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Abstract

In transcriptomics, micro RNAs (miRNAs) has gained much interest especially as potential

disease indicators. However, apart from holding a great promise related to their clinical

application, a lot of inconsistent results have been published. Our aim was to compare the

miRNA expression levels in ovarian cancer and healthy subjects using the Bayesian multi-

level model and to assess their potential usefulness in diagnosis. We have analyzed a case-

control observational data on expression profiling of 49 preselected miRNA-based ovarian

cancer indicators in 119 controls and 59 patients. A Bayesian multilevel model was used to

characterize the effect of disease on miRNA levels controlling for differences in age and

body weight. The difference between the miRNA level and health status of the patient on the

scale of the data variability were discussed in the context of their potential usefulness in

diagnosis. Additionally, the cross-validated area under the ROC curve (AUC) was used to

assess the expected out-of-sample discrimination index of a different sets of miRNAs. The

proposed model allowed us to describe the set of miRNA levels in patients and controls.

Three highly correlated miRNAs: miR-101-3p, miR-142-5p, miR-148a-3p rank the highest

with almost identical effect sizes that ranges from 0.45 to 1.0. For those miRNAs the credible

interval for AUC ranged from 0.63 to 0.67 indicating their limited discrimination potential. A

little benefit in adding information from other miRNAs was observed. There were several

miRNAs in the dataset (miR-604, hsa-miR-221-5p) for which inferences were uncertain. For

those miRNAs more experimental effort is needed to fully assess their effect in the context

of new hits discovery and usefulness as disease indicators. The proposed multilevel Bayes-

ian model can be used to characterize the panel of miRNA profile and to assess the differ-

ence in expression levels between healthy and cancer individuals.

Introduction

MicroRNAs (miRNAs) are abundant classes of endogenous, small non-coding RNAs of 17–25

nucleotides in length generated from 70–100 nucleotides-long hairpin precursors, which
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regulate gene expression post-transcriptionally by affecting the translation of target messenger

RNAs (mRNAs) [1]. mRNA target recognition by a single miRNA is found in different regions

of mRNA, particularly in the 3’ untranslated region (3’UTR), 5’ untranslated region (5’UTR)

and in the coding sequences [2], depending solely on a complementarity with the 6–8 50 nucle-

otides of the miRNAs. The same miRNA may have different effects on the same disease. A sin-

gle miRNA can affect hundreds of mRNA targets acting as oncogenes or tumor suppressors in

a cellular-dependent context and depending on the genes targeted [3, 4]. Accumulated evi-

dences have shown that miRNA expression is altered in most types of cancer being involved in

a regulation of a wide range of developmental, physiological and cellular processes e.g. prolif-

eration, adhesion, apoptosis and angiogenesis [5].

Therefore, a lot of effort has been paid towards searching for promising miRNA hits for

diagnosis and treatment of various types of cancer e.g. breast cancer [6], leukemia [7,8], liver

cancer [9,10], ovarian cancer [11], pancreatic and prostate cancer [12,13], and other diseases

as well (cardiovascular, metabolic diseases, neurodegenerative disorders) [14,15,16].

Traditional experiments towards searching for novel miRNA-disease associations cost a lot

of manpower, material and financial resources. For this reason, much effort is undertaken

towards building effective and accurate computational models to reveal the potential relation-

ship between disease and miRNA according to the hypothesis that miRNAs with similar

functions are likely to be involved in diseases with similar phenotypes and vice versa (Bandyo-

padhyay, et al., 2010).

According to a state-of-the-art of existing miRNA-disease association studies, computa-

tional prediction models have been divided into four categories, (i) score function-based, (ii)

complex network algorithm-based, (iii) machine learning-based, and (iv) multiple biological

information-based models (comprehensively described in the review by Chen et al. [17].

