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Abstract: Sensorimotor rhythm (SMR)-based brain–computer interface (BCI) controlled Functional
Electrical Stimulation (FES) has gained importance in recent years for the rehabilitation of motor
deficits. However, there still remain many research questions to be addressed, such as unstructured
Motor Imagery (MI) training procedures; a lack of methods to classify different MI tasks in a single
hand, such as grasping and opening; and difficulty in decoding voluntary MI-evoked SMRs compared
to FES-driven passive-movement-evoked SMRs. To address these issues, a study that is composed of
two phases was conducted to develop and validate an SMR-based BCI-FES system with 2-class MI
tasks in a single hand (Phase 1), and investigate the feasibility of the system with stroke and traumatic
brain injury (TBI) patients (Phase 2). The results of Phase 1 showed that the accuracy of classifying
2-class MIs (approximately 71.25%) was significantly higher than the true chance level, while that
of distinguishing voluntary and passive SMRs was not. In Phase 2, where the patients performed
goal-oriented tasks in a semi-asynchronous mode, the effects of the FES existence type and adaptive
learning on task performance were evaluated. The results showed that adaptive learning significantly
increased the accuracy, and the accuracy after applying adaptive learning under the No-FES condition
(61.9%) was significantly higher than the true chance level. The outcomes of the present research
would provide insight into SMR-based BCI-controlled FES systems that can connect those with motor
disabilities (e.g., stroke and TBI patients) to other people by greatly improving their quality of life.
Recommendations for future work with a larger sample size and kinesthetic MI were also presented.

Keywords: brain–computer interface (BCI); functional electrical stimulation (FES); sensorimotor
rhythm (SMR); adaptive learning; rehabilitation

1. Introduction

Healthy individuals whose brains and neuromuscular systems enable normal motor functions
can naturally perform Activities of Daily Living (ADLs). Nonetheless, for some people who have
disabilities in these functions due to injury or disease, simple tasks become very difficult or impossible
to do. To assist this population, researchers in many fields, from physical therapy to engineering,
have developed various rehabilitation technologies that help them perform ADLs [1,2]. One such
technology, Functional Electrical Stimulation (FES), delivers electrical impulses to either paralyzed or
impaired limbs to generate artificial muscle contraction [3,4]. In this way, FES helps disabled people
perform ADLs such as walking, reaching, and grasping [5,6]. Some FES devices are controlled by
brain–computer interfaces (BCIs), sometimes called brain–machine interfaces.
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In general, BCIs can help people communicate and control devices and applications without
using peripheral nerves and muscle pathways [7]. BCIs are also a potential method to promote
the independence of physically disabled people by means of the BCI’s ability to bypass non-functional
neural pathways [8]. A sensorimotor rhythm (SMR)-based BCI-controlled FES system is a novel
technology that combines the advantages of FES and BCI systems, and allows severely disabled
patients to restore motor functions through the FES system by translating voluntary Motor Imagery
(MI) to physical action [9]. There are many potential benefits of combining SMR-based BCIs and FES
systems, such as the promotion of neuroplasticity [10], the restoration of motor functions by using
voluntary motor intentions [9,11], and providing proprioceptive sensory feedback as a result of their
intentions [12].

Although SMR-based BCI-controlled FES methods seem promising, current studies still have
central issues: (1) ambiguous instruction of MI tasks during training under SMR-based BCI systems, and
(2) difficulties in classifying voluntary MI-evoked SMRs and FES-driven passive-movement-evoked
SMRs when FES is activated. Moreover, (3) only a few studies have examined the feasibility of
classifying two different MI tasks of a single hand, such as grasping and opening, and (4) few studies
have examined human factors and ergonomics (HF/E) perspectives such as subjective mental workload
and user satisfaction in the use of SMR-based BCI-controlled FES systems. This research that is
composed of two phases was conducted to address these issues by developing a new SMR-based BCI
system with visual guidance during training to classify a 2-class MI task in a single hand, as well as
voluntary and passive SMRs (Phase 1), and evaluating the feasibility of the proposed BCI-controlled
FES system by performing sequential goal-oriented tasks with stroke and TBI patients (Phase 2).

