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Simple Summary: Phytoseiulus persimilis Athias-Henriot, a mite species widely used in pest manage-
ment for the control of spider mites, has been commercialized and introduced to numerous countries.
In the 1990s, P. persimilis was imported to Taiwan, and a million individuals were released into the
field. However, none have been observed since then. In this study, we explored the ecological niche
of this species to determine reasons underlying its establishment failure. The results indicate that
P. persimilis was released in areas poorly suited to their survival. To the best of our knowledge, the
present study is the first to predict the potential distribution of phytoseiids as exotic natural enemies.
This process should precede the commercialization of exotic natural enemies and their introduction
into any country.

Abstract: Biological control commonly involves the commercialization and introduction of natural
enemies. Phytoseiulus persimilis Athias-Henriot, a mite species widely used in the control of spider
mites, was imported to Taiwan in the 1990s and was mass-reared and released into the field. However,
none have been observed in comprehensive surveys of phytoseiid mites for over 30 years. In this
study, the distribution of P. persimilis in Taiwan was predicted, and environmental variables that affect
its distribution were analyzed. The mountainous region of southcentral Taiwan was determined to
be suitable for the establishment of this species, whereas the four sites at which it was released in the
1990s, particularly those in southwestern Taiwan, exhibited low suitability. Notably, the minimum
temperature of the coldest month was identified as a crucial limiting factor affecting the distribution
of P. persimilis, indicating that a Mediterranean climate is more suitable for this species. To the best of
our knowledge, this study is the first to predict the suitable distribution of exotic predatory mites in
a biological control program. The present findings serve as a pivotal assessment framework for the
commercialization and foreign introduction of natural enemies.

Keywords: predatory mites; ecological niche; establishment

1. Introduction

For more than a century, numerous species of natural enemies have been commercial-
ized, mass-reared, introduced, and released into the field for pest management and control,
with successful results in both classical and augmentative biological control programs [1–4].
For example, the host-specific parasitoid Anagyrus lopezi De Santis was released to con-
trol the mealybug Phenacoccus manihoti Matile-Ferrero and is now established in tropical
Thailand [5]. In addition, Eurytoma erythrinae Gates and Delvare was released to control
Quadrastichus erythrinae and has been established in the tropical islands of Hawaii [6].
However, the establishment and persistence of these pest control species remains a serious
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problem in biological control programs [7]. Moreover, exotic biological control agents
may adversely affect native or naturalized populations and in turn threaten endemic
species through intraguild predation, as in the case of Harmonia axyridis (Pallas), commonly
named the harlequin ladybird and also known as “the most invasive ladybird on Earth” [8].
This ladybird has been introduced worldwide as a classical biological control agent for
hemipteran pests. However, the introduction of this species became catastrophic because
they competed for prey with native natural enemies, became themselves a pest on fruit
plants, and created a nuisance when they inhabited human dwelling in large numbers [8].
Therefore, the assessment of risks posed by exotic natural enemies (e.g., to the environment
and non-target organisms) and the possibility of population establishment warrants urgent
attention [1,2,9].

Ecological niche modeling, also known as species distribution modeling, uses com-
puter algorithms, mathematics, and statistics to establish prediction models based on
ecological niche theory [10,11]. Ecological niche modeling explores species niches or envi-
ronmental spaces based on known environmental characteristics and species distribution
data [10,12]. The maximum entropy method (MaxEnt), a machine learning approach,
makes predictions of species distributions by analyzing species–environment relationships
through the use of presence-only data and environmental variables [10]. As only presence
data are required, this method has multiple applications, including the determination
of suitable habitats for conservative species [10], predicting the distribution of invasive
species [13], and modeling distribution shifts caused by climatic changes [14]. In these
studies, the distribution of invasive pests in non-invaded areas was predicted using global
presence-only data [15,16]. Slatculescu et al. [17] predicted the distribution of ticks (vectors
of Lyme disease) using MaxEnt and constructed maps of environmental risk in southern
and eastern Ontario, Canada. Negrini et al. [18] generated a risk map of Steneotarsonemus
spinki Smiley in rice-growing areas around the globe using MaxEnt. However, to the best of
our knowledge, there are as yet no published studies on phytoseiid mites based on MaxEnt.