Briefly and generally, the score function-based models assume that there is higher probabil-

ity of association between functional-related miRNAs and phenotypically similar diseases. As

its foundations lie in the probabilistic theory, assumption of prior knowledge on data distribu-

tion may affect prediction especially if the data informational content is poor. However, due to

the lack of experimentally supported miRNA–target interactions, score function-based models

provide high rates of false-positive and false-negative results. In this family of models, the most

up-to-date models is The Within and Between Score for MiRNA–Disease Association predic-

tion (WBSMDA) [18].

The complex network algorithm-based methods involve different aspects of miRNA similar-

ity networks and disease similarity networks. This method is based on the use of topological

information of the miRNA-disease bilayer network assuming that functionally similar miRNAs

are more likely to be involved in a similar disease and vice versa which is in accordance with

biological experiments. However, the drawback of this methods lies in a difficulty in their appli-

cation to a new disease unless more experimental data on miRNA/disease function interaction

network is collected. One of the most up-to date examples of this algorithms are: random walk-

based computational model of Random Walk with Restart for MiRNA–Disease Association

(RWRMDA) [19], random walk on the miRNA–disease bilayer network (MIDP) [20], Path-

Based computational model for MiRNA–Disease Association (PBMDA) [21], Heterogeneous

Graph Inference for MiRNA–Disease Association prediction (HGIMDA) [22], Random Walk

and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA) [23].

The machine learning-based prediction models use machine learning algorithms for pre-

dictions via extracting the most relevant features or solving specific optimization problems.

These kinds of methods predict the potential miRNAs for a new disease, without any previous

associated disease. Machine learning-based model can incorporate different covariates for the

final prediction offering improvement in the prediction performance. The most up-to-date
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examples of such algorithms are KRLSM for predicting miRNA–disease associations using

Kronecker RLS based on heterogeneous omics data [24], Matrix Completion for MiRNA–Dis-

ease Association prediction model (MCMDA) [25], Ranking based k-nearest-neighbors for

MiRNA–Disease Association prediction (RKNNMDA) [26], Adaptive Boosting for MiRNA-

Disease Association prediction (ABMDA) [27], Negative Samples Extraction based MiRNA-

Disease Association prediction (NSEMDA) [28]. Multiple biological information-based mod-

els assume integration of information between miRNA–gene and disease–protein associations

to explore miRNA-related and disease-related associations. The most up-to-date examples of

such algorithms are computational model to infer miRNA–Protein–Disease associations

(miRPD) [29] and computational framework named KBMFMDI [30], Adaptive Multi-View

Multi-Label learning(AMVML) [31], Matrix Decomposition and Heterogeneous Graph Infer-

ence for miRNA-disease association prediction (MDHGI) [32].

The above-mentioned computational-based methods have their own strengths and weak-

nesses. The latter may result from: (1) rare existence of identified miRNA–disease associations;

(2) unavailable data on negative miRNA–disease associations; (3) limited biological data sets

about miRNAs; (4) difficulties in applying computational models to miRNAs without any

prior knowledge on associated diseases [17].

At present, as a complement to existing computer-based methods, more interest is paid to

those based on Bayesian statistics i.e. neoteric Bayesian model (KBMFMDA) which combines

kernel-based nonlinear dimensionality reduction, matrix factorization and binary classifica-

tion [33] and Bayesian probabilistic matrix factorization (MDBPMF), in order to discover

novel miRNA-disease associations [34], or variational Bayesian Gaussian mixture model

(VB-GMM) to predict miRNA target genes [35].

The general idea of all computational models is to find the candidate miRNAs potentially

associated with the disease of interest and further confirm these top miRNAs in experiments.

As mentioned earlier, the pros of this approach lie in saving a lot of experimental effort with

respect to miRNA-disease association.

Apart from computational models which assess miRNA-disease associations, a different

aspect of analysing miRNA data from meta analyses or a single experiment involves estimation

with quantified uncertainty based on effect size and credible intervals. This approach was used

by Eftekharian et al. [36] and Sayad et al. [37] and is attributed to multilevel Bayesian models.

