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Abstract
Accurate prediction of oil consumption plays a dominant role in oil supply chain management. However, because of the effects of
the coronavirus disease 2019 (COVID-19) pandemic, oil consumption has exhibited an uncertain and volatile trend, which leads
to a huge challenge to accurate predictions. The rapid development of the Internet provides countless online information (e.g.,
online news) that can benefit predict oil consumption. This study adopts a novel news-based oil consumption prediction
methodology–convolutional neural network (CNN) to fetch online news information automatically, thereby illustrating the
contribution of text features for oil consumption prediction. This study also proposes a new approach called attention-based
JADE-IndRNN that combines adaptive differential evolution (adaptive differential evolution with optional external archive,
JADE) with an attention-based independent recurrent neural network (IndRNN) to forecast monthly oil consumption.
Experimental results further indicate that the proposed news-based oil consumption prediction methodology improves on the
traditional techniques without online oil news significantly, as the news might contain some explanations of the relevant
confinement or reopen policies during the COVID-19 period.
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1 Introduction

1.1 Research background and motivation

The oil supply chain is of great significance in the global econ-
omy, and oil plays a dominant role in energy resources [1–4].
Based on the BP Statistical Review ofWorld Energy 2021, oil is
the largest consumed commodity among energy commodities,
at about 33.2%, 33.1%, and 31.2% in 2018, 2019, and 2020,
respectively. Therefore, exploring the oil supply chain manage-
ment has had its appeal in the field of theory and application for
profit maximization and risk minimization [5]. Accurate predic-
tion of oil consumption can also benefit related companies or
countries that develop budget plans and stabilization policies.

The uncertainty of the oil market leads to the difficulty of the
forecasting oil market [6]. The error sources of oil consumption
forecasting include various unpredictable factors. Oil consump-
tion has remarkable features and various external factors in-
cluding exogenous factors (e.g., extreme weather, conflicts,
war, as well as economic development) and oil market factors
(e.g., price and inventory). For example, because of the effects
of the coronavirus disease 2019 (COVID-19) pandemic, the oil
market has shown volatile trends in many countries.

Thus, modeling diverse factors that affect oil consumption is
crucial to oil consumption prediction. The challenging question
is how to select the most helpful predictors, some of which are
hard to quantify. Fortunately, many novel techniques can be
employed to quantify qualitative data [7]. Recently, it becomes
a hot spot in converting the qualitative analysis of politics,
disasters, and emergencies into quantitative information [8].

The emergence of the Internet provides adequate online
media information (e.g., online news) that can show the rea-
sons for driving the oil markets [9]. Online media is a key
source, and its analysis can assist political and economic pre-
dictions [10]. Furthermore, online news is considered a more
comprehensive and adequate information source than other
sources, such as Twitter or blogs, because it is more persua-
sive [11]. Accordingly, oil news is considered as helpful qual-
itative data that could improve oil consumption prediction.

This study aims to adopt a news-based oil consumption
prediction methodology that considers online oil news. To
analyze the specific impact of each influencing factor on the
oil consumption forecasting, an attention mechanism is intro-
duced to the independent recurrent neural network (IndRNN)
in this study. The attention mechanism can assign different
weights to different influencing factors of oil consumption,
and the model can automatically highlight more critical
influencing factors, thereby improving the prediction accuracy
of the IndRNN model. In addition, an effective intelligent
evolutionary algorithm, namely adaptive differential evolu-
tion with optional external archive (JADE) is used to search
the hyperparameters of attention-based IndRNN to improve
the performance of the oil consumption forecasting model.

1.2 Literature review

Themajority of studies on forecasting energy consumption have
used traditional econometricmodels, time-series techniques, and
emerging intelligent algorithms [12–15]. Emerging artificial in-
telligence (AI) approaches use powerful self-learning capacities
to capture the complex nonlinear features of energy markets
[16]. For example, Wei et al. [17] combined an enhanced sin-
gular spectrum analysis with long short-term memory (LSTM)
to predict daily natural gas consumption. Somu et al. [18] pro-
posed a deep learning framework, namely kCNN-LSTM to
forecast building energy consumption. Li et al. [19] studied 26
combination models using the traditional combination method
to increase oil forecasting accuracy in China. Comparedwith the
traditional model, their proposed AI combination model can
obtain ideal prediction results.

Despite these attempts, the research on forecasting energy
consumption remains inadequate. A common shortcoming of
the above studies is that oil consumption trends are based on
historical statistics. The error in oil consumption forecasting is
very large when emergency events have a short-term effect on
oil markets. Thus, it is important to consider exogenous factors
and oil market factors. Few studies have explored oil consump-
tion forecasting using qualitative information. For example, Yu
et al. [1] proposed that using Google Trends is a helpful method
to predict oil consumption. They found that Google Trends
reflect various related factors according to a mass of search
results. However, when irregular events occur, Google Trends
appear to be on the rise, regardless of what causes oil consump-
tion to rise or fall. Thus, to develop their study, this study further
proposes a text-based approach to predict energy consumption.

The oil markets are heavily influenced by uncertain events,
such as political instability, and actionable information can be
extracted from text-mining algorithms from online news. Text
mining has been widely used in oil price forecasting. For
example, Li, Shang, and Wang [20] used oil news to predict
WTI oil price, and their results show that oil news contains
useful information for predicting oil price. Inspired by previ-
ous studies, this study intends to examine whether oil news
contributes to the prediction of oil consumption.

Text mining can transform an unstructured format into a
structured format to extract information and identify ideas [21,
22]. Hemmatian and Sohrabi [23] conducted aspect extrac-
tion, opinion classification, abstract generation, and evalua-
tion on the emerging artificial intelligence technology and
proposed an appropriate text mining framework. They be-
lieved that the convolutional neural network (CNN) is worth
studying and is a potential text mining method. Huang et al.
[24] used CNN to extract the features of sentiment from six
real cases. The results showed that their proposed CNNmodel
hadmore effective power than the baseline methods. Based on
their study, this study also employs the CNN model to extract
text features of oil news.
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Suitable forecasting models also determine the performance
of oil consumption forecasting except for effective predictors.
Oil consumption shows complex nonlinear features and the
artificial neural networks (ANNs) with strong nonlinear fitting
capability are more suitable to predict oil consumption [25].
Deep learning models with a good ability to fit nonlinear fea-
tures are suitable for oil consumption forecasting [26].

Deep learning methods (e.g., recurrent neural network),
have been applied for time-series forecasting [27, 28]. To
overcome gradient vanishing and gradient exploding prob-
lems existing in traditional recurrent neural networks
(RNNs) [29], Li et al. [30] proposed an independent recurrent
neural network (IndRNN), where neurons in the same layer
are independent of each other. Compared with the traditional
RNN and LSTM, using IndRNNs achieved better perfor-
mances on various tasks. IndRNN is a new model, few studies
are using the deep learning technique. For example, Chu and
Yu [31] combined IndRNNwith back-propagation neural net-
works to predict rice yield. They employed IndRNN to learn
deep spatial and temporal features and obtained good perfor-
mance. Thus, this study applies IndRNN for the first time as
an effective oil consumption forecasting technique.

Many parameters for IndRNN affect forecasting accuracy.
Consequently, an intelligence algorithm can be employed to
select the parameters of IndRNN. The adaptive differential
evolution with optional external archive (JADE) is competi-
tive in easy implementation and quick convergence, with bet-
ter robustness than other popular algorithms [32, 33].
Accordingly, this study uses the JADE algorithm to determine
the hyperparameters of IndRNN.