Certain species belonging to the mite family Phytoseiidae (Acari: Mesostigmata) have
been used as biological control agents against mite pests as well as against small insects
such as aphids, thrips, and whiteflies [19–21]. Predatory mites have been introduced in
numerous countries. Twelve phytoseiid mite species are included on the “positive list” of
“safe use biological control” agents of the European and Mediterranean Plant Protection
Organization; for example, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus
(McGregor)] [22]. They can be introduced and used safely without harm to the environment;
however, the absence of a species from the list does not imply that a species is unsafe but
may indicate a lack of sufficient research on this species. P. persimilis, a specialist predator of
Tetranychus mites, has been extensively used for commercial pest control, especially against
Tetranychus urticae Koch, a major pest of numerous crop species in temperate and tropical
countries [23,24]. This species originates from Algeria [23] and is mainly distributed in
the Mediterranean basin (Figure 1, Table S1) [24–26], where the climate is characterized by
mild rainy winters and warm to hot dry summers [27]. Previous studies have revealed that
temperature and precipitation directly affect the growth and distribution of P. persimilis,
which thrives in warm and highly humid environments [27–29].

P. persimilis has been introduced and established in numerous countries such as
Japan [30], Egypt [31], and New Zealand [25] for biological control purposes [24]. In
the early 1990s, this species was introduced to Taiwan for scientific purposes. A mil-
lion individuals were released for the biological control of spider mites at four sites—
tea and fruit farms in central and southern Taiwan (e.g., strawberry fields in Miaoli
County) [32–34]. Despite the clear evidence that P. persilimis is an efficient biological
control agent, no individuals have been observed in comprehensive surveys of phytoseiids
for over 30 years since the first mass release [21]. The failure to establish this species is
worthy of investigation, especially in regard to future applications of biological control.
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By assessing the suitability of areas (as habitats) in which P. persimilis was released
in Taiwan in the 1990s, we sought to identify a mechanism that explains the failed estab-
lishment of this species. As P. persimilis originates from the Mediterranean basin [23,25,26],
we assumed that temperature and precipitation were limiting factors, based on previous
biological studies of P. persimilis [for example, 27–29]. Therefore, MaxEnt was used to
predict the potential distribution of P. persimilis in Taiwan, with inferences made for habitat
suitability under certain climatic conditions, including temperature and precipitation. We
hypothesized that low habitat suitability would result in population collapse or failed
establishment. The assessment framework can serve as a reference for the introduction
of exotic natural enemies and their establishment and persistence. It can also help in the
assessment of risks for the environment.

2. Materials and Methods
2.1. Species Occurrence Dataset

Global occurrence data on P. persimilis (Figure 1, Table S1) were collected from the
Phytoseiidae Database [26], Phytoseiid Mite Portal [30], and a Global Biodiversity Informa-
tion Facility dataset on the predator–prey system involving P. persimilis and T. urticae [24],
including native and established population of P. persilimis. Next, we used Google Earth
Pro to obtain the latitude–longitude coordinates of P. persimilis localities. Repeatedly ac-
quiring data on occurrence may cause sampling bias, leading to increased density of the
species distribution data in a certain area and resulting in deviations in the prediction
results [35,36]. Therefore, we excluded duplicate and unclear distribution localities using
Quantum GIS (QGIS) [37] and ensured Figure 1, the presence of only one distribution
point in each raster to avoid overfitting. In total, 99 localities (Table S1) were included for
analysis. The species is primarily distributed in countries in the Mediterranean basin, south
and west Australia, western South America, and the western United States [24–26]. All
distribution data were organized using Microsoft Excel, and in accordance with MaxEnt
software format requirements were saved in a comma-separated values (CSV) file for
further analysis [38].