The remainder of this article consists of five more sections (this introduction being Section 1):
Section 2 describes a survey of current SMR-based BCI studies for FES systems to identify the limitations
of current research and clarifies the current state of BCI-controlled FES technologies. Section 3
presents Phase 1, where an SMR-based BCI system to control FES was developed and validated
to address the issues on current research studies. Section 4 describes Phase 2, which assessed
the feasibility of the proposed BCI-FES system by conducting a sequential task with fixed order
under a semi-asynchronous mode. Section 5 discusses the findings of the present research along with
implications and future directions.

2. Background

2.1. FES Rehabilitation for Stroke and TBI Patients

Each year, more than 795,000 stroke patients suffer a new or recurrent stroke in the United States,
and 33 million patients suffer strokes worldwide [13]. In addition, 235,000 severe traumatic brain
injuries (TBI) occur in the United States each year, and there are 57 million TBIs worldwide [14].
Many of these patients are susceptible to a combination of significant motor, sensory, and cognitive
deficits [15], and they experience residual functional impairments [16]. For instance, 25% to 62%
of stroke survivors and 77% of severe TBI patients suffer from major physical complications such
as spasticity and muscle weakness [17]. These neuromuscular disorders cause upper and/or lower
extremity impairments, such as hemiparesis or hemiplegia, and they hinder patients from performing
ADLs naturally. For example, between 25% and 74% of the stroke survivors in the United States
(roughly 6.6 million) and worldwide (over 50 million) remain partially or fully dependent on caregivers
for ADLs [16]. For this reason, many research studies and intervention methods for these patients have
been attempted to aid motor rehabilitation, including physical, neurosurgical, and pharmacological
treatments [18].

The physical treatments include repeated range-of-motion exercises [19], thermotherapy [20],
and electrical stimulation [21,22]. Among these physical treatment methods for patients, FES is
a common adjuvant therapy that has been widely adopted as a clinical application [16,23]. Repeated
electrical stimulation could reduce spasticity and improve motor functions in hemiparetic patients [24].
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Conventional rehabilitation (i.e., occupational therapy or OT to help patients with a disability be as
independent as possible in all areas of their lives) with FES treatment showed better rehabilitation
outcomes than OT alone, with respect to reducing spasticity and improving muscle strength and
motor recovery in stroke patients [25]. FES systems also have unique strengths in restoring motor
functions for hemiparetic patients [26]. First, FES systems have advantages over customized orthoses
and exoskeletons because they are lightweight and affordable, and they are universal in terms of
the body shape and size of body parts they can accommodate [27]. Other advantages of FES treatment
include the promotion of motor learning and neural reorganization [4,28]. The importance of the FES
treatment is that cortical activation could be facilitated by forcing the patients to practice with impaired
extremities, which patients do not tend to use due to difficulties [29]. Moreover, the psychological
benefits of utilizing FES rehabilitation, such as increasing self-esteem and reducing depression [30].
Therefore, studies have been conducted with FES for the motor function restoration of stroke and TBI
patients [21,31].

The FES methods can be applied to various body parts, such as the foot [25], shoulder and
elbow [32], and forearm [33]. Among them, the restoration of hand function is one of the most
important things for patients’ independence in performing ADLs such as feeding, dressing, bathing,
and making transfers [34]. Further support for the importance of the hand function were found
in [18]. The authors quantified the number of studies of each intervention target and found 115 studies
concerning hand and arm functions, as well as 9, 14, and 68 studies for sit-to-stand, standing balance,
and gait rehabilitation for lower limbs, respectively.

The FES system can be activated by either push button control, cyclic programs, or the patient’s
effort [10,22]. However, when FES is controlled by either automated cyclic programs or physical
therapists, the patient’s intention and effort is decreased. This means that the restoration of motor
functions is not directly involved in the central nervous system, but it is passively initiated by other
factors rather than a patient’s effort. In this case, the neuroplasticity of the patient, which is important to
benefit rehabilitation, may not be promoted well due to the lack of synchronization between a patient’s
effort and physiological feedback. Neuroplasticity occurs throughout the central nervous system [8],
and it is defined as the ability of the human brain to alter its structure in response to environmental
demands [35]. Many research studies show the evidence of a positive effect on rehabilitation outcomes
when the patient’s intentions are synchronized with the physiological feedback. [36] showed that
receiving OT and FES treatments with electromyographic (EMG) biofeedback improved upper extremity
function significantly more than receiving only OT and FES.