The current models based on the neural network use differ-
ent influencing factors as the input of the prediction model to
forecast oil consumption. The analysis of the specific impact of
each influencing factor on oil consumption is not sufficient.
The calculation of the forecasting model is a black-box process,
and it is difficult to assess how the input of the neural network
affects the final forecasting value. The attentionmechanism can
mine the coupling relationship between the input variable and
the target variable, explain the influence of the input variable on
the target variable, and extract key input variables, thereby
improving the performance of prediction [34, 35]. Therefore,
different from previous research, this study introduces an atten-
tion mechanism to the JADE-IndRNN model. By assigning
weight to the input, key input factors can be better selected
and the effect of multi-factor forecasting can be improved [36].

1.3 Main work and contributions

This study adopts two numerical examples to verify the feasi-
bility of text-based oil consumption forecasting and the pro-
posed attention-based JADE-IndRNN model. The empirical
results indicate that oil news text features have considerable
effective predictive information. The attention-based JADE-

IndRNN model can increase the accuracy of oil consumption
prediction as compared with other popular techniques. The
main contributions can be described as follows:
(a) An effective and novel forecasting model, namely the

attention-based JADE-IndRNN model, is proposed via
artificial intelligence (AI) techniques for volatile oil con-
sumption. The proposed forecasting model combines the
key information capture ability of the attention mecha-
nism, the intelligent and efficient search parameter ability
of JADE, and the accurate prediction ability of IndRNN
for time series.

(b) The main finding of this study is that online oil news can
facilitate monthly oil consumption forecasting. Online
oil news significantly improves the accuracy perfor-
mance of oil consumption prediction, particularly when
oil consumption fluctuates dramatically.

(c) Two real-life oil consumption forecasting cases are applied
to verify the performance of the attention-based JADE-
IndRNN model. The results show that the performance of
the proposed model in the monthly oil consumption fore-
casting is more effective than that of other popular models.

The rest of the paper is described as follows. Section 2
discusses the methodology, including the attention-based
JADE-IndRNN and convolutional neural network. Section 3
presents performance tests of different evolutionary algo-
rithms. Section 4 presents the data descriptions, experimental
designs, the results of oil consumption forecasting, and man-
agerial implications. Section 5 describes the conclusion.

2 Methodology

Figure 1 depicts the general framework of the attention-based
JADE-IndRNN model for oil consumption forecasting. This
study adopts two numerical examples to verify the feasibility
of text-based oil consumption forecasting, namely U.S. oil con-
sumption forecasting, and Indian oil consumption forecasting.
From the well-known energy news website “Oilprice.com”, oil
news headlines are collected using the keyword “American oil”
or “India oil”. The convolutional neural network (CNN) model
is adopted to fetch useful text features. Then, the historical oil
consumption and CNN features are inputted to the proposed
attention-based JADE-IndRNN model. This study refers main-
ly to three techniques, namely, convolutional neural network,
adaptive differential evolution (JADE), and attention-based in-
dependent recurrent neural network. The details of these meth-
odologies are described as follows:

(a) Text mining technology: convolutional neural network

The CNN model is employed to extract online news. The
CNN model fully utilizes the semantic relationship between
oil news modes to help us extract the media’s view of the ups
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and downs of oil consumption. In this study, The CNN value
represents the probability that the text is classified as positive
sentiment. Figure 1 shows a complete and concise flowchart
designed to help us better understand the CNN algorithm. The
outputs of the CNN classification denote the fluctuations of

the monthly oil consumption, either decrease or increase. The
oil consumption movement om is described as follows:

om ¼ 0; cm < cm−1
1; cm ≥ cm−1;

�
ð1Þ

Fig. 1 The general framework of the attention-based JADE-IndRNN model for oil consumption forecasting
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where cm denotes the oil consumption at the end of month m.
(b) Adaptive differential evolution

JADE is used to determine the parameters of attention-
based IndRNN. The selected parameters are the number of
layers, number of time steps, number of units of the single
hidden layer, number of batch sizes, and steps of learning
rates. JADE is an excellent variant of the DE algorithm, show-
ing excellent results on high-dimensional problems [33].
Compared with basic DE, JADE has three main improve-
ments: a new mutation strategy “DE/current-to-pbest” is im-
plemented; an optional external archiving is added; parame-
ters are updated adaptively. “DE/current-to-pbest” and option-
al archiving operations diversify the population and improve
convergence performance. Parameter adaptation automatical-
ly updates the control parameters to appropriate values, which
helps to improve the robustness of the algorithm. Figure 1
shows the basic steps of JADE.
(c) Attention-based IndRNN model

An independent recurrent neural network (IndRNN) was
proposed to overcome gradient vanishing and gradient ex-
ploding problems existing in traditional recurrent neural net-
works (RNNs) [30]. Neurons in the same layer are not con-
nected but are connected across layers, while IndRNN can
easily avoid gradient vanishing and gradient exploding prob-
lems. However, IndRNN is slightly insufficient in explaining
the relationship between the input and output of the network.
To solve this problem, this study introduces an attention
mechanism to assign different weights to the features of input
influencing factors, which can effectively highlight the factors
that affect oil consumption and improve the prediction accu-
racy. The IndRNN model based on the attention mechanism
includes input sequence, attention layer, IndRNN layer, and
output prediction value, as shown in Fig. 1.

In the attention layer, the weights are firstly allocated in the
input sequence, and then the weights are multiplied by the
input sequence to form a new vector. The new vector will be
regarded as the input of the IndRNN layer. For the multi-
factor time series forecasting problem, suppose the input se-
quence is x ¼ ðx1; x2; . . . ; xnÞ; and the corresponding weight
is wo ¼ ðw1

o;w
2
o; . . . ;w

n
oÞ, wn represents the weight of atten-

tion, wn ¼ ðexpðwn
oÞÞ=

PN
n¼1exp wn

o

� �� �
, the Softmax func-

tion is to ensure that the sum of all weights is 1, and the input

of IndRNN isðw1
ox

1
;w2

ox
2
; . . . ;wn

ox
nÞ:

Attention mechanism helps to capture important factors
by assigning different weights to the features of the input,
especially in multi-factor time forecasting [37]. Thus, this
study designed the attention-based JADE-IndRNN which
combined the advantages of attention mechanism and
JADE-IndRNN.

3 Performance tests of different evolutionary
algorithms

The algorithms were coded using Matlab R2020b and calcu-
lations were carried out on a personal computer with an Intel
(R) Core (TM) i7-4710MQ, 8 GB RAM, 2.50 GHz CPU, and
Windows 10 professional Operational System.

3.1 Benchmark functions

The 29 benchmark functions listed in Table 1 are all widely
used benchmark functions [38–40]. Functions 1 to 15 (F1 to
F15) are unimodal, whereas functions 16 to 29 (F16 to F29)
are multimodal. Unimodal functions are easier to find global
solutions than multimodal functions. Multimodal function
structures are more complex than unimodal functions, with
peaks, valleys, channels, and flat hyperplanes of varying
heights. Therefore, these functions are suitable for verifying
the performance of different evolutionary algorithms.

3.2 Algorithms used for comparison

DE, DE variants, OBPSO, and SCA algorithms with strong
robustness and appropriate convergence speeds are used for
comparison for the following reasons:
(a) Differential Evolution (DE) is a stochastic model that sim-

ulates biological evolution by iterating over and over so that
those individuals that adapt to the environment are pre-
served [41]. TheDE algorithm possesses a simple structure,
is easy to implement, and has a good convergence speed.