This approach represents the idea that data generated in experiments can be described via

mathematical models. The concept behind fitting a model to the data lies in generating thou-

sands of random samples of the actually-observed data in order to estimate the values of model

parameters with appropriate uncertainty. The more data with greater informational content,

the better precision of estimation (and otherwise, less data with lesser information content,

worse precision of estimation). Bayesian multilevel models encourage shifting to estimation

with uncertainty and magnitude of uncertainty aiming at estimating precision rather than test-

ing hypotheses promoting black-and-white thinking. [38]. Such distinction between null

hypothesis significance testing (NHST), on the one hand, and estimation with quantified

uncertainty on the other, has indirectly been promoted by the presence of “noise” in the data.

For this reason, the effect size statistics seems to be a useful measure providing the information

on (i) the magnitude or strength of outcomes, (ii) power for future studies and may be useful

in meta-analyses while summarizing the effect sizes across independent studies [39]. To esti-

mate the effect size for ANOVA models, the following statistics are usually used: (i) eta-

squared (η2), (ii) partial eta-sqaured (ηp
2) and (iii) omega-squared (ω2). Moreover, to simply

judge on the mean differences between two measurements one can calculate: R2 if one per-

forms regression and evaluates the correlation between 2 variables, or Cohen’s d if one per-

forms a t-test and want to know mean differences in a t-test [40].

Bayesian modeling of micro RNA
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Therefore, to assess the relationship between the presence of ovarian cancer and miRNA

expression and to judge on the importance of the effect of disease on miRNAs concluding how

certain their magnitude can be estimated, we develop a data-driven multilevel Bayesian model.

The model included correlations between miRNAs and accounted for inter-individual and

assay variability. We also discuss the obtained results in the context of traditional (Frequen-

tists) approach based on controlling the false discovery rate (FDR).

Material and methods

This study was approved by the Research Ethics Committee of the Medical University of

Gdansk (NKBBN/399/2011-2012). Written informed consent was obtained from all individual

participants included in the study.

Structure of the dataset

Dataset used in this study consisted of vector Y of size N = 8722 (number of observations,

n = 1 . . . N) representing centered and standardized miRNA levels measured in plasma and

transformed to a natural logarithmic (log) scale for K = 49 (k = 1 . . . K) different miRNAs

determined in I = 178 individuals (i = 1. . .I, 119 controls and 59 patients) under two replicates.

Y is related to the measured quantification cycle, CT, through the standard equation (40 –CT)

log(2). A control miRNA (UniSp6) constituted cDNA synthesis control and was not included

in the data analysis as it was used as an internal control of miRNA profiling. A set of vectors

was used to denote indexes representing study design with k[n] denoting an indicator for

miRNA and i[n] denoting indicator for a subject. Health status (0 corresponding to control

and 1 to patients) constituted the available discrete covariate and was denoted as I x 1 vector

DIS. Two continuous covariates were available: age denoted as I x 1 vector AGE and body

weight denoted as I x 1 vector BW. The mean and standard deviation (SD) of data prior to cen-

tering and standardization equaled 4.03 and 1.93. Raw data are in S1 Data. The details on the

experimental procedure regarding miRNA expression profiling can be found in the S1

Appendix.

Model development

The following multilevel model was used to describe the miRNA data:

yn � Nðmk½n� þ bDIS;k½n�DISi½n� þ bBW;k½n�BWi½n� þ bAGE;k½n�AGEi½n� þ Zi½n�;k½n�; sk½n�Þ ð1Þ

Zi;1...K � MVNð0;ΩÞ ð2Þ

whereN andMVN denote the normal and multivariate normal distribution, a tilde (~) denotes

"has the probability distribution of", i.e. the values of yn and ηi,1. . .K are randomly drawn from

the given (normal and multivariate normal) distribution, yn represents the dependent variable;

μk is the typical miRNA level in a healthy subject of age 52.7 years and body weight of 67.3 kg,

βDIS,k describes the effect of disease for a particular miRNA; βAGE,k and βBW,k correspond to

the effect of age and body weight covariates on miRNA levels, σk denotes standard deviation

associated with measurement error for kth miRNA. ηi.1. . .K is the between-subject variability of

49th miRNA that was modeled using a MVN distribution with covariance matrix Ω.