2.2. SMR-Based BCI-Controlled FES Systems

BCI is “a communication system in which messages or commands that an individual sends to
the external world do not pass through the brain’s normal output pathways of peripheral nerves
and muscles” ([7], p. 769). BCIs are a potential method to promote the independence of disabled
persons because of the BCI’s ability to bypass non-functional neural pathways [8]. In particular, to
support patients’ mobility and accessibility, a diverse set of BCI applications has been developed,
such as BCI-controlled wheelchairs, orthoses, prostheses, and exoskeletons [37–45] using various
brain imaging technologies (e.g., electroencephalography (EEG), magnetoencephalographic (MEG),
functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and
positron emission tomography (PET)) [46,47]. Among the various brain imaging methods, the EEG
method has been most well-studied because of its advantages such as low prices, convenience, mobility,
large cortical coverage, and high temporal resolution compared to other methods [48].

One of the most studied BCI systems is SMR-based BCIs, which utilize MI, an imagined
rehearsal of a motor act without any overt movement [49]. SMRs induced by MIs are characterized
by (de)synchronization in the alpha and beta frequency bands over the bilateral, contralateral,
and ipsilateral motor cortex areas [50,51]. In 1977, Pfurtscheller first introduced the terminology
Event-Related Desynchronization (ERD) to describe event-related attenuation in the EEG signal [52]. He
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then added the term Event-Related Synchronization (ERS) to explain event-related enhancement [53].
These SMR features, ERD and ERS, have been widely employed to decode different MIs, such as left
or right-hand motor intention [54]. SMR-based BCIs allow users who have severe motor disability
(e.g., the paralyzed) to control physical or virtual devices by decoding their motor intention or motor
imagery (e.g., squeezing the left hand or the right hand to move a mouse cursor on the computer
screen to the left or the right, respectively) using SMRs induced by the motor imaginations [9].

Combining SMR-based BCIs and FES systems to help severely or completely paralyzed patients
is a new approach. This combination could not only restore motor functions [9], but it also has
the potential to facilitate neuroplasticity by performing MIs [10]. Furthermore, BCI-controlled FES
systems can provide the result of the imagined motion through proprioceptive sensory feedback [12].
For instance, [55] utilized the brain signals to trigger FES during index finger movement training, and
the participant showed the recovery of the volitional isolated index finger movements. In addition, [56]
applied an SMR-based BCI-controlled FES system to perform dorsiflexion of the paralyzed ankle in
a patient with stroke. The authors reported a promising result in that both the amplitude of EMG in
the affected tibialis anterior muscle and the range of movement at the ankle joint significantly increased
with the SMR-based BCI-controlled FES system in comparison with FES alone. [10] compared five
different interventions, such as (1) BCI-controlled FES, (2) EMG-controlled FES, (3) conventional push
button-controlled FES, (4) voluntary grasping, and (5) BCI-guided voluntary grasping with 10 healthy
participants to investigate the effects on neuroplasticity. More support for the use of SMRs induced
by MIs as promising interventions to improve motor function rehabilitation in stroke patients was
found in [57]. There were also many studies showing positive outcomes in using SMR-based BCIs for
the rehabilitation of patients with severe motor impairments [8,58].

2.3. Limitations of Current SMR-Based BCIs for FES

Although SMR-based BCI-controlled FES systems seem promising for the rehabilitation of patients
with stroke and TBI, there are still three main limitations in recent research studies. Firstly, most
of the current research studies have not clearly described the procedures of MI training in the BCI
systems. Brain signals vary not only from person to person, but within the same person due to
the non-stationarity of brain signals [59,60]. Thus, machine learning techniques with a set of training
procedures have been adopted to improve BCI performance [61]. Although there are many studies
that have strived to reduce the training period [62], SMR-based BCI systems still require relatively
longer training than other BCI technologies, such as steady-state evoked potential or Event-Related
Potential (ERP). In addition, since MI tasks to evoke SMR are mental imaginations that do not involve
physical feedback, experimenters or physical therapists cannot know whether the patient is properly
performing the MI tasks. To address these issues, users should be provided with clear MI procedures
for easy and efficient training. However, only a few research studies focus on these issues [63,64].

