, i.e., a sort of cluster compactness measure.
Not only the prototypical templates seem to exhibit different
modulatory levels that can be further analyzed, but their
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FIGURE 4 | Average TPR vs. K′ with respect to both visual scorers (DREAMS database). (A–F) Subject 1, 2, 3, 4, 5, 6. Legends with black asterisk denote statistical

dependency on K′. (1-way ANOVA, p < 0.01).

TABLE 1 | Sensitivity of automatic sleep spindle detector with respect to both

visual scorers for different number of dictionary atoms (DREAMS dataset).

K′

Expert 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 0.69 0.69 0.68 0.69 0.72 0.69 0.67 0.71

2 0.57 0.59 0.60 0.62 0.63 0.66 0.67 0.69

Median over subjects.

TABLE 2 | Specificity of automatic sleep spindle detector with respect to both

visual scorers for different number of dictionary atoms (DREAMS dataset).

K′

Expert 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 0.85 0.85 0.84 0.84 0.84 0.83 0.83 0.83

2 0.88 0.87 0.86 0.86 0.86 0.86 0.86 0.86

Median over subjects.

distributions include clear outliers (red crosses) that might bias
the estimated FIR filter. However, by exploiting correntropy as
the cost function of the SVD method, we can guarantee that the
resulting estimated shapes are, indeed, unbiased.

Lastly, we explicitly exploit the sparse nature of the resulting
MPP in order to elucidate a rate coding mechanism for motor
control. According to the three channels with the higher average
cross-correlation per finger from the first set of results, we plot
the temporal distribution of MPP timings (τ ) in comparison to

the finger flexion kinematic traces for a 2-min period (Figure 7).
It is evident that some channels remain “silent” during periods of
motor inactivity and subsequently start to become active or fire
when the motor activity starts; this representation (raster plot)
and methods are very similar to the ones usually applied when
working with spikes. With that in mind, it is possible to make use
of other specific tools and techniques normally reserved for Point
Processes (PP) only. For instance, it is possible to estimate the
phasic event density (intensity function of the PP) before, during
and after finger flexion movements. Figure 8 clearly resembles a
Peristimulus Time Histogram (PSTH); particularly, the density
significantly increases in the vicinity of the zero-mark, i.e., visual
cue, and subsequently decreases after the motor task is finished
approximately 2 s later.

4. DISCUSSION

The methods and results of this paper suggest that a novel
event-based interpretation of EEPs and neuronal oscillations is
advantageous from a modeling point of view. The temporally
sparse nature of the relevant neuromodulations fits perfectly in
a transient model that strives to model a single-channel, single-
trial EEP trace as the superposition of reoccurring, short-lived
patterns in different frequency bands within a background noise
environment. In particular, the Marked Point Process framework
facilitates the quantification and further interpretation of the
estimated phasic events. Two main applications are exploited in
order to validate such novel point of view: EEG sleep spindle
detection and ECoG motor correlates in the high-gamma band.

In general, there is agreement between timestamps from
visual scorers and the proposed unsupervised approach in the
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FIGURE 5 | Average cross-correlation between smoothed high-gamma MPPs and finger flexion kinematics. From top to bottom: finger 1, 2, 3, 4, 5. K = 50.

Subject 3.

TABLE 3 | Statistical significance of the average cross-correlation between

smoothed high-gamma MPPs and finger flexion kinematics with respect to K.

K

Finger 2 5 12 25 50 75 100 p-value

1 0.57 0.58 0.61 0.62 0.63 0.61 0.61 0.95

2 0.47 0.51 0.52 0.51 0.52 0.55 0.53 0.99

3 0.39 0.45 0.48 0.49 0.47 0.48 0.49 0.51

4 0.59 0.62 0.62 0.65 0.66 0.64 0.64 0.95

5 0.44 0.44 0.45 0.45 0.47 0.46 0.46 0.91

1-way ANOVA. Subject 2.

TABLE 4 | Estimated delay between high-gamma ECoG neuromodulations and

finger flexion tasks.