(b) Linear Adaptive Differential Evolution (LADE) and S-
shaped Adaptive Differential Evolution (SADE) have
better convergence speed and stronger global search abil-
ity than basic DE. The scaling factor F determines the
individual’s variation scale. If F is too small, because the
algorithm is premature, and it cannot guarantee that the
diversity of the population will easily fall into the local
optimal solution; if F is too large, the iteration efficiency
of DE will be slow, and the algorithm will be difficult to
converge [42]. Therefore, this study selected two muta-
tion strategies to assess the performance of different DE
variants. The adaptive functions of LADE and SADE are
as follows:

F ¼ Fmax � ðFmax � FminÞt=T ; ð2Þ

F ¼ Fmin þ ðFmax � FminÞ* 1

1þ e10ðt�0:5*TÞ=T ; ð3Þ

Fmax, Fmin represent the maximum and minimum values
of the variation factor, respectively. T represents the
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Table 1 Details of benchmark functions

No. Functions xi x∗ f(x∗)

F1 f xð Þ ¼ ∑n
i¼2ix

2 (–5.12, 5.12) 0 0

F2 ∑n
i¼2 i 2x

2
i −x2i−1

� �2 þ x1−1ð Þ2 (–10, 10) 2 2−2ið Þ=2i 0

F3 f xð Þ ¼ −exp −0:5∑n
i¼1x

2
i

� �
(–1, 1) 0 –1

F4 f xð Þ ¼ ∑n
i¼1 106

� � i−1
n−1x2i (–100, 100) 0 0

F5 f xð Þ ¼ ∑n
i¼1ix

4
i þ rand 0; 1ð Þ (–1.28, 1.28) 0 0

F6 f xð Þ ¼ ∑n−1
iþ1 1000 xiþ1−x2i

� �2 þ xi−1ð Þ2
h i

(–30, 30) 0 1

F7 f xð Þ ¼ ∑n
i¼1 ∑i

j¼1x j
� �2

(–100, 100) 0 0

F8 f(x) = max(| xi| ) (–100, 100) 0 0

F9 f xð Þ ¼ ∑n
i¼1 xij j þ∏n

i¼1jxij (–10, 10) 0 0

F10 f xð Þ ¼ ∑n
i¼1x

2
i (–100, 100) 0 0

F11 f xð Þ ¼ ∑n
i¼1 xi þ 0:5b cð Þ2 (–100, 100) 0 0

F12 f xð Þ ¼ ∑n
i¼1 xij jiþ1 (–1, 1) 0 0

F13 f xð Þ ¼ ∑n
i¼1ix

2
i (–10, 10) 0 0

F14 f xð Þ ¼ ∑n
i¼1x

2
i −450 (–100, 100) 0 –450

F15 f xð Þ ¼ ∑n
i¼1 ∑i

j¼1x j
� �2

−450 (–100, 100) 0 –450

F16 f xð Þ ¼ −20exp −0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1x

2
i

q� �
−exp 1

n∑
n
i¼1cos 2πxið Þ� �þ 20þ e (–32, 32) 0 0

F17 f xð Þ ¼ ∑n
i¼1jxisin xið Þ þ 0:1xij (–10, 10) 0 0

F18 f (x) = f1(x1, x2) + f1(x2, x3) +… + f1(xn, x1)

f1(x, y) = (x
2

+ y
2

)
0.25

[sin
2

(50(x
2

+ y
2

)
0.1

) + 1]

(–100, 100) 0 0

F19 f (x) = f1(x1, x2) + f1(x2, x3) +… + f1(xn, x1)

f 1 x; yð Þ ¼ 0:5þ sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
−0:5

� �
= 1þ 0:001 x2 þ y2ð Þð Þ2

(–100, 100) 0 0

F20 f xð Þ ¼ π
nf10sin2 πyið Þ þ ∑n−1

i¼1 yi−1ð Þ2 1þ 10sin2 πyiþ1

� �� 	þ
yn−1ð Þ2gþ ∑n

i¼1μ xi; 10; 100; 4ð Þ

y
i

= 1 + 0.25(x
i

+ 1)
μ xi;α; k;mð Þ ¼

k xi−αð Þm; xi > α
0; −α < xi < α
k −xi−αð Þm; xi < −α

8<:

(–50, 50) -1 0

F21 f xð Þ ¼ 1
4000∑

n
i¼1x

2
i −∏

n
i¼1cos

xiffi
i

p
� �

þ 1 (–600, 600) 0 0

F22 f xð Þ ¼ −∑n−1
i¼1 exp − x2i þx2xþ1þ0:5xixiþ1

8

� �
cos 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ x2iþ1 þ 0:5xixiþ1

q� �� �
(–5, 5) 0 1 − n

F23 f xð Þ ¼ ∑n
i¼1 xi−1ð Þ2−∑n

i¼2xixi−1 (−n2, n2) i(n + 1 − i) n nþ4ð Þ 1−nð Þ
6
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maximum number of iterations, and t represents the cur-
rent number of iterations.

(c) Adaptive Hybrid Differential Evolution algorithm
(AHDE) proposed by Reference [43] combines adaptive
dynamic parameter control mechanism and a local ran-
dom search (LRS) operator to obtain higher robustness
and effectiveness.

(d) JADE proposed by Reference [33] is an adaptive differ-
ential evolution algorithm with an optional external ar-
chive. Their simulation results show that in most cases,
the convergence performance of the JADE algorithm is
better than other adaptive DE algorithms.

(e) Sine Cosine Algorithm (SCA) proposed by Reference
[44] is a novel population-based optimization algorithm.
SCA can effectively solve practical problems with con-
straints and unknown search spaces.

(f) Opposition-based Barebones Particle Swarm Optimization
(OBPSO) combines opposition-based learning and
barebones particle swarmoptimization to improve the qual-
ity of solutions. In most cases, CLPSO performs better than
basic PSO and other PSO variants [45].

3.3 Parameter setting

For a fair comparison, the dimensionality (N) of all algorithms
is set to 30, the size of population (sizepop) is set to 30, and the
maximum number of iterations (maxgen) is set to 1000.

Based on the suggestion of reference [33] for JADE, the
rate of parameter adaptation c is set to 0.1, and the greedy

degree p of the mutation strategy is set to 0.05. For DE,
LADE, SADE, AHDE, JADE, SCA, and OBPSO, the grid
search method is used to select parameters. For DE and its
variants, crossover probability (or initial crossover probabili-
ty) CR is set to 0.5, and mutation probability F (or initial
mutation probability = 0.5) is set in the range [0.2, 0.5]. As
for SCA, r1 2 0; 2½ �; r2 2 0; 2�½ �; r3 2 0; 2½ �; r4 2 0; 1½ �. For
OBPSO, the learning rate c1 ¼ c2 ¼ 1:5 , and the inertia
weight w ¼ 0:7.

3.4 Results and analysis

Each benchmark function is tested 30 times for each algo-
rithm, and the final mean and standard deviation are shown
in Table 2. Figures 2 and 3 show several average convergence
plots for unimodal and multimodal benchmark functions, re-
spectively. The results are analyzed in detail below.
(a) As shown in Table 2, JADE outperforms other algo-

rithms for F1, F2, F4, F6 to F10, F12, F13, F15, F18,
F20, F22 to F25, and F29, indicating that JADE has a
better structure to avoid falling into local optima.

(b) As shown in Table 2, for most benchmark functions, the
standard deviation of JADE is lower than that of other
algorithms, indicating that JADE is more computation-
ally stable and more robust than other algorithms.

(c) It can be seen from Figs. 2 and 3 that, in most cases, the
iteration speed and accuracy of JADE are better than
other algorithms, indicating that JADE has an efficient
global search capability.