Secondly, SMR-based BCIs using EEG signals currently have limited ability to classify two
different MIs in a single hand, such as grasping and opening, due to the low accuracy of the current
classification algorithms [9]. Some SMR-based BCI studies have classified two different motor functions
in a single hand by applying contralateral MIs, such as a right-hand MI for grasping and a left-foot
MI for extension. However, this approach may be not able to facilitate neuroplasticity completely
due to unnatural control. It is also difficult to distinguish between voluntary MI-evoked SMRs and
FES-driven passive-movement-evoked SMRs, because both conditions elicit similar brain activity [50].
This result implies that it is difficult to stop or keep electrical stimulation by using SMR features
because brain signals contain voluntary MI-evoked SMRs or passive motion-evoked SMRs mixed with
strong electrical artifacts.

Lastly, due to the lack of functionality of off-the-shelf FES units, it is difficult to produce natural
motor functions. Many commercially available FES systems have only two or four electrodes to deliver
electrical stimulation, so the application of electrical stimulation to multiple muscles and nerves for
natural hand and wrist movements is limited. Beyond this, only a few FES systems support real-time
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computer control that is essential for synchronizing MI-evoked brain signals and FES-driven physical
feedback. Although some medical and research purpose-built FES systems support multi-channel
electrodes and real-time control, these systems are either expensive or not commercially available in
the United State.

3. Phase 1: Development and Evaluation of an SMR-Based BCI

3.1. Objectives and Hypotheses

The objective of Phase 1 was to address four main limitations of current research studies, as
identified in the literature review: (1) unstructured SMR training guidelines; (2) the lack of studies that
classify a 2-class MI task in a single hand; (3) the lack of studies utilizing voluntary motor intentions to
stop FES; and (4) unclear frequency band selection for SMR. Specifically, a synchronous, cue-based
BCI experiment was conducted with stroke and TBI patients to address the following questions:
(1) Is it feasible to classify a 2-class MI task such as grasping or opening in a single hand? (2) Is
it feasible to use SMR features evoked by voluntary MI to stop or keep FES? (3) What effect does
the existence of electrical stimulation have on task performance? (4) Will the ensemble algorithms
increase the classification accuracy when compared to traditional classification algorithms such as
Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM)? The following hypotheses
were formulated to answer the research questions:

Hypotheses 1.1 (H1.1): The classification accuracy to classify a 2-class MI task in a single hand will be
significantly higher than the true chance level.

Hypotheses 1.2 (H1.2): The classification accuracy to decoding voluntary MI-evoked SMRs and FES-driven
passive-movement-evoked SMRs will be significantly higher than the true chance level.

Hypotheses 1.3 (H1.3): The classification accuracy of the ensemble method will be significantly higher than
that of the LDA and SVM algorithms.

3.2. Methods

3.2.1. Participants

A total of eight stroke patients (three females; mean age or M = 46.0 ± 13.5 years) were recruited
from local rehabilitation centers and clinics. All studies were reviewed and approved by the Institutional
Review Board of North Carolina State University. The participants received monetary compensation
for participation, and any participants who were displeased during the studies could cease at any time,
but no one had chosen to withdraw the study until the studies were complete. The inclusion criteria in
this study were (1) suffering from upper limb hemiparesis, weakness on one side of the body, the most
common impairment after stroke or TBI; (2) in the chronic state of stroke, the condition of a stroke
patient persisted without recurrent strokes for more than three months, to prevent the potential risk of
recurrent stroke, and (3) having normal sensitivity to feel pain and discomfort on the impaired forearm.

3.2.2. Visually Guided Instructions for MI Tasks

Since MI tasks do not involve physical movements, it is difficult for the experimenter to know
whether the participant is performing MI tasks in the correct way. To address this issue, clear
instructions are required to help participants during training. Thus, video clips were provided in this
study as a visual guideline for MI tasks, and participants were asked to follow the movie clips to train
them in becoming familiar with the MI tasks.

The visual guideline consisted of two video clips to represent Slow One-time Grasping (SOG)
and Fast Cyclic Opening (FCO). The video clip of SOG displayed a slow one-time grasping for three
seconds (1/3 Hz) starting at a neutral position with a straight hand and wrist, while that of FCO showed
a three-time repetition of an opening motion (from a grasping position) for three seconds (1 Hz).
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Then, participants were asked to imagine each motion depicted in the video clip as similar as possible.
The two different rhythmic motions used in visual guidance were intended to classify a 2-class MI
task in a single hand utilizing distinct SMR features evoked by different rhythmic MIs [65,66]. These
video clips were displayed on a 21-inch liquid-crystal display (LCD) monitor located approximately
42 inches in front of participants, and the centerline of the monitor was set within 10 degrees of eye
level to follow the guideline of viewing distance and screen size, and viewing angle for individuals,
respectively [67].