Subject Estimated delay (ms)

1 7.04

2 8.40

3 8.33

Average over K and fingers.

DREAMS sleep spindles database (Figure 3); however, some
snippets are categorized as sleep spindles due to their modulatory
nature alone, when, in actuality according to the clinician, they
are not putative spindles. This might be a result of particular
M-snippets located at the fringe between the phasic event
component and its noise counterpart in the distribution of
the norms mentioned in section 2.2. Moreover, we would like
to add that no minimum amplitude threshold nor minimum

length constraint has been applied in our model, while the
clinician may subconsciously be using some thresholding. Also,
it is clear that the model underperforms with subject 4 in
Figure 4; this is a direct consequence of the biased estimation
of γ due to the excessive EMG artifacts (mentioned in the
original manuscript from the database authors) that leaked to
the sigma band and affected the norm distribution. We expect
the metrics to improve if proper pre-processing takes place, e.g.,
EMG interference is reflected across the whole spectral support
of the signal and, therefore, can be detected via broadband
TF analysis or comparison of relative power over time and
frequency.

There is a direct correlation between higher median
sensitivities and larger dictionaries; however, the overall change
is only a couple of percentage points, which might not justify
the extra computational burden that comes with a larger number
of filters in the filter bank. Conversely, the specificity seems
to decrease with increasing dictionary sizes; nevertheless once
again, the change is only a couple of percentage points. We
believe the difference with the benchmark results from Devuyst
et al. (2011) in terms of specificity is mainly due to a lack of
pre-processing mechanisms to handle artifacts.

In summary, the proposed methods are capable of detecting
and modeling sleep spindles in an automatic, unsupervised
manner without appealing to add-hoc cross-validation
schemes in the search for optimal thresholds. We utilize
neurophysiological principles, such as the Gaussianity of the
background noise, to select threshold parameters that separate
putative sleep spindles from noise components. This highlights
the flexibility of our methodology, where we did not modify the
overall structure of the model nor the amount of free parameters.
Instead, the transient model was utilized to achieve benchmark
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FIGURE 6 | Estimated normalized high-gamma dictionary atoms from ECoG traces. Insets show the distribution (box plots) of the Euclidean distances between the

M-snippets assigned to each FIR filter and their corresponding learned dictionary atom. Red crosses indicate potential outliers. Subject 3, electrode 49. K = 12 for

visual purposes.

FIGURE 7 | Raster plot of high-gamma MPP samples from ECoG traces (black) in comparison to finger flexion kinematics (blue). Three particular channels per finger.

From top to bottom: finger 1, 2, 3, 4, 5. K = 100. Subject 3.

metrics and proved to mimic the clinical interpretation of
electrophysiological biomarkers.

The results from the BCI Competition IV, dataset 4 showcase
the innovation and potential of the MPP framework for

relating brain activity with behavior. For instance, the MPP rate
analysis agrees with a previous study where it was noted that
adjacent fingers present common electrodes as a consequence
of correlated, involuntary flexions (Miller and Schalk, 2008).
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FIGURE 8 | Estimated density of phasic event occurrence before, during and after motor task (2-s-long windows). Left, Subject 1, finger 1, channel 43. Middle,

Subject 2, finger 3, channel 8. Right, Subject 3, finger 1, channel 9. K = 100.

Also, the statistical analysis for all the different values of K and
all possible finger-patient combination suggests a robust trend
of MPPs strongly correlated to the finger flexion kinematics.
Similar conclusions have been achieved with different methods
and processing techniques in the same dataset (Flamary and
Rakotomamonjy, 2012; Liang and Bougrain, 2012; Tangermann
et al., 2012); thus, confirming the validity of our overall
phasic event framework. In terms of filter bank cardinality, the
emerging trend seems to indicate that the average normalized
cross-correlation improves slightly when a higher number of
dictionary atoms are estimated (Table 3 and Supplementary
Material, Tables S1, S2). However, practical limitations need to
be taken into consideration; especially for this dataset where high
sampling frequencies and multi-channel recordings are some of
the main data features.