The single missing value of a disease status was modeled assuming Bernoulli distribution

parametrized using the proportion of cancer/healthy subjects in the data set.

DISi � Bernð0:33Þ ð3Þ

Bayesian modeling of micro RNA
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Similarly, the missing values for AGE and BW were assumed to be normally distributed

with mean zero and standard deviation equal to 1 (thus to be approximately in a range of ages

and body weight of subjects included in the study).

AGEi;BWi � Nð0; 1Þ ð4Þ

The following prior distribution was assumed during model building process:

sk � Nð0; 1ÞTð0; Þ ð5Þ

mk � Nð0; 5Þ ð6Þ

bDIS;k; bBW;k; bAGE;k � Nð0; 1Þ ð7Þ

For the standard deviation, half-normal distribution (expressed as T(0,) in Eq 4) ensuring

positive values was used (Eq 5). We also assumed the normal distribution with mean zero and

standard deviation of 5 for the mean level of miRNAs (Eq 6). A scaled inverse-Wishart prior

was used for the variance-covariance matrix. This was necessary as it allows to estimate the

scale parameters and the correlations from the hierarchical data. To implement it we expanded

O to:

O ¼ diagðzÞQ diagðzÞ ð8Þ

where Q is the unscaled covariance matrix being given the inverse-Wishart model and zk is a

scaling factor being given a half-normal model for each miRNA:

Q � Inv � WhishartKþ1ðIKÞ ð9Þ

zk � Nð0; 1ÞTð0; Þ ð10Þ

where IK is a scale, here K x K identity matrix and K+1 denotes degrees of freedom. The z and

Q parameters cannot be interpreted separately, but allow to calculate the covariance matrix

O = diag(ω)ρ diag(ω), and the most interesting quantities, like standard deviations and correla-

tion matrix [41]:

ok ¼
ffiffiffiffiffiffiffi
Ωkk

p
¼ jzkj

ffiffiffiffiffiffiffi
Qkk

p
ð11Þ

rkk0 ¼ zkzk0Qkk0=ðokok0Þ ð12Þ

To illustrate the magnitude of the difference between patients and the control group we cal-

culated the effect size for each miRNA on the scale of data variability (dk).

dk ¼ bDIS;k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
k þ s

2
k

p
ð13Þ

The effect size along with the associated uncertainty is a useful measure to assess the poten-

tial diagnostic value of a single miRNA. The values of dk larger than 1.5 indicate that the

miRNA levels in cancer and patient subjects differ considerably (the underlying normal distri-

butions are almost baseline separated).

AUC under the ROC

To assess the expected out of sample discrimination potential of a subset of miRNA, AUC

under the ROC curve was calculated using 10-fold cross-validation. For that purpose the

patients from the original data were randomly partitioned into 10 subsamples. Out of the 10

Bayesian modeling of micro RNA
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subsamples, a single subsample was excluded from the analysis. The remaining 9 subsamples

were used to calculate the probability of cancer for each excluded subject (pi). The cross-valida-

tion process was then repeated 10 times, with each of the 10 subsamples used exactly once as

the validation data. The results from the folds were combined and summarized as AUC under

the ROC curve. The probability of having cancer for a particular individual was calculated

transforming the proposed linear model to its logistic representation [42]:

logitðpiÞ ¼ logð0:333Þ � 0:5ð2mkεj þ bDIS;kεjÞS
� 1

kεjb
T
bDIS;kεj

þ ykεjS
� 1

kεjb
T
bDIS;kεj

ð14Þ

where j denote a subset of miRNA used for predictions, yj denote miRNA observations from

one repetition only, S is a sum of the inter-individual and residual variability S =Ω+diag(σ2);

log(0.33) denotes the ratio of prior probabilities here assumed equal to the proportion of can-

cer/healthy subjects in the data.