3.2.3. Procedure

FES electrodes were placed on the adequate coordinates with the user-specific FES parameters
identified [68]. Then, the anti-static wrist strap was applied to the opposite hand of the affected forearm
with the FES electrode to ground out the electrical stimulation. Afterward, the participants were then
asked to wear an EEG cap with 32 active EEG electrodes (g.tec medical engineering GmbH, Graz,
Austria). When the FES and BCI systems were ready, participants were given detailed explanations
of the synchronous experiment and were instructed on how to perform the MI tasks according to
the visual guideline shown on the monitor.

The experiment in Phase 1 consisted of five sessions with 24 trials per session, and there was
a three-minute break between sessions. Each trial lasted 12 s and consisted of a rest period (2.5 s),
a reference period with cues (2.5 s), an MI period (3 s), an FES initiation period (1 s), and a feedback
or FES period (3 s), as shown in Figure 1. During the rest period, the screen showed only the gray
background without any image, and an auditory cue (“take a rest”) was played at the beginning of
the rest period. Participants were required to remain calm during this period to stabilize EEG signals.
Then, the reference period was followed by a cross fixation screen and an auditory cue (“ready”) at
the beginning of the period, and the visual (text) cue and the auditory cue for either “slow grasping” or
“fast opening” were presented at the end of the reference period. The participants were asked to focus
on the screen to be ready for MI tasks. Afterward, the MI period was successively given to participants
with the visual guideline of SOG or FCO for three seconds. During this period, the participants were
asked to mimic MI tasks as close as possible by following the visual cues. After the MI period, the FES
initiation period lasted for 1 s, during which the FES system activated the same motion to the subjects’
affected forearm as presented in the visual guideline. In this period, the current amplitude of FES was
gradually increased by utilizing the ramp time function to improve user satisfaction. At the end of
the FES initiation period, the feedback period was successively given to the participants. In this period,
the participants were required to keep or stop the MI tasks given in the feedback period according to
auditory cues such as “keep imagination” or “stop imagination”, respectively.

In the MI period, participants conducted a total of 120 trials including 60 trials for each SOG and
FCO, while they performed 60 trials for either keep or stop MI tasks in the feedback period. All trials
were pseudo-randomized so that the number of trials for different conditions were balanced with each
combination. The total time of the experiment was around 40 min, and the completion time of Phase 1
was 60 min, including the setup time.
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Figure 1. Schematic illustration of the experiment procedure. Text in the blue box indicates the auditory
cue that played at the beginning of each period, and INI is an abbreviation of the Functional Electrical
Stimulation (FES) initiation period. MI: Motor Imagery.

3.2.4. Signal Acquisition and Processing

Signal acquisition: EEG signals were measured from 32 active electrodes (e.g., AFz, F7, F3, Fz, F4,
F8, FC5, FC3, FC1, FC2, FC4, FC6, T7, C5, C3, Cz, C4, C6, T8, TP7, CP5, CP3, CPz, CP4, CP6, TP8, P3,
P4, PO3, PO4, O1, and O2) with the ground at Fpz and the left earlobe reference. EEG signals were
sampled at 256 Hz via two g.USBamp biosignal amplifiers (g.tec medical engineering GmbH, Austria),
and notch-filtered at 60 Hz to remove electrical mains hum in the United States with the BCI2000
system. For details, see [69]. Then, the recorded EEG signals were divided into three subsets for
further analysis as follows: (subset 1) the reference and MI period for ERD/ERS and Common Spatial
Pattern (CSP) analyses to detect the existence of MI-induced SMRs when FES was not being applied;
(subset 2) the MI period for the CSP method to classify a 2-class MI task in a single hand, and (subset 3)
the feedback period for the CSP analysis to decode the existence of SMRs when FES was being applied.
The CSP method transforms multi-channel EEG data into a subspace using a variance matrix that can
maximize discrimination between two classes (i.e., two motor imageries, C1 and C2) [for details, see
74]. For example, the normalized covariance matrix was calculated from

CC1 =
XC1XT

C1

trace
(
XC1XT

C1

) , CC2 =
XC2XT

C2

trace
(
XC2XT

C2

) , Cc = CC1 + CC2 (1)

where trace (XCxXCx
T) is the sum of diagonal elements of (XCxXCx

T). Afterward, the composite spatial
covariance, C, and projection matrix, W, were calculated from Cc = CC1 +CC2 = UcλUT

C W = UT
√
λUT

C,
where Uc is a matrix of normalized eigenvectors, and λ is eigenvalues. Then, the projection matrix W
transformed EEG signals into two CSP features.