The estimated delay between brain activity and motor task
falls in the 7–9 ms. range, which is consistent with previous
experiments where the conduction time from cerebral cortex
to forelimb muscle was assessed (Cheney and Fetz, 1980;
McKiernan et al., 1998; Park et al., 2004). However, such studies
exploit cell firing and other spike-related measures alongside
EMG activity in order to estimate the aforementioned delay. In
our case, we exploit the intrinsic exceptional temporal resolution
of the transient model that can achieve a lower bound equal to
the sampling period; this appealing property can not be obtained
with regular Time-Frequency decompositions alone.

The ongoing plastic nature of the brain reflected in phasic
event production, make the modeling task a necessity. For our
case, this modeling comes in the form of the estimated FIR filters
in a data-driven scheme by exploiting unsupervised learning
techniques. Hence, it is crucial to estimate such patterns in a
principled and robust scheme. Figure 6 makes a case for the
justified use of correntropy as the cost function in the dictionary
learning stage. In particular, the presence of outliers in the box
plots are the result of a poor linear modeling of non-linear
dynamics in the brain, i.e., spike-to-wave transform (Freeman,

1975), and phasic event distortion due to colored noise. However,
correntropy ensures that the final estimation will be, ideally,
unbiased by the outliers and closer to “ideal neuromodulations.”
Therefore, this application highlights the need for robust
processing when it comes to a signal characterized by noise and
artifacts, such as EEP.

The rate coding results presented in Figure 8 are disruptive
for the EEP field. The PSTH-like nature of the model output is
only one example of future point process-based methods that can
be applied directly to the estimated MPP, e.g., phasic event rate
differences, tuning curves, inter phasic event interval densities
with the classical parametric and non-parametric estimations
(Daley and Vere-Jones, 2007). These methods can also be
immediately integrated with spike train single neuron analysis
opening the door for a multiscale modeling of electrical brain
activity. For instance, the neuromodulation events captured
by the proposed model can be used to parse out which
neurons are involved in the mesoscopic events by statistical
conditioning. In fact, because the neural action potentials and
the phasic events are both represented mathematically by point
processes, one can exploit techniques very similar to Spike
Trigger Averages (STA) and Joint Peristimulus Time Histograms
(JPSTH), but instead of using external stimuli, we can directly
use the phasic event MPP. We expect that this will provide
added multiscale information of the role of fields in neural
organization. In short, we have introduced a novel interpretation
to neuromodulations that would not be possible via classical
decomposition techniques or Time-Frequency analysis. For the
BCI applications, the proposed framework opens the door to
innovative on-line detectors/predictors BCI systems where it is
only required to estimate the density of event-related oscillations
in order to obtain relevant motor decoding and topographical
discrimination of active brain areas.

Potential caveats arise from the additional constraints of
the methodology; namely, it is necessary to focus on a single
oscillatory rhythm at a time, which is also preferred in the clinical
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and research fields (Niedermeyer and da Silva, 2005; Buzsaki,
2006). However, in our implementation, it is a matter of utmost
importance to properly select the pre-processing bandpass filter
for each neurophysiological band. For instance, instead of higher-
order narrowband filters with large stop-band attenuation, which
introduce artificial patterns, such as ringing artifacts (Freeman
and Quiroga, 2012; Widmann and Schröger, 2012), as can be
expected from high amplitude and long impulse responses, it
is imperative to select filters with quality factors (ratio between
central frequency and main filter lobe) close to 1 (Principe and
Smith, 1982). Moreover, FIR filters should be favored in on-
line applications due to their inherent linear phase; however,
IIR filters with zero-phase implementations should suffice in
most off-line studies, although they are more time consuming
because they require two filtering operations in reverse direction.
Another key aspect is the seed dictionary; although filters from
previous studies can be exploited for the initialization of the
dictionary, the most appealing feature of the overall framework
is its data-driven approach. Hence, we must ensure that the
initial filters are sufficiently different enough from each other to
cover well the selected frequency band. This can be achieved by
favoring seed dictionaries with low mutual coherence (Donoho
and Huo, 2001), i.e., small linear correlation between pairs of
filters. Another alternative could exploit the modulation of the
M-snippets, e.g., select K filters with a large range of quality
factors.