2.2. Environmental Variables

We used a set of 19 environmental variables (current period: 1970–2000) from World-
Clim (https://www.worldclim.org, accessed on 3 January 2021) [39] at a spatial resolution
of 30 arc-seconds (1 km2). These variables were derived from monthly temperature and

https://www.worldclim.org
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rainfall values and represented annual trends, seasonality, and extreme or restrictive en-
vironmental factors (Table S2). Bioclimatic variables are related to the distribution and
survival of small arthropods and have been widely used in global studies concerning the
prediction of species distribution [14,40]. We extracted data from the WorldClim database
using RStudio (version 2.1) with R language ‘raster’ [41] and ‘rgdal’ [42] packages.

2.3. Distribution Modeling

We used MaxEnt (v.3.4.1) [43] to predict the habitat suitability of P. persimilis in Taiwan
based on global distribution data (Figure 1, Table S1) and environmental variables (Table 1)
using the R package ‘dismo’ [44] in RStudio. We generated final models and the global
potential distribution (Figure S1) of this species. In addition, the four release sites (Table S3)
were mapped, to investigate the failed establishment of this species.

Table 1. Contribution rate and permutation importance of selected environment variables.

Variable Codes Environment Variables Contribution Rate % Permutation Importance %

bio06 Min temperature of coldest month (◦C) 44.7 25.2
bio02 Mean diurnal range (◦C) 24.8 8.1
bio18 Precipitation of warmest quarter (mm) 10.6 5
bio19 Precipitation of coldest quarter (mm) 6.4 1.7
bio05 Max temperature of warmest month (◦C) 5.7 19.5
bio08 Mean temperature of wettest quarter (◦C) 4.4 18.8
bio01 Annual mean temperature (◦C) 3.5 21.9

To avoid or remove multicollinearity, environmental variables and species distribution
data were imported into MaxEnt for the initial model to calculate the contribution rate using
the jackknife test. Jackknifing was performed to determine the contribution of various
bioclimatic variables to pest distribution prediction. Based on their contributions, we
removed variables with relatively little importance, and the selected variables for further
modeling included the minimum temperature of the coldest month (bio06), the mean
diurnal range (bio02), precipitation of the warmest quarter (bio18), precipitation of the
coldest quarter (bio19), the maximum temperature of the warmest month (bio5), the mean
temperature of the wettest quarter (bio08), and the annual mean temperature (bio01) (Table 1).

To avoid or reduce overfitting, the performances of diverse models with different
sets of parameters (i.e., the feature type and regularization multiplier) were evaluated to
determine the best fitting model using the R package ‘ENMeval’ [45]. In each model, we
performed cross-variation in ten-fold replicates; based on the best model, other parameters
were set as the default; among the five feature types (i.e., linear, quadratic, product,
threshold, and hinge), linear and quadratic types were allowed, and the regularization
multiplier was set to 0.5. We used presence-only data to generate pseudo-absences, and
10,000 background points were randomly selected by the MaxEnt model, which either
ran 500 iterations of these processes or continued until a convergence threshold of 0.00001
was attained.

The prediction results from MaxEnt modelling were evaluated according to threshold-
independent area under curve (AUC) values calculated using the R program. Receiver
operating characteristic (ROC) curves were used to plot the true-positive rate against the
false-positive rate, and AUC was used as a measure of the goodness of fit of the model [10,46].
We selected a test sensitivity of 0% and 10% omission rates (OR) [47,48]. The AUC value
ranges from 0 to 1, with higher values indicating higher predictive performance [49]. In
the case of default OR, the value at 10% was 0.10, and the sensitivity test value at 0%
was 0; poor performance was indicated by a value exceeding the predicted rate [50]. The
logistic output was chosen as an estimate of the probability of the presence conditioned by
the environmental variables (i.e., habitat suitability), per grid cell. Jackknifing was used
to screen for dominant environmental variables [51]. In addition, we obtained response
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curves showing single effects of individual variables on the species occurrence and the
curves for all environmental variables (i.e., selected based on the initial modelling).