Signal preprocessing: Once the brain signals were recorded, noise, artifacts, and other irrelevant
brain signals were filtered out. EEG signals were visually inspected for unexpected EEG contamination
usually caused by body movements and electrode drifts during the experiments, and those trials were
excluded from further processing. In addition, EEG signals were filtered by an automatic artifact
rejection toolbox from the EEGLAB. For details, see [70,71]. The rejection thresholds were set at
150 µV for the large fluctuation threshold and 3 standard deviations for the probability threshold
of entropy and kurtosis. The remaining trials were then band-pass filtered between 1 and 29 Hz to
remove irrelevant brain signals such as muscle artifacts. Afterward, principal component analysis
(PCA) was applied to the filtered EEG signals to project high-dimensional data (32 channels) into
lower dimensions while maintaining important brain features. After applying PCA, eigenvectors and
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eigenvalues of a covariance matrix were generated. Among all eigenvalues, the first few components
that could explain 95% of variance were selected with the assumption that the important brain features
are contained in those few components. This procedure not only addresses the high dimensionality
issue but also helps to speed up an independent component analysis (ICA) decomposition process by
reducing the dimension of the EEG signal.

The reduced dimensional EEG signals after the PCA procedure still mixed with irrelevant
independent components such as eye-blinking artifacts and visual stimulus-evoked potentials. Thus,
an ICA method was applied to retain only the relevant independent components by removing irrelevant
components. After the ICA decomposition process, the EEG signals were decomposed into maximally
independent components, and the artifact (irrelevant) components could be identified by plotting
each independent component in a component activity time course and a topographical map. After
removing the artifact-related components, EEG signals were projected back with the whitened data.
Finally, the surface Laplacian estimation was applied to the EEG signals between the reference and MI
periods (EEG subset 1) to enhance the spatial EEG traces of the ERD/ERS procedure [72].

Feature Extraction: After the signal preprocessing procedure, two feature extraction methods
were utilized, including ERD/ERS [73] and CSP methods [74]. The ERD/ERS method was applied
only to EEG subset 1, while the CSP was analyzed for all three EEG subsets. To compute ERD/ERS,
the preprocessed EEG subset including both SMR and reference periods was band-pass filtered with
a width of 4 Hz by FIR filter (For details, see [75]). Then, the EEG signals were divided into seven
sub-bands from the first sub-band bin, [1–5] Hz, to the seventh sub-band bin (for details, see [25–29]),
Hz, with 4 Hz intervals. Afterward, the EEG data of each sub-band bin were transformed from
time-domain data to frequency-domain data by using Fast Fourier Transform (FFT) with the Hamming
windowing method for 2.5-s data epoch (640 data points). Afterward, the relative band power of each
sub-band bin, ERD/ERS, was computed with the value of FFT in the reference period and that in the MI
period for each trial by following [76].

The three EEG subsets were analyzed with the sub-band CSP (SBCSP), which can project
a multidimensional EEG dataset into a low-dimensional subspace. SBCSP allows to decompose the EEG
subsets into seven sub frequency bands by following the same procedure utilized in the ERD/ERS
method. From each sub-band bin, the eigenvalues were calculated and utilized to determine the best
feature from the projected EEG matrix. Then, the features from SBCSP were utilized to increase
the subsequent classification accuracy by fusing the classification scores of each sub-band feature.
The advantages of SBCSP include (1) not requiring an exhaustive band selection procedure and (2)
allowing the use of multiple frequency bands at the same time [77].