(d) The results of theWilcoxon test at a 5% significance level
are shown in Table 2. The JADE algorithm is significantly

Table 1 (continued)

No. Functions xi x∗ f(x∗)

F24 f xð Þ ¼ ∑n−1
i¼1 0:5þ sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100x2i þx2iþ1

p
−0:5

1þ0:001 x2i −2xixi−1þx2iþ1ð Þ2

 �2

(–100, 100) 0 0

F25 f xð Þ ¼ ∑n−1
i¼1 x2i −10cos 2πxið Þ þ 10

� �
(–5.12, 5.12) 0 0

F26 f yð Þ ¼ ∑n
i¼1 y2i −10cos 2πyið Þ þ 10

� �
yi ¼

xi; xij j < 1=2
round 2xið Þ

2
; xij j≥1=2

( (–5.12, 5.12) 0 0

F27 f xð Þ ¼ 1−cos 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑2

i¼1x
2
i

q
 �
þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1x
2
i

p
 �
(–100, 100) 0 0

F28 f xð Þ ¼ ∑n
i¼1 ∑kmax

k¼0 αkcos 2πbk xi þ 0:5ð Þ� �� 	� 

−n∑kmax

k¼0 αkcos 2πbk � 0:5� �� 	
α = 0.5, b = 0.3, kmax = 30

(–0.5, 0.5) 0 0

F29 f xð Þ ¼ ∑n
k¼1∑

n
j¼1

y2jk
4000−cos yjk

� �
þ 1

� �
yjk ¼ 100 xk−x2j

� �2
þ 1−x2j
� �2

(–100, 100) 1 0
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Table 2 Comparison results between JADE and other evolutionary algorithms

Function JADE AHDE SADE LADE DE OBPSO SCA

F1 Mean 1.65E-22 5.501E+00 (+) 1.29E-07 (+) 3.57E-11 (+) 7.06E-13 (+) 3.52E+02 (+) 7.91E-05 (+)

Std. 9.05E-22 8.01E+00 2.92E-07 8.32E-11 3.75E-13 3.81E+02 2.29E-04

F2 Mean 2.29E-02 1.70E+03(+) 1.02E-01(+) 2.97E-01(+) 5.71E-01(+) 8.45E+00(+) 2.79E+01(+)

Std. 5.72E-02 3.24E+03 1.02E-01 1.62E+01 3.33E-01 2.21E+01 1.16E+02

F3 Mean -1.00E+00 -9.89E-01(+) -1.00E+00(≈) -1.00E+00(≈) -1.00E+00(≈) -8.66E-01(+) -1.00E+00(≈)
Std. 1.08E-05 1.47E-02 6.06E-10 1.13E-13 1.37E-15 2.15E+01 1.08E-05

F4 Mean 1.39E-20 3.06E+06(+) 6.70E-03(+) 4.43E-06(+) 7.72E-08(+) 2.87E+08(+) 1.44E+00(+)

Std. 6.68E-20 7.13E+06 1.03E-02 1.63E-05 3.66E-08 3.28E+08 4.53E+00

F5 Mean 3.31E-01 1.37E-01(-) 1.06E-01(-) 1.07E-01(-) 3.87E-01(≈) 1.45E-02(-) 2.77E-02(-)

Std. 7.75E-02 1.73E-01 3.62E-02 3.75E-02 9.21E-02 1.78E-02 1.79E-02

F6 Mean 1.37E+01 2.31E+05(+) 4.71E+01(+) 5.12E+01(+) 6.25E+01(+) 2.13E+03(+) 1.11E+03(+)

Std. 1.17E+01 5.07E+05 2.41E+01 2.37E+01 3.45E+01 7.35E+03 4.45E+03

F7 Mean 9.94E-03 4.94E+03(+) 1.41E+04(+) 1.36E+04(+) 1.32E+04(+) 1.02E+05(+) 3.35E+03(+)

Std. 2.79E-02 2.50E+03 2.33E+03 2.08E+03 1.78E+03 6.46E+04 2.74E+03

F8 Mean 2.55E-02 4.86E+01(+) 5.77E+00(+) 4.35E+00(+) 3.98E+00(+) 1.00E+02(+) 1.80E+01(+)

Std. 2.44E-02 8.39E+00 1.01E+00 5.60E-01 6.14E-01 0.00E+00 1.11E+01

F9 Mean 1.27E-11 1.21E+00(+) 3.85E-05(+) 5.51E-07(+) 2.93E-07(+) 6.18E+01(+) 1.78E-05(+)

Std. 4.20E-11 1.42E+00 2.02E-05 1.14E-06 6.68E-08 2.98E+01 4.41E-05

F10 Mean 1.07E-23 3.49E+02(+) 7.33E-06(+) 2.35E-09(+) 5.20E-11(+) 2.08E+04(+) 4.65E-02(+)

Std. 5.85E-23 4.31E+02 9.15E-06 5.21E-09 2.54E-11 1.23E+04 1.62E-01

F11 Mean 1.40E+00 3.05E+02(+) 0.00E+00(-) 0.00E+00(-) 0.00E+00(-) 2.42E+04(+) 1.00E-01(-)

Std. 4.77E+00 4.60E+02 0.00E+00 0.00E+00 0.00E+00 1.26E+04 4.03E-01

F12 Mean 8.62E-54 9.69E-04(+) 1.11E-33(+) 2.52E-41(+) 4.64E-52(+) 1.44E-13(+) 3.31E-07(+)

Std. 3.96E-53 3.80E-03 3.66E-33 1.38E-40 1.74E-51 4.56E-13 1.52E-06

F13 Mean 1.58E-26 2.67E+01(+) 1.06E-06(+) 2.95E-10(+) 5.79E-12(+) 2.42E+03(+) 5.21E-03(+)

Std. 7.41E-26 2.83E+01 1.19E-06 8.34E-10 2.69E-12 1.32E+03 1.69E-02

F14 Mean -4.50E+02 -9.09E+01(+) -4.50E+02(≈) -4.50E+02(≈) -4.50E+02(≈) 2.35E+04(+) -4.50E+02(≈)
Std. 5.28E-14 4.35E+02 4.78E-05 1.30E-08 1.89E-11 1.08E+04 8.16E-02

F15 Mean -4.50E+02 4.34E+03(+) 1.33E+04(+) 1.35E+04(+) 1.31E+04(+) 1.02E+05(+) 2.03E+03(+)

Std. 4.41E-02 2.67E+03 1.80E+03 1.96E+03 1.75E+03 5.72E+04 2.15E+03

F16 Mean 7.57E-02 3.64E+00(+) 5.82E-04(-) 6.67E-06(-) 1.75E-06(-) 1.99E+01(+) 1.39E+01(+)

Std. 2.93E-01 2.10E+00 3.99E-04 5.03E-06 4.64E-07 1.67E-01 8.94E+00

F17 Mean -1.69E+02 -1.56E+02(-) -1.79E+02(+) -1.81E+02(+) -1.78E+02(+) -7.58E+02(+) -1.42E+02(-)

Std. 1.69E+00 3.18E+00 2.34E+00 2.30E+00 3.05E+00 2.29E+02 4.79E+00

F18 Mean 3.52E-01 4.32E+01(+) 1.50E+00(+) 4.45E-01(+) 9.10E-01(+) 2.47E+02(+) 4.71E-01(+)

Std. 8.00E-02 1.75E+01 3.13E-01 8.00E-02 1.35E-01 2.34E+01 2.03E-01

F19 Mean 4.47E+00 3.26E+00(-) 3.72E+00(-) 4.35E+00(≈) 4.51E+00(≈) 1.28E+01(+) 9.00E+00(+)

Std. 3.54E-01 6.32E-01 4.47E-01 3.75E-01 4.02E-01 7.41E-01 1.27E+00

F20 Mean 1.90E-12 2.18E+05(+) 4.52E-07(+) 1.81E-10(+) 3.46E-03(+) 6.10E-01(+) 4.03E+03(+)

Std. 1.30E-12 6.24E+05 5.49E-07 5.31E-10 1.89E-02 6.99E-01 2.05E+04

F21 Mean 1.15E-03 4.14E+00(+) 5.76E-05(-) 8.91E-08(-) 3.38E-09(-) 2.33E+02(+) 2.84E-01(+)

Std. 3.02E-03 3.61E+00 8.92E-05 2.91E-07 8.05E-09 9.66E+01 2.73E-01

F22 Mean -2.55E+01 -2.13E+01(+) -2.17E+01(+) -2.07E+01(+) -2.04E+01(+) -6.27E+00(+) -2.16E+01(+)