3. Results
3.1. Comparison of Suitable Distributions of P. persimilis and Four Release Sites in Taiwan

The OR of P. persimilis distribution prediction is shown in Figure 2. The training
set OR (blue line); that is the cumulative threshold definition, should be close to the pre-
dicted OR (black line). The average OR of the training set for P. persimilis was 0.000. The
ROC curve output from MaxEnt showed that the AUC of the P. persimilis training set
was 0.946. According to the standards by which the AUC was evaluated, the prediction
model showed high performance [50,52]. The potential distribution areas are shown in
Figure 3. Green represents high habitat suitability, red represents moderate habitat suit-
ability, and white represents low habitat suitability. The prediction revealed areas that
would be highly suited with regard to climatic characteristics, namely the south-central
mountainous areas of Kaohsiung City, Pingtung County, and Taitung County. The rest
of the land area of Taiwan was unsuitable habitat for P. persimilis. The four release sites,
located in low elevation areas in central and southwestern Taiwan, were as follows: a straw-
berry farm in Dahu Township, Miaoli County [32]; a tea farm in Songbokeng, Mingjiang
Township, Nantou County [33]; a papaya farm in Wufeng District, Taichung City [34], and
a papaya farm in Daliao District, Kaohsiung City [34] (Figure 3). These locations showed
low occurrence probabilities of 0.11, 0.09, 0.05, and 0.02, respectively (Table S3), indicating
that these areas were poorly suited to the establishment of P. persimilis populations. In
addition, the potential distributions of P. persimilis in Southeast Asia, and worldwide are
shown in Figure S1 and Figure S2.
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3.2. Environmental Variables Influencing the Distribution of Phytoseiulus persimilis

The contribution rate of environmental variables and their permutation importance
according to the jackknife test are presented in Figure 4 and Table 1. The minimum
temperature of the coldest month (bio06), the mean diurnal range (bio02), and precipitation
of the warmest quarter (bio18), all exceeded 10% (44.7%, 24.8%, and 10.6%, respectively).
Moreover, these variables accounted for 80.1% of the cumulative contribution rate, which
was the highest proportion among the variables. The permutation importance of bio06
(25.2%) was the highest, followed by that of the annual mean temperature (bio01), the
maximum temperature of the warmest month (bio05), and the mean temperature of the
wettest quarter (bio08) (21.8%, 19.5%, 18.8%, respectively). Overall, the permutation
importance of these four variables was over 10%, which is strongly indicative of the
modeling results.
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Figure 4. Relative importance of seven selected environmental variables of Phytoseiulus persimilis based on the jackknife test.

Response curves for seven selected environmental variables of Phytoseiulus persimilis
are shown in Figure 5, showing several relationship patterns (e.g., unimodal and mono-
tonically increasing or decreasing). For instance, the minimum temperature of the coldest
month (bio06) was the most contributing variable and exhibited a monotonically increasing
pattern against the occurrence of P. persimilis. The mean diurnal range (bio02) showed
a unimodal pattern against the occurrence of P. persimilis. In addition, the probability
of occurrence showed a U-shaped pattern with respect to precipitation of the warmest
quarter (bio18).
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4. Discussion

MaxEnt has been widely applied in invasive pest studies, by assessing global occur-
rence data to predict local potential distribution before invasion, e.g., [15,16]. To the best of
our knowledge, the present study is the first to use MaxEnt to predict habitat suitability for
the establishment of exotic natural enemies and the first such study on phytoseiid mites.
Our hypothesis is that temperature and precipitation are limiting factors based on previous
biological studies of establishment failure of P. persimilis, e.g., [27–29]. We input current
global distribution data of Phytoseiulus persimilis Athias-Henriot into MaxEnt for potential
distributions in Taiwan and compared the data with previous release sites to determine
the reasons for the failure of the establishment of this species after its introduction in the
1990s. The prediction results were favorable, as indicated by the average OR (0.000) and
AUC of the training set (0.946). These results are promising for the practical application of
MaxEnt in the introduction of exotic natural enemies. Our study showed a novel concept
of modeling validation when establishment failure occurred at sites with low predicted
values of habitat suitability. This provides a plausible mechanism for the failure based
on environmental factors. The goals of our study were to elucidate this mechanism and
provide information for the practical application of biocontrol agents.