The proposed noise model exploits EEP deviations from
Gaussianity as a mean to delineate the constant transitions in
the cortex from the resting state to work. For our particular
validation experiments, such “work” state is tightly related to
well-known processes, generation mechanisms and/or external
stimuli, e.g., sleep spindles are regulated by the mutual
interaction between GABAergic reticular neurons and excitatory
thalamic cells (Buzsáki and Draguhn, 2004). However, we are
not claiming that such active state is the result of external
processes or sensory stimuli alone; as the metaestable state
of the cortex implies, the inevitable transitions from chaos
to synchronization can be brought about via internal, even
spontaneous, processes. In fact, previous studies hypothesize
that, at the neuron level, task-evoked events might be
constrained by the patterns displayed during spontaneous
activity (Luczak et al., 2009). Therefore, the definition of the
rest state of the proposed noise model has to be explicit in
terms of experimental design or well-proven neurophysiological
mechanisms. In any case, these specifications do not limit the
use of the proposed method; indeed, it could be utilized to
detect and model transient events in the spontaneous activity
of EEPs.

The two main free parameters of the model, M and K, must
be carefully selected depending on the context, i.e., a gray box
type of approach. M is strictly tied to the oscillatory rhythm
under study; as previously mentioned, visual inspection and
classical TF analysis should come hand-in-hand with general
neurophysiological concepts and previous studies in order
to properly set the duration of putative induced potentials.
On the other hand, K heavily depends on the quality of
the recordings, e.g., cleaner traces as in the ECoG dataset

require a smaller number of dictionary atoms, while noisy
EEP recordings usually demand for larger dictionaries in order
to accommodate larger fluctuations. Ideally, our attempt is
to quantize a high-dimensional “wave” space where the M-
sample-long phasic events are represented. This space can
also be interpreted as a continuous state-space model of the
generative process from action potentials to neuronal waves
(Freeman, 1975). This condition alongside the plastic nature
of the brain and its electrical potentials make the quantization
task even more daunting. This might be the reason behind
the increase in performance metrics when the dictionary size
increases accordingly, i.e., quantization of this “wave” space
utilizing denser grids results in better performance. On the
other hand, increasing K diminishes the value of modeling
itself—in the limit, grids start to become single points and
the filter banks do not characterize global trends anymore;
this drawback clearly resembles the overfitting phenomenon
very well-known in machine learning. In summary, there is a
clear multivariate trade-off between performance, number of
dictionary atoms, computational load and risk of overfitting.
Hence, it is still an open issue to select proper bounds on K;
however, the empirical rules previously stated should be followed
when possible.

Lastly, the proposed framework provides a richer parameter
space to quantify neuromodulations. A set of EEP recordings can
be characterized by its MPP features and timings, its filter bank
properties, and the statistical moments of the noise component.
Conversely, classical decomposition methods focus most of
their attention on the power spectrum information alone and
blur the temporal markers by introducing artificial processing
windows. This is a consequence of the direct application of
spectral estimation methods to non-stationary and transient
signals that require special processing due to their particular
generationmechanisms, noise properties and dynamical features.
We have proposed a model flexible enough to be applied
to event-related oscillations at different scales, topographical
regions, and with diverse behavioral correlates, yet, specific
enough to accommodate the particular properties required by
the EEP. In addition, the methods can easily adjust to work
in parallel with multiple trials, multiple channels, and multiple
experimental tasks. In this way, the Marked Point Process
quantification framework opens the door to novel analysis in
deeper structures, such as the hippocampus and Deep Brain
Stimulation-related targets, in the hope of elucidating novel
mechanisms that can be correlated to the overt behavior and
the microscopic activity thanks to the resulting precise temporal
resolution.

In the spirit of openness and to encourage reproducibility,
the MATLAB code corresponding to the proposed methods are
available at https://github.com/cnel/MPP-EEG.
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