Std. 5.19E+00 7.51E-01 6.74E-01 5.17E-01 6.27E-01 1.76E+00 5.04E-01

F23 Mean -4.59E+03 3.71E+04(+) 5.10E+04(+) 5.08E+04(+) 2.75E+04(+) 2.17E+03(+) 8.83E+03(+)

Std. 2.48E+02 4.49E+04 1.57E+04 1.54E+04 9.88E+03 6.25E+03 2.46E+04

F24 Mean 1.27E+00 1.35E+00(≈) 1.86E+00(+) 1.85E+00(+) 1.82E+00(+) 1.70E+00(+) 4.00E+00(+)

Std. 2.89E-01 2.00E-01 1.77E-01 1.58E-01 1.49E-01 8.57E-01 2.21E-01

F25 Mean 1.35E-02 3.03E+01(+) 3.94E-01(+) 6.78E-01(+) 6.06E+00(+) 2.31E+02(+) 1.86E+01(+)
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Table 2 (continued)

Function JADE AHDE SADE LADE DE OBPSO SCA

Std. 3.59E-02 9.46E+00 4.32E-01 3.64E-01 4.42E+00 4.26E+01 2.45E+01

F26 Mean 6.26E+00 3.37E+01(+) 1.07E+00(-) 2.20E+00(-) 1.68E+01(+) 2.65E+02(+) 5.57E+01(+)

Std. 2.49E+00 6.63E+00 1.23E+00 8.28E-01 1.24E+00 6.18E+01 3.01E+01

F27 Mean 8.04E-09 1.44E-08(+) 1.04E-08(+) 9.88E-09(+) 5.74E-09(-) 0.00E+00(-) 1.09E-08(+)

Std. 1.25E-08 2.93E-08 2.26E-08 2.51E-08 8.60E-09 0.00E+00 1.35E-08

F28 Mean -3.95E+01 -3.88E+01(-) -3.95E+01(-) -3.94E+01(-) -3.91E+01(-) -3.51E+01(-) -2.49E+01(-)

Std. 1.49E-02 4.68E-01 3.38E-03 2.21E-02 2.23E-01 3.27E+00 9.86E-01

F29 Mean 2.39E+01 1.14E+14(+) 2.78E+02 (+) 9.89E+01(+) 9.02E+01(+) 2.10E+08(+) 2.92E+12(+)

Std. 2.93E+01 2.41E+14 5.62E+01 1.15E+02 1.54E+02 8.98E+08 1.16E+13

+(JADE is significantly better) 24 19 20 20 26 23

-(JADE is significantly worse) 4 8 6 5 3 4

≈ 1 2 3 4 0 2

Note: Bold values indicate the best performance

Fig. 2 Convergence graphs for several unimodal benchmark functions
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different from other algorithms and outperforms other al-
gorithms in at least 19 benchmark algorithms.

Therefore, JADE has good potential in solving practical
problems, and this study uses JADE to optimize the parame-
ters of IndRNN.

4 Numerical examples and results

In this section, two actual examples were applied to verify the
feasibility and superiority of the proposed text-based forecast-
ing method. Based on the BP Statistical Review of World
Energy 2021, the world’s top three oil-consuming countries
are the United States, China, and India, with 17,178 thousand
barrels daily, 14,225 thousand barrels daily, and 4669 thou-
sand barrels daily in 2020, respectively. But there is no official
data on China’s monthly oil consumption, so this study only
used the data from the United States and India for the exper-
iments. All techniques are implemented using Python 3.8.

Deep learning networks, such as LSTM, RNN, and CNN
models, are built by a Python library, TensorFlow.

4.1 Example 1: U.S. oil consumption forecasting

4.1.1 Data descriptions and experimental designs

This study used monthly oil consumption as our forecast vari-
ables. The monthly oil consumption data by the industrial sector
were selected from the US EIA (http://www.eia.gov) and
covered the period from January 2017 to November 2021,
with a total of 59 observations as shown in Fig. 4. As shown
in Fig. 4, during the COVID-19 pandemic, oil consumption
has exhibited an uncertain and volatile trend. That is, since
March 2020, to cope with the COVID-19, confinement poli-
cies and measures were implemented by the US government.
Affected by the confinement policy, from March 2020 to
April 2020, US industrial oil consumption went down 842.
151 thousand barrels per day, which represents a total

Fig. 3 Convergence graphs for several multimodal benchmark functions
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reduction of 16.40%. With reopening policies, oil consump-
tion had a significant increase between May 2020 to
Dec 2020.

From the section “Crude oil news” of the well-known en-
ergy news website “Oilprice.com”, oil news headlines were
collected using the keyword “American oil”. “Oilprice.com”
partners with some of the most prominent companies in the
financial news space. “Oilprice.com” is a suitable source for
collecting helpful data to predict oil consumption. This study
chose the headline rather than the full article because the head-
line is the essence of the content.

The historical oil consumption is selected to cover the pe-
riod from December 2016 to October 2021, with a total of 59
observations. This study collected 1749 oil news headlines
from January 2012 to November 2021. Online news is spliced
into a sample for every month.

Figure 5 shows that in the CNN model, the training period is
January 2012–December 2016, covering 559 news headlines
and 60 monthly records. The test set begins from January

2017–to November 2021, covering 1190 news headlines and
59 monthly collections. Given that the input variables of oil
consumption prediction use CNN models, the CNN test period
is used to determine the training and testing periods for the oil
consumption forecasting model. The training period for the oil
consumption forecasting model is January 2017–February 2019
and consists of 26 monthly records. The validation set is March
2019–October 2019, including eight monthly records. By con-
trast, the testing set is from November 2019 to November 2021
and consists of 25 monthly records. The oil consumption predic-
tion models are estimated and tested using rolling windows.
When testing with the testing set, the training set, and the vali-
dation set constitute a new training set to train the prediction
model.

4.1.2 Text mining of online news

Figure 6 shows the top 100 words cloud with the largest term
frequency-inverse document frequency (TF–IDF) weightings.

Fig. 4 U.S. monthly oil
consumption

Fig. 5 Training, validation, and testing period of oil consumption prediction model
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The top 20 words are “crude,” “API,” “report,” “build,” “in-
ventory,” “price,” “U(USA),” “draw,” “Venezuela,” “gas,”
“energy,” “gasoline,” “sanction,” “pipeline,” “Iran,” “oil,”
“export,” “surprise,” “production,” “major,” “Saudi”.
Figure 6 also shows “crude,” “oil,” “energy”, “gasoline,”
and “gas” represent a close relationship with oil. At the same
time, “production,” “build,” “inventory,” “export,” and
“price”may suggest the oil supply, oil inventory, and oil price,
which are related closely to the fluctuation of oil consumption.
Furthermore, “the USA,” “Iran,” “Venezuela,” and “Saudi,”
reflect political events. News headlines cover a variety of fac-
tors that affect oil consumption. For instance, the COVID-19
pandemic over the USA has had a considerable effect on the
movement of oil consumption. Especially at the beginning of
COVID-19, the news media became pessimistic about the
subsequent oil consumption, and the subsequent oil consump-
tion did decline rapidly. Therefore, analyzing the semantic
relations hidden in online news modes will facilitate oil con-
sumption forecasting.

CNN is used to classify text, and the CNN value represents
the probability that the text is classified as positive sentiment.
Using the grid search, after a series of experiences, the satis-
factory parameters of the CNNmodel are batch size = 50, the
number of filters = 128, filter size = 2,3,4, and embedding
dimension = 100. The other parameters of CNN are set in
reference to previous studies [46]: l2 regulation = 0; Drop out
probability = 0.5; The max sequence lengths = 150.