Although the study model demonstrated high accuracy, numerous uncertainties can
affect the prediction results, including sample size and bias (species distribution sites),
background data (pseudo-absence), operational methods, explanatory variables, and study
scale [45,53]. For example, the prediction accuracy increases with an increase in sample
size; however, this occurs only up to a point; it decreases when an overly large number
of samples are used [45,54]. In addition, the number of released populations, releasing
methods, and natural enemies (e.g., microbes) of biological control agents may also affect
establishment failure. Future studies should examine the reasons for the establishment
of exotic biological control agents based on all cases of classical biological control, and
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evaluation of the results of such studies will help reduce the risk posed by biological control
agents to the environment.

4.1. Potential Suitable Areas for P. persimilis and the Four Release Sites

P. persimilis was introduced into Taiwan in the 1990s, with a million individuals re-
leased to control spider mites at four localities in central and southwestern Taiwan [32–34].
However, no individuals have been observed since then. We assumed that temperature
and precipitation limit the establishment of this species. Therefore, MaxEnt was used
to predict the potentially suitable distribution of P. persimilis in Taiwan. In Figure 3, we
present a comparison of this distribution with the four release sites. Suitable areas are
distributed throughout the mountainous areas of southern Taiwan. However, three of the
release localities were in central Taiwan, and one locality was in southwestern Taiwan.
The results suggest that establishment failure can be ascribed to the fact that previous
release sites were unsuitable for P. persimilis (habitat suitability of 0.11, 0.09, 0.05, and 0.02,
respectively). The climate in the suitable areas is similar to the Mediterranean climate; in
contrast, southwestern Taiwan has a tropical climate, with higher temperatures and lower
precipitation in winter. Therefore, the prediction results supported our hypothesis; the
main reason is that previous release localities are low-suitability areas.

P. persimilis has been commercialized since 1995 in Japan and is widely released in the
field and in greenhouses for controlling spider mites [44]. Based on the survey results of
Toyoshima et al. [30], predatory mites have been widely distributed in Japan, including
in Chiba, Kanagawa, Shizuoka, Kagoshima, and Okinawa. As illustrated in Figure S1,
the prediction showed that Japan is suitable for the species, which is consistent with the
establishment conditions based on the investigation.

With regard to the establishment of exotic natural enemies, considerations beyond
climate should be taken into account, including the release frequency, release number, diet
and food sources, as well as intraguild interactions among natural enemy species [1,2,4].
First, P. persimilis is a specialized predator of Tetranychus mites; thus, the population
persistence of this predator is dependent on the availability of a sufficient amount of
prey [20,25,55]. Moreover, in a study conducted in Spanish clementine orchards, Abad-
Moyano et al. [56] reported that Euseius stipulatus (Athias-Henriot) adversely affected
the establishment of N. californicus and P. persimilis, which in turn hindered the control
of T. urticae. In addition, the cultivation method may be another element that affects the
establishment of exotic natural enemies. As mentioned previously, P. persimilis was released
at a strawberry farm. Fallowing and crop rotation affect spider mite populations, thereby
adversely affecting the persistence of its natural enemies.

4.2. Environmental Variables Affect the Establishment of P. pesimilis

P. persimilis originates from Algeria [23] and is primarily distributed in the Mediter-
ranean basin [24–26], where the climate is characterized by mild rainy winters and warm
to hot dry summers [27]. Previous studies have revealed that temperature and precipi-
tation directly affect the growth and distribution of P. persimilis, which thrives in warm
and highly humid environments [27–29]. This is consistent with our prediction results,
and the potential distribution closely matched that in areas with Mediterranean climates
worldwide (Figure S1), whereas almost all regions of Southeast Asia (Figure S2) would be
unsuitable for P. persimilis.