Model assessment

For model diagnostic purposes we plotted (i) weighted residuals versus miRNA and (ii)

weighted residuals versus fitted values. This graph evaluated the variability of the observations

across each miRNA and assessed the presence of a pattern or trend in the residuals. The

weighted residuals should be distributed across zero line with standard deviation near one. If

miRNA observations falls outside this range, it indicates model misspecification.

False discovery rate approach

The FDR method was adopted by ranking the raw p values from the lowest to the highest, mul-

tiplying each p value by the number of variables, and dividing by its rank order. If the FDR-

corrected p-value is less than the significance level 0.05 a variable is conventionally labelled sta-

tistically significant.

Technical

The model was developed using JAGS 4.0.0. with rjags, runjags and coda packages in R envi-

ronment. Three MCMC chains of 100000 iterations were simulated. The first 1000 iterations

of each chain were discarded and every 3rd sample was retained. Thus 1000 MCMC samples

were used for subsequent analyses. Model convergence was assessed by Gelman-Rubin diag-

nostics available in JAGS. The MCMC chains were assumed to have reached the stationary dis-

tribution if Gelman-Rubin values were less than 1.2 for all parameters. Furthermore, the trace

history of MCMC samples for all chains were examined visually for all parameters, for which

‘fuzzy caterpillar’ suggests that MCMC chains had reached a stationary distribution. The code

for the model is available in the S1 Appendix. The FDR was calculated given a set of p-values

adjusted using Benjamini & Hochberg method with stats package in R environment.

Results

Biological concept of the study

The whole study design initialized with the determination of 752 miRNA levels in 59 samples

(first stage of the study): (i) control (n = 16), (ii) ovarian cancer with no BRCA1/2 mutation

(-/-) (n = 33) and (iii) ovarian cancer with BRCA1 or BRCA2 mutation (+/+) (n = 10). Further

(second stage of the study), based on concentration differences reported between patients and

controls in the first stage (based on p-value with FDR correction) and the available literature

reports, 49 miRNAs were selected out of 752 hits and further measured in 178 individuals: (i)

control (n = 118), (ii) ovarian cancer with no BRCA1/2 mutation (-/-) (n = 49) and (iii)

Bayesian modeling of micro RNA
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ovarian cancer with BRCA1 or BRCA2 mutation (+/+) (n = 10). The second stage of the study

included a separate group of individuals not included in the first stage of the study.

Dataset characteristics

The raw data used in this study covered 49 miRNAs measured in 178 individuals (59 ovarian

cancer patients and 119 controls) (Fig 1). Detailed characteristics of the available covariates is

presented in Table 1. The mean for age and weight of individuals was 52.6 (±13.7) and 67.2

(±11.6).

Fig 1. Raw data (centered and standardized miRNA levels) summarized as boxplots for 49 miRNAs in patients and controls. The box and whiskers plots depict

mean, 25th and 75th percentiles. Blue dots overlaid are individual data points.

https://doi.org/10.1371/journal.pone.0221764.g001

Table 1. Demographic characteristic of subjects included in the study.

All subjects Percent of missing data

Health status - 0.56%

Age, mean (±SD) 52.67 (±13.7) 2.2%

Weight, mean (±SD) 67.29 (±11.66) 36.5%

https://doi.org/10.1371/journal.pone.0221764.t001
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Effect of health status on miRNA levels

Developing the multilevel model we evaluated the effect of health status on miRNA levels (via

fold change) by plotting exp(βDIS,k) and associated uncertainty for each miRNA (Fig 2). The

miRNA levels are generally higher in patients than in healthy individuals with different level of

Fig 2. The summary of a marginal posterior distribution representing fold change between disease and control

subjects for 49 miRNA. The distribution was summarized as a boxplot with 5th, 25th, 50th, 75th and 95th percentile.