Four criteria, namely accuracy, precision, recall, and F-
measure are employed to test the performance of CNN
models. The four criteria are described as follows:

Accurary ¼ TP þ TN
ðTP þ FP þ TN þ FNÞ ; ð4Þ

Precision ¼ TP=ðTP þ FPÞ; ð5Þ
Recall ¼ TP=ðTP þ FNÞ; ð6Þ

F � measure ¼ 2*TP
2*TP þ FP þ FN

; ð7Þ

whereFP is the number of true positive samples categorized as
negative, TP is the number of true positive samples classified
as positive, FN is the number of true positive samples cate-
gorized as negative, and TN is the number of true negative
samples classified as negative.

The results of CNN model are accuracy = 0.63, precision
= 0.63; recall = 0.63; F-measure = 0.63. These results sug-
gest that news headlines contain considerable oil supply and
demand information leading to oil consumption movements.

The CNN values and oil consumption data are scaled line-
arly to be included in the range [0.1,0.9] to visualize their
relationship by Eq. (8):

~at ¼ at � amin
amax � amin

0:8þ 0:1; ð8Þ

where at denotes the CNN values at time t, and amax and amin
denote the minimum and maximum values of the CNN series,
respectively.

Figure 7 shows the trend chart for oil consumption com-
pared with the CNN classifications features. The CNN values
present similar trends to oil consumption, whether with a con-
temporary or slight lag. The data sets show good similarity
between the CNN values and oil consumption. Meanwhile, in
most cases, the CNN values lag behind the oil consumption,
indicating that the CNN values have guiding characteristics
for the oil consumption. In particular, the CNN values show
better similarity or guiding characteristics to oil consumption
when the oil consumption fluctuates wildly. Evidently, during

Fig. 6 Top 100 words cloud
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the period of the COVID-19 pandemic, the U.S. oil consump-
tion became highly volatile as shown in Fig. 7. Thus, the
feature of the CNN classifications is beneficial in forecasting
oil consumption.

4.1.3 Oil consumption forecasting

1) Performance assessment

In this study, MAE, MAPE, and RMSE are employed to
evaluate the forecasting accuracy over the test period. These
statistical criteria are used to assess the difference between the
predicted values and actual values. MAE, MAPE, and RMSE
are described as follows:

MAE ¼ 1

k

Xk

t¼1
jðbyt � ytÞj; ð9Þ

MAPE ¼
Pk

t¼1 byt � ytj j=yt
k

; ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

t¼1ðbyt � ytÞ2
k

s
; ð11Þ

where k is the size of the test dataset, yt is the real value of oil
consumption at month t, and byt is the predicted value of oil
consumption at month t. The additional explanatory power of
online news features on oil consumption forecasting is quan-
tified by improvement rate (IR):

IRMAPE ¼ MAPEA �MAPEB

MAPEB
� 100%; ð12Þ

IRMAE ¼ MAEA �MAEB

MAEB
� 100%; ð13Þ

IRRMSE ¼ RMSEA � RMSEB

RMSEB
� 100%; ð14Þ

where IRMAPE, IRMAE, and IRMAE represents the improvement
rate of MAPE, MAE, and MAE, respectively.

2) Comparable models and parameter setting

To confirm the effectiveness and stability of the attention-
based JADE-IndRNN model, its forecasting accuracy is com-
pared with those of eight comparable models, namely, JADE-
BPNN, JADE-SVM, JADE-LSTM, JADE-GRU, JADE-
RNN, attention-based JADE-LSTM, JADE-IndRNN, and
attention-based DE-IndRNN. Among them, backpropagation
neural network (BPNN), support vector machines (SVM),
long short-term memory (LSTM), gated recurrent unit
(GRU), recurrent neural network (RNN), and IndRNN are
compared as individual forecasting models. They are popular
forecasting models for energy consumption [47–49]. For a fair
comparison, the JADE algorithm is adopted to optimize the
parameter of all individual models. Besides, DE and JADE are
used as different intelligent optimization algorithms to search
the parameters of the attention-based IndRNN model to deter-
mine a more satisfying optimization algorithm.

Fig. 7 CNN features compared
with U.S. oil consumption
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Meanwhile, hyperparameters of JADE are selected using
the grid search process. Based on several hyperparameter ex-
periments, we find that a combination of parameters yields
excellent performance, which is sizepop = 30, maxgen =
30, initial crossover probability = 0.5, initial mutation proba-
bility = 0.5, and the rate of parameter adaptation c is set to 0.1,
and the greedy degree p of the mutation strategy is set to 0.05.

The range of layers of the attention-based IndRNN is set
within [1, 5], that of the number of the time step is set within
[2, 5], that of the number of units of the single hidden layer is
set within [1, 32], that of the number of batch size is set within
[10, 23], and that of the steps of learning rate is specified
within the [100,10000].

According to the search results of the JADE algorithm, we
find that a combination of the attention-based IndRNN
hyperparameters yields excellent forecasting performance,
that is, the number of layers = 2, the number of units of the
single hidden layers = 22, the number of batch size = 23, the
steps of learning rate = 8542, and the number of time step =
3. Similar to the attention-based JADE-IndRNN, the lag order
of online news features and historic data is both set as 3.
Table 3 shows the adopted parameter values of all forecasting
models based on their intelligent optimization algorithm.
3) Results and discussion

In this study, the rolling-based forecasting procedure is
used in one-step-ahead forecasting. The MAPE, RMSE, and
MAE of the different models with text features and historical
oil consumption are reported in Table 4. The results are ana-
lyzed as follows:
(a) As shown in Fig. 8, attention-based JADE-IndRNN ex-

hibits better forecasting performance as compared to the
other popular models. Table 5 indicates that the MAPE
value of attention-based JADE-IndRNN is 72.34%,
49.24%, 45.44%, 44.32%, 44.54%, 33.85%, 26.54%,
and 32.20% lower than that of JADE-SVM, JADE-
BPNN, JADE-LSTM, JADE-GRU, JADE-RNN,
attention-based JADE-LSTM, JADE-IndRNN, and
attention-based DE-IndRNN, respectively. Thus, the
attention-based JADE-IndRNN model shows satisfacto-
ry performance in oil consumption forecasting.

(b) Attention-based JADE-IndRNN outperforms attention-
based DE-IndRNN in each evaluation index. Table 5 indi-
cates that the MAPE value of attention-based JADE-
IndRNN is 32.20% lower than that of attention-based
DE-IndRNN. The results show that the attention-based
IndRNN model based on JADE optimization can achieve
better results than themodel optimized by basic DE, which
also shows that the global search ability of JADE is signif-
icantly stronger than that of the basic DE algorithm.

(c) As shown in Table 4, attention-based JADE-LSTM and
attention-based JADE-IndRNN outperform JADE-
SVM, JADE-BPNN, JADE-LSTM, JADE-GRU,
JADE-RNN in terms of MAPE, MAE, and RMSE. The
results show that attention-based mechanisms can effec-
tively highlight key influencing factors, thereby improv-
ing prediction performance.