This study showed that key climatic factors affecting the distribution of P. persimilis,
namely bio06, bio02, bio18, and bio19, were selected based on their contribution rates,
with their contribution of 80.1% (Table 1). The minimum temperature of the coldest
month (bio06) and the mean diurnal range (bio02) had the most significant effects on the
distribution. The response curve of bio06 revealed that the coldest temperature was the
limiting factor for the distribution of P. persimilis. A monotonically increasing pattern was
observed after 0 ◦C was 1. We considered that this could be related to the cold hardiness of
P. persimilis (no diapause) [29,57,58]. The mean diurnal range (bio02) presented a unimodal
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pattern, which indicated that habitat suitability was 1 when the temperature range between
5 and 10 ◦C. Skirvin and Fenlon [29] reported that P. persimilis consumed more prey at
temperatures between 15 and 25 ◦C but consumed less when the temperature was 30 ◦C.
The next two variables were precipitation of the coldest and warmest quarter (bio18 and
bio19). The response curve of bio18 showed that the occurrence probability was low when
the precipitation was between 500 and 1500 mm. In contrast, the response curve of bio19
showed that the occurrence probability was high in the precipitation between 200 and
800 mm, but dramatically decreased when precipitation reached 1000 mm. Stenseth [27]
reported that the relative humidity required for sustaining P. persimilis populations ranges
from 40% to 80%, and this result is consistent with the unimodal patterns of bio19. Although
the species prefers a climate with high humidity, very high humidity negatively affects
their survival.

4.3. Necessity of Predicting the Potential Distributions of Exotic Natural Enemies

Many natural enemies have provided successful results in biological control programs
around the world, including tropical areas [5,6]. Classical biological control involves
the introduction and establishment of exotic natural enemies for permanent pest control,
whereas augmentative biological control involves the supplemental release of exotic natural
enemies; for example, through inoculation and inundation, when the current number is
insufficient for effective pest control [1–4]. Exotic natural enemies are typically introduced
for pest control; therefore, the determination of factors affecting their establishment and
the risks entailed in their use is essential [1,2,4,9]. Regardless of whether successful estab-
lishment is desired, the prediction of potentially suitable release sites must be included
in the risk assessment. If a biological control program requires the persistence of exotic
natural enemies, they must be released in suitable areas.

5. Conclusions

The establishment of exotic natural enemies released into the field for pest control
warrants urgent attention, as does the assessment of risks they pose to endemic populations
and the possibility of establishment [1,2,4,9]. The prediction of potentially suitable release
sites must be conducted to increase the possibility of establishment. The present findings
serve as a basis for optimizing the population persistence of exotic natural enemies. Alter-
natively, the failure to establish a population provides an opportunity to reveal a possible
strategy to determine eco-safety when exotic natural enemies are introduced in a particular
area as biological control agents for pests but are unable to maintain their populations in
the regions where they are released.

Our study is the first to use the machine learning method MaxEnt to predict suitable
distribution of exotic natural enemies and is the first such study on predatory mites
based on environmental variables. According to the present results, suitable areas of P.
persimilis are located in northern Taiwan as well as in the mountainous areas of eastern
Taiwan. The reason for the failure of the previous four releases could be that the release
took place in unsuitable areas (if occurrence is primarily or only determined by these
environmental factors). Therefore, if the purpose of releasing biological control agents
is to establish a population that will persist in the field, the control agents need to be
released in northern and eastern Taiwan. In addition, temperature and precipitation played
crucial roles in the predicted distribution. This result is consistent with previous biological
studies of P. persimilis, e.g., [27–29], which show that the species thrives in a Mediterranean
climate. We believe that the practical application of machine learning in determining mite
distribution is the first step in the risk assessment of biological control agents. In future
studies, the simulation of all previous cases of introductions of exotic biological control
agents should be conducted to elucidate the factors for establishment, and the findings
of such studies will help reduce the risk of damage by biological control agents to the
environment. In addition, other ecological factors, such as species interactions, should be
part of the risk assessment in the real, complex world.
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