Grey line denotes no effect for miRNAs.

https://doi.org/10.1371/journal.pone.0221764.g002
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uncertainty. The uncertainty is higher for miRNAs with larger number of missing measure-

ments. The miRNAs for which 90% credible interval is above or below the grey horizontal line

could be claimed to be associated with the disease (their levels differ between patients and con-

trols) assuming the model and the available data. As an example the fold changes (median

(5th-95th percentiles) of exp(SD�βDIS,4) = 2.24 (1.7–2.96)), exp(SD�βDIS,9) = 2.11 (1.54–2.68))

and exp(SD�βDIS,13) = 2.22 (1.59–3.03)) were determined for miR-101-3p, miR-142-5p and

miR-148a-3p. The above-mentioned miRNAs were characterized by quite low percentage of

missing data i.e. 4.49%, 0% and 26.4%. On the other hand, those miRNA with high proportion

of missingness, i.e. miR-221-5p and miR-604 (94.38% and 98.88%) provide very uncertain pre-

dictions (their credible interval is consistent with a large range of possible fold changes). To

decrease this uncertainty, more data for these miRNAs should be gathered.

Usefulness of miRNAs in cancer detection

By simulations (rather than simply point estimates of parameters), the inferential uncertainty

can be propagated into other interesting quantities, like effect size. In this work we estimated

the effect size to discuss the difference in miRNA levels between healthy and control subjected

on the scale of data variability (Fig 3). The larger the difference the more promising the

miRNA for the purpose of diagnosis (to calculate probability of disease). The effect sizes for

miRNAs that are characterized by large negative (miR-346) or positive (miR-221-5p) values

indicate that for those miRNA it is worth to do more experiments to fully confirm their useful-

ness in diagnosis. On the other hand if one is willing to select one miRNA for diagnosis based

on this data only, three miRNAs (miR-101-3p, miR-142-5p and miR-148a-3p) with effect sizes

that are far away from zero would be a good choice as they have the greatest probability of hav-

ing small effect size. Since they are highly correlated (> 0.95), they carry essentially the same

information about health status of the patients.

To calculate the AUC under the ROC curve and further evaluate which combination of

miRNAs has the greatest discrimination ability we used 10-fold cross-validation. The one-

miRNA-at-a-time AUC under the ROC curve are presented in Table A in S1 Appendix. For

the mentioned three miRNAs, i.e miR-101-3p, miR-142-5p and miR-148a-3p, AUC was esti-

mated at 0.65 (0.64–0.66), 0.65 (0.64–0.67), 0.65 (0.62–0.67) suggesting their limited discrimi-

nation potency. There is a limited benefit in using more than one miRNA for discrimination,

i.e. the use of three miRNAs together led to a very similar AUC of 0.65 (0.63–0.67). There is

also a little benefit in adding other miRNAs (i.e. miRNA with missing values being less than

10%). For this subset, the AUC increased to 0.72 (0.69–0.75). This small increase is a conse-

quence of a high correlation between miRNA levels measured in the study.

Model evaluation and estimation of model parameters

The plot of weighted residuals and weighted residuals versus fitted values (Fig A in S1 Appen-

dix) indicated that the variability of the observations were rather constant across miRNAs,

with fairly similar spreads at the fitted values. We therefore conclude no bias or trend in model

prediction and therefore conclude good specification of the model. The summary of posterior

distributions for standard deviations of assay and inter-individual variability σk, ωk for each

miRNA were demonstrated in Fig 4.