This study tested the relative predictive power of online
news features through a comparison of the performances of
text features (three features), historical oil consumption (three
features), and by combining text features and historical oil
consumption (six features). Based on the same premise when

Table 4 Performance comparison of different forecasting techniques

Models MAPE (%) MAE RMSE

JADE-SVM 10.81 569.80 682.27

JADE-BPNN 5.89 291.95 380.61

JADE-LSTM 5.48 279.67 401.91

JADE-GRU 5.37 283.05 424.20

JADE-RNN 5.49 281.84 390.98

Attention-based JADE-LSTM 4.52 226.71 325.93

JADE-IndRNN 4.07 211.48 275.40

Attention-based DE-IndRNN 4.41 223.21 297.47

Attention-based JADE-IndRNN 2.99 157.63 191.82

Note: Bold values mean the best forecasting performance

Table 3 Parameters of the used forecasting models

Models Parameter combination

JADE-BPNN epochs=98; learning rate=0.05; hidden neurons=3

JADE-SVM gamma=4.9; kernel = “rbf”; C=2.6

JADE-LSTM epochs=387; batch size=23; hidden neurons=19

JADE-GRU epochs=301; batch size=18; hidden neurons=22

JADE-RNN epochs=258; batch size=21; hidden neurons=23

Attention-based JADE-LSTM epochs=244; batch size=22; hidden neurons=15

JADE-IndRNN number of layers=2; the steps of learning rate=6719; batch size=20; hidden neurons=18

Attention-based DE-IndRNN number of layers=2; the steps of learning rate=9102; batch size=21; hidden neurons=15

Attention-based JADE-IndRNN number of layers=2; the steps of learning rate=8542; batch size=23; hidden neurons=22

B. Wu et al.



using attention-based JADE-IndRNN, the results of the IRs
are described in Table 6. These results indicate that the per-
formances of using the text feature with historical oil con-
sumption are considerably better than that of using text fea-
tures or historical oil consumption, in terms of the IRMAPE ,
IRMAE, and IRMAE criteria. Figure 9 shows that using historical
oil consumption did not accurately predict the sharply fluctu-
ating oil consumption during the COVID-19 period.
Meanwhile, using only the text features leads to poor oil con-
sumption prediction accuracy. The results using text feature
and historical oil consumption are improved by 50.90% and
48.98%, respectively compared with the results with the text
features or historical oil consumption data in terms of IRMAPE .

The attention weight obtained by the attention-based
IndRNN is considered in the evaluation of each predictor.

Fig. 8 Forecasting performances
of different models

Table 5 The improvement of the
proposed model and comparable
models

Comparative models IRMAPE IRMAE IRRMSE

The proposed model vs. JADE-SVM 72.34% 72.33% 71.89%

The proposed model vs. JADE-BPNN 49.24% 46.01% 49.60%

The proposed model vs. JADE-LSTM 45.44% 43.64% 52.27%

The proposed model vs. JADE-GRU 44.32% 44.31% 54.78%

The proposed model vs. JADE-RNN 45.54% 44.07% 50.94%

The proposed model vs. attention-based JADE-LSTM 33.85% 30.47% 41.15%

The proposed model vs. JADE-IndRNN 26.54% 25.46% 30.35%

The proposed model vs. attention-based DE-IndRNN 32.20% 29.38% 35.52%

Note:IRMAPE means improvement rate of MAPE;IRMAE means improvement rate of MAE;IRRMSE represents the
improvement rate of RMSE

Table 6 Forecasting performances of different predictive factors

MAPE (%) MAE RMSE

Text features (1) 6.09 305.41 433.49

Historical oil consumption features (2) 5.86 285.5 420.02

Combination: (1) + (2) 2.99 157.63 191.82

IR from (1) to (1) + (2) 50.90% 48.39% 55.75%

IR from (2) to (1) + (2) 48.98% 44.79% 54.33%

Note: IR means improvement rate

Note: Bold values indicate the best forecasting performance
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The relative importance of these predictors in oil consumption
prediction is analyzed and discussed quantitatively. The rank-
ing of the attention weight for oil consumption forecasting is
shown in Fig. 10. The result shows that text features are more
important than historical oil consumption in forecasting oil
consumption. By assigning higher weights to more important
factors, the predictive performance of the attention-based
JADE-IndRNNmodel can be improved. Overall, using online
text features can significantly improve the accuracy of oil
consumption prediction. Therefore, the proposed methodolo-
gy with oil online news as conducive predictive factors can be
considered as an effective method for oil consumption
predictors.

4.2 Example 2: indian oil consumption forecasting

4.2.1 Data retrieval

The Indian monthly oil consumption data were selected from
the Indian Ministry of Petroleum and Natural Gas (MoPNG)
and covered the period from January 2018 to February 2022,
with a total of 50 observations. Since the beginning of the
COVID-19 epidemic, Indian oil consumption has fluctuated
sharply (seen in Fig. 11).

From January 2013 to February 2022, a total of 1176 oil
news headlines were collected from “Crude oil news” using
the keyword “India oil”. In the CNN model, the training peri-
od is January 2013–December 2017, covering 458 news head-
lines and 60monthly records. The test set begins from January
2018 to February 2022, covering 718 news headlines and 50
monthly collections. The training period for the Indian oil
consumption forecasting model is January 2018–April 2020
and consists of 28 monthly records. The validation set is May
2020–December 2020, including 8 monthly records. The test-
ing set is from January 2021 to February 2022 and consists of
14 monthly records.

4.2.2 Text mining of oil news

Figure 12 shows the words cloud for Indian oil consumption.
The top 20 words are.

“oil,” “Iranian,” “import,” “Iran,” “U(USA),” “India,” “de-
mand,” “coal,” “Saudi,” “India’s,” “price,” “crude,” “refiner,”

Fig. 9 Forecasting performances
of different predictors using
attention-based JADE-IndRNN

Fig. 10 Ranking of the attention weight for U.S. oil consumption
prediction
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“export,” “sanction,” “gas,” “cut,” “Indian,” “deal,” “OPEC,”
“refinery,” “boost”. “Import,” “demand,” “price,” “export,”
“sanction,” “cut,” and “boost” may suggest the oil supply,
oil consumption, oil inventory, and oil price. Furthermore,
“Iranian,” “Iran,” “USA,” “India,” “Saudi,” “India’s,” and
“Indian,” may reflect political events related to oil. Online
oil news contains various factors that affect oil consumption,
so analyzing sentiment in oil news may improve the accuracy
of oil consumption forecasts.

After a series of experiments, the satisfactory parameters of
the CNN model are batch size = 47, number of filters = 128,
filter size = 2,3,4, embedding dimension = 100, l2 regulation
= 0, Drop out probability = 0.5, and the max sequence
lengths = 150.

The results of CNNmodels are accuracy = 0.72, precision
= 0.72; recall = 0.72; F-measure = 0.72. Figure 13 presents a
trend graph for Indian oil consumption after scaling compared
with the CNN classifications features. As seen from Fig. 13,

Fig. 11 Indian monthly oil
consumption

Fig. 12 Top 100 words cloud for
Indian oil news
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there is a remarkable similarity between CNN value and oil
consumption, which suggests that the CNN values may be
helpful for Indian oil consumption prediction.

4.2.3 Oil consumption forecasting

1) Comparable models and parameter set

The comparison forecasting models are the same as the
U.S. dataset. According to several hyperparameter exper-
iments, a combination of JADE parameters yields excel-
lent performance, which is sizepop = 25, maxgen = 30,
initial crossover probability = 0.5, initial mutation

probability = 0.5, and the rate of parameter adaptation c
is set to 0.1, and the greedy degree p of the mutation
strategy is set to 0.05.

The range of layers of the attention-based IndRNN is set
within [1, 5], that of the number of the time step is set within
[2, 5], that of the number of units of the single hidden layer
is set within [1, 30], that of the number of batch size is set
within [8, 25], and that of the steps of learning rate is spec-
ified within the [100,10000]. In the attention-based JADE-
IndRNN model, the best lag order of CNN features and
historical oil consumption data searched by JADE is 3.
Thus, to be consistent, the input lag order of other forecast-
ing models is also set to 3. Table 7 shows the parameter

Fig. 13 CNN features compared
with Indian oil consumption

Table 7 Parameter values of different forecasting models

Models Parameter combination

JADE-BPNN epochs=124; learning rate=0.07; hidden neurons=2

JADE-SVM gamma=0.1; kernel = “rbf”; C=2.4

JADE-LSTM epochs=357; batch size=21; hidden neurons=14

JADE-GRU epochs=281; batch size=23; hidden neurons=22

JADE-RNN epochs=298; batch size=21; hidden neurons=24

Attention-based JADE-LSTM epochs=268; batch size=24; hidden neurons=18

JADE-IndRNN number of layers=2; the steps of learning rate=5812; batch size=18; hidden neurons=19