False Discovery Rate p values

Four miRNA levels were found to be significantly different between patients and controls i.e.

miR-101-3p, miR-140-3p, miR-142-5p, miR-148a-3p based on FDR p-values. The correspond-

ing effect size (dFDR) for these miRNA was 0.63, 0.64, 0.6, 0.56. We also observed that two

Bayesian modeling of micro RNA
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miRNAs which were not significant (according to null hypothesis significance testing) after

FDR correction were characterized by the dFDR> 1 i.e. miR-221-5p (dFDR = 1.77) and for

miR-346 (dFDR = 1.43). The dFDR> 1 without significance after FDR correction could be a

consequence of high proportion of missingness for these miRNAs (94.38% and 95.51%). The

four miRNAs which were significantly different between patients and controls were also char-

acterized by a relatively low percentage of missingness (Table A in S1 Appendix).

Discussion

Unlike computational–based models aimed at finding a candidate miRNA potentially associ-

ated with the disease accompanied by further confirmation its relevance in experiments, the

general idea of this work was to judge on the practical relevance of miRNAs in the presence of

measurement noise and data variability by proposing the data generating process.

Fig 3. The summary of a marginal posterior distribution of an effect size for 49 miRNA. The distribution was summarized as a boxplot with 5th, 25th, 50th, 75th and

95th percentile. Grey line describes no effect.

https://doi.org/10.1371/journal.pone.0221764.g003
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Specifically, we firstly investigated the relationship between the presence of ovarian cancer

and miRNA expression via multilevel Bayesian model. Secondly, we assessed the effect of dis-

ease on miRNA levels controlling for differences in covariates and modelling the covariance

matrix. The effect size and uncertainties around its estimates allowed to judge how certain the

magnitude of miRNAs levels can be estimated which constituted an aid in terms of interpreta-

tion of the practical relevance of 49 miRNAs measurements for diagnostic purposes.

Under the partial-pooling scenario served by the multilevel Bayesian framework, the

parameters’ estimates were pulled toward the population mean with a standard deviation set

to unity (weekly-informative prior), leading to a reduction of false–discoveries. Another aspect

of partial pooling is related to information sharing allowing to estimate individual model

parameters. In other words, using multilevel modeling we can make inference on each miRNA

borrowing information from other miRNAs.

In the context of gene expression study, there are many factors that affect the obtained

results e.g. missing values identified during data generating process evolving mainly from

detection sensitivity, contamination, error induced in experimental operations or inappropri-

ate data pre-processing. Their occurrence is unavoidable leading to uncertainty of model

estimates and affecting final conclusions if not properly accounted for [43]. For studies consid-

ering differentially expressed genes, estimation of a fold–change is the simplest and still widely

used measure to identify gene-specific changes, however rarely with a measure of its reliability

(due to assumption that all genes exhibit the same level of noise). In the literature, a “signifi-

cance analysis of microarrays” (SAM) is a common and simple approach utilizing genome–

wide information to account for a signal-to-noise ratio [44].

Apart from the existence of this measure and discussing the difference in miRNA levels esti-

mated on the scale of data variability, we used the effect size with associated uncertainty to

judge on the relevance of measuring miRNA levels. As evidenced by a posteriori distribution

of effect sizes of individual miRNA among patients in relation to the control group, several

effect sizes are possibly large (above 1) due to large uncertainty. Under such scenario, one

should always keep in mind that the true value may lie between those bounds and to reduce

this uncertainty around estimates, more data is required. The distribution of effect sizes were

also characterized by a negative values which indicate that for some miRNA a decrease in can-

cer patients is plausible [45].

The posterior distribution of effect size and uncertainties around its estimates allowed for a

more sophisticated and intuitive judgment on health status effect exerted on miRNA levels. In

our opinion, probabilistic assessments of uncertainty around model parameters and predic-

tions is more convincing especially when making decision on the validity of miRNA measure-

ments for cancer detection [46,47].

In this study we showed that the effect size along with the associated uncertainty can be a

useful measure to assess the potential diagnostic value of each miRNA. Accompanying credible

intervals for the AUC constituted a kind of “double-check” of miRNAs’ diagnostic value. How-

ever to prove usefulness for diagnostic purposes, more studies are needed to quantify the

added predictive value of individual miRNAs’ measurements.

Unlike Bayesian concept to potential markers discovery, under Frequentists approach the

effect size is treated as a fixed value addressing the question how much the data differ ‘signifi-

cantly’ from that expected under the null. The vast majority of research uses the Frequentists

Fig 4. The summary of a marginal posterior distribution of σj, ωj, parameters for 49 miRNA summarized as boxplots

with 5th, 25th, 50th, 75th, 95th percentiles. A large uncertainty was observed for those miRNA for which missing values

were reported in high proportion.

https://doi.org/10.1371/journal.pone.0221764.g004
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concept completely ignoring the probability of raised hypothesis [48] and reporting only those

results which are statistically significant. Usually, when replicating the original case-control

study under the same conditions or under conditions as much similar to the original study as

possible, researchers obtain negative results (zero or small effect). This is commonly explained

via the presence of a wide sample-to-sample variability in the data, small sample size etc.

[49,50]. For this reason, the same experiment will probably result in a substantially different p-

value which questions reliability of results generally obtained in those experiments, even with

high statistical power of a test [51,52].

In observational studies aimed at selecting potential disease indicators, we can observe a

high probability of effects’ overestimation, high false negative rate resulting from study design

and sample size (often inadequate in terms of complexity of the task), lack of confounders

adjustment and ignorance of correlations between studied features. The above-mentioned fac-

tors influence this one-at-a-time feature selection to a great extent leading to poor predictive

performance of developed models and thus generating non-reproducible results. Given that

biology is complex and variability in the data is always present, for data analysis purposes we

should apply methods that fit better the data i.e. those based on penalization, like the proposed

multilevel model [53,54].

Liu et al. however, [55] discuss whether multilevel models may outperform single-gene-at-

a-time analysis or SAM in genomics studies. The authors point out that multilevel models can

have good performance in case of variance stabilization, however differential expression can

be more reasonably analysed with poisson and negative binomial models. Moreover, they

underlie that research objective is a key when it comes to decision on the analysis method

used. If the goal is gene selection, more computing intensive shrinkage approach should be

considered. If we expect large signals changes, fold changes and tail probabilities appear to be

the best statistics, otherwise when estimating reliably measured differential expression, the sig-

nal-to-noise ratios and Bayes factors is a good choice.

In this study, we built a data-driven model describing the effect of disease and associated

covariates on miRNA level simultaneously accounting for the presence of variability. We mod-

elled miRNA data using the normal distribution (with between-subject variability modelled

via multivariate normal distribution). Under this scenario, the use of poisson or negative bino-

mial distribution to model miRNA data was unnecessary and could only complicate the

model. Although the use of easy-to-use SAM could be a more simple approach to practitioners,

we could not apply this measure in this study as we observed significant age difference between

patients and healthy individuals (which may be considered a limitation of the study). The use

of multilevel model with age and bodyweight adjustment allowed to take the potentially con-

founding effects of age and body weight into account. The lack of endogenous controls (house-

keeping gene) for quantitative control and normalization may also be considered as an

limitation of the study.

Conclusions

The relevance of the most promising miRNAs for cancer diagnosis identified in this work

(miR-101-3p, miR-142-5p, miR-148a-3p) is rather limited. There are however several miRNAs

for which the inferences are uncertain. When analyzing such small data from an observational

study caution is always needed as the effects could be biased due to presence of unaccounted

confounders. The proposed approach should be considered a more natural statistical formal-

ization of the scientific process of evaluating the evidence. The Bayesian posterior quantifies

the uncertainty about the model parameters allowing to make various decision, i.e. assess the

usefulness of miRNA for cancer detection.
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