Attention-based DE-IndRNN number of layers=2; the steps of learning rate=3568; batch size=23; hidden neurons=14

Attention-based JADE-IndRNN number of layers=2; the steps of learning rate=7594; batch size=22; hidden neurons=20

B. Wu et al.



values of all forecasting models based on their intelligent
optimization algorithm.
2) Results and discussion

The forecasting performance of the different models is
shown in Table 8. Table 9 provides the improvement of the
proposed model and comparable models. From Tables 8 and
9, it can be found that:
(a) Compared with JADE-SVM, JADE-BPNN, JADE-

LSTM, JADE-GRU, JADE-RNN, attention-based
JADE-LSTM, JADE-IndRNN, and attention-based DE-
IndRNN, the attention-based JADE-IndRNN model ob-
tains all the best evaluation metrics (i.g., MAPE, MAE,
and RMSE). As shown in Fig. 14, the proposed model

Table 8 Performance comparison of different forecasting techniques

Models MAPE (%) MAE RMSE

JADE-SVM 19.45 3289.84 3926.28

JADE-BPNN 4.22 710.54 908.46

JADE-LSTM 4.21 700.89 897.69

JADE-GRU 4.06 671.69 885.24

JADE-RNN 4.41 747.69 904.57

Attention-based JADE-LSTM 4.04 685.76 829.60

JADE-IndRNN 3.96 648.80 886.17

Attention-based DE-IndRNN 3.95 676.68 940.48

Attention-based JADE-IndRNN 2.52 431.16 515.57

Note: Bold values mean the best forecasting performance

Table 9 The improvement of the
proposed model and comparable
models

Comparative model IRMAPE IRMAE IRRMSE

The proposed model vs. JADE-SVM 87.04% 86.89% 86.87%

The proposed model vs. JADE-BPNN 40.28% 39.32% 43.25%

The proposed model vs. JADE-LSTM 40.14% 38.48% 42.57%

The proposed model vs. JADE-GRU 37.93% 35.81% 41.76%

The proposed model vs. JADE-RNN 42.86% 42.33% 43.00%

The proposed model vs. attention-based JADE-LSTM 37.62% 37.13% 37.85%

The proposed model vs. JADE-IndRNN 36.36% 33.55% 41.82%

The proposed model vs. attention-based DE-IndRNN 36.20% 36.28% 45.18%

Fig. 14 Forecasting
performances of different models
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achieves the prediction results closest to the actual oil
consumption. Simply put, the attention-based JADE-
IndRNN model shows better forecasting performance
than any other forecasting technique.

(b) The prediction performance of the attention-based JADE-
IndRNN model is better than that of the attention-based
DE-IndRNN model. The MAPE, MAE, and RMSE of
the proposed model are 36.20%, 36.28%, and 45.18% low-
er than those of the attention-based DE-IndRNN model,
highlighting the effectiveness of the JADE optimization.

(c) Attention-based forecasting models can achieve signifi-
cant improvements over general models. The MAPE of
the attention-based JADE-IndRNN model decreases by
36.36%more than that of the JADE-IndRNNmodel, and
the MAPE of the attention-based JADE-LSTM model
decreases by 4.04% than that of the JADE-LSTMmodel,

demonstrating the effectiveness and contribution of the
attention mechanism.

The results of using different predictive factors are shown
in Table 10. The MAPE using text feature and historical oil
consumption were improved by 46.72% and 36.04%, respec-
tively compared with the results with the text features or his-
torical oil consumption data. Figure 15 shows that using text
features and historical oil consumption can more accurately
predict the sharply fluctuating oil consumption amid the
COVID-19 period. Overall, the results suggest that combining
online text features and historical oil consumption can signif-
icantly improve the accuracy of oil consumption prediction
amid the COVID-19 period.

The ranking of the attention weight for Indian oil consump-
tion forecasting is shown in Fig. 16. By assigning higher
weights to the text features, the predictive performance of
the attention-based JADE-IndRNN model can be improved.
The results suggest online oil news can provide more favor-
able forecasting value than historical oil consumption.

4.3 Managerial implications

By projecting the industrial oil consumption under the COVID-
19 pandemic and different policy scenarios and combined with
the online social media information, some insights of interest to

Table 10 Forecasting performances of different predictive factors

MAPE (%) MAE RMSE

Text features (1) 4.73 803.65 1037.50

Historical oil consumption features (2) 3.94 659.59 821.66

Combination: (1) + (2) 2.52 431.16 515.57

IR from (1) to (1) + (2) 46.72% 46.35% 50.31%

IR from (2) to (1) + (2) 36.04% 34.63% 37.25%

Note: Bold values indicate the best forecasting performance

Fig. 15 Forecasting
performances of different
predictors using attention-based
JADE-IndRNN
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stakeholders are provided. To against the COVID-19, a series of
confinement policies were implemented by governments of var-
ious countries. For example, affected by these confinement pol-
icies, U.S. industrial oil consumption in April 2020 was 16.40%
lower than it was in March 2020. With a reopening policy in
May 2020, oil consumption had a significant increase. Under the
current pandemic scenario, the no-reopening policy may tempo-
rarily reduce industrial oil demand, but it could also help oil
demand grow to a normal level more quickly. As the social
media information contains some analyses of the relevant con-
finement or reopening policies, using online news can more ac-
curately forecast the sharply fluctuating oil consumption.

The oil consumption prediction results have some implica-
tions for marketers. In particular, it could contribute to a better
understanding of the internal relationship between online news
information and the oil consumption movement. Media informa-
tion can be employed to estimate whether the information is
negative or positive to the oil market. In addition, an important
positive relationship between online news and market perfor-
mance was observed. That is, the oil market tends to perform
better when online media shows positive sentiment towards the
oil market. In contrast, the market has tended to underperform in
the past when online media showed negative sentiment towards
the oil market. Thus, the effect of online news on the oil market
or relative fields should be considered by marketers.

5 Conclusion and future research

Inmany countries, oil consumption has exhibited uncertainty and
volatility due to the effects of the COVID-19 pandemic, which

poses huge difficulty to accurate predictions. This research uses
qualitative information for oil consumption prediction because
online news can reflect various related social events or unexpect-
ed political events that play significant roles in the volatile trend
of oil consumption.Motivated by this issue, our study proposed a
comprehensive text-based oil consumption prediction frame-
work. The adaptation of CNN can generate informational time-
series indicators automatically based on online oil news.

Attention-based JADE-IndRNN, a novel hybrid model that
uses adaptive differential evolution (JADE) algorithm to iden-
tify hyperparameters for attention-based IndRNN was pro-
posed. Attention mechanisms can capture key information,
which can improve the accuracy of multi-factor forecasting.
The effectiveness and superiority of the attention-based
JADE-IndRNN were verified using the actual example of
the U.S. and Indian oil consumption forecasting. The results
showed that the attention-based JADE-IndRNN outperformed
other popular models. A remarkable improvement in the ac-
curacy of oil consumption forecasting can be achieved using
the attention-based JADE-IndRNN model, particularly when
using online oil news text features as compared with the per-
formances of historic oil consumption data. Especially, our
empirical results suggest that using online oil news text fea-
tures can accurately predict the sharply fluctuating oil con-
sumption during the COVID-19 pandemic. The additional
explanatory power of online news features on oil consumption
forecasting is proved.

This study has some limitations and further directions. First,
using full news articles rather than just news headlines might
improve the performance of CNN classifications. Second, other
novel deep learning text-mining techniques can also be adapted

Fig. 16 Ranking of the attention
weight for Indian oil consumption
prediction
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to extract information. Third, other intelligence algorithms [50,
51], such as the fruit fly optimization algorithm and whale opti-
mization algorithm, can also be used to identify appropriate pa-
rameters of IndRNN for oil consumption forecasting problems.
We intend to further investigate these important issues.
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