Classification: Three different classification algorithms, Fisher’s LDA, SVM, and ensemble
methods, were tested to identify the best classification algorithm and classifier parameters. Many BCI
studies have reported good classification outcomes with LDA, as well as have validated these methods
as among the most suitable algorithms for SMR feature classification [78]. For the SVM classification
algorithm, the kernel function used quadratic components to cover non-linear characteristics in the brain
signal, and the least-squares method was applied to find the separating hyperplane. The ensemble
method by combining the outputs of the LDA and SVM classifiers was also evaluated to test hypothesis
1.3, and the final decision of the ensemble method was made with the weighted majority voting by
combining the decisions of LDA and SVM, as well as by combining the features of each classifier [79].
Each EEG subset was uniformly divided into 10 sub-datasets to apply a 10-fold cross-validation
method [80]. Nine sub-datasets were used as training datasets to build a classification weight vector,
and the remaining one sub-dataset was utilized as a test dataset to calculate the classification accuracy.

3.2.5. Independent and Dependent Variables

Two independent variables (IVs) were manipulated including a period type and a classification
type. The period type had three levels, including SMR, ACT, and FES periods, and each period had
different roles as follows; (1) SMR period: detecting the existence of an MI-induced SMRs when FES
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was not being applied; (2) ACT period: classifying a 2-class MI task in a single hand, and (3) FES
period: decoding the existence of SMRs to control FES when FES was being applied. The classification
type had three levels for all periods such as LDA, SVM, and ensemble methods.

Accuracy (%) was measured as a dependent variable (DV), which is the ratio of the correct
classifications over the number of trials [45]. The results from 10-fold cross-validation for each period
were averaged to calculate the accuracy with three classification types [80]. Since the experiment
in Phase 1 was a balanced 3 × 3 within-subjects factorial design with two IVs (period type and
classification type) with participant as a blocking variable and one DV (accuracy), a univariate
ANOVA was used. Prior to conducting two-way ANOVAs on the accuracy data, the assumptions
of both homoscedasticity and normality of residuals were assessed in JMP® (SAS institute Inc.,
Cary, NC, USA). The results of the Shapiro–Wilk test for normality (W = 0. 982593, p = 0.4207) and
Brown–Forsythe test for homoscedasticity (F8, 54 = 0.7150, p = 0.6773) showed that the data did not
violate the ANOVA assumptions.

3.3. Results: Accuracy (%)

Table 1 shows the accuracy of each period and classification method. The period consists of
the SMR, ACT, and FES period, while the classification method includes LDA, SVM, and the ensemble
method. The accuracy was calculated by averaging the 10-fold cross-validation results as defined before.

Table 1. Accuracy of each period and classification methods (%).

SMR Period ACT Period FES Period

LDA SVM Ensemble LDA SVM Ensemble LDA SVM Ensemble

S01 56.29 56.31 59.17 64.04 65.45 69.51 46.29 50.52 48.03
S02 74.31 73.97 76.03 70.23 67.99 73.94 53.71 63.18 58.71
S03 74.28 74.68 76.44 69.30 68.07 70.26 60.00 66.67 62.50
S04 84.06 81.92 83.62 66.40 67.50 70.15 55.05 54.38 53.55
S05 67.90 64.92 67.50 58.75 63.07 64.24 54.85 60.23 55.83
S06 67.23 65.51 68.04 70.27 73.64 76.59 53.33 62.73 61.74
S07 75.48 78.23 79.11 66.52 70.27 73.91 58.64 59.85 60.91
S08 75.00 74.50 78.00 70.20 70.02 71.43 73.00 72.18 74.00

Mean 71.82 71.26 73.49 66.96 68.25 71.25 56.86 61.22 59.41
SD 7.61 7.81 7.42 3.78 2.99 3.49 7.20 6.33 7.13

FES: Functional Electrical Stimulation, SMR: sensorimotor rhythm. SD: standard deviation

The results showed that the average accuracies between three periods were significantly different
(F2, 56 = 47.8111; p < 0.00001; ηp2 = 0.63066), but the main effect of classifier types and interaction were
not significant. Tukey’s honest significance test (HSD) was tested to determine significant differences in
the main effects of the MI period. The results showed that the average accuracy of the SMR period was
significantly higher than that of the ACT period, and that of the ACT period was significantly higher
than that of the FES period. Furthermore, the results of the t-test showed that the average accuracy
of the ACT period (68.82%; t23 = 4.10, p < 0.001) was significantly higher than the true chance level
(57.43%), but the FES period (59.16%; t23 = 1.17, p = 0.2558) was not significant. Tukey’s HSD was also
tested to determine significant differences in the main effects of classifier type. Although the average
accuracy of the ensemble method was higher than others, the results of the statistical analysis showed
that the average accuracies between classifiers were not significantly different.

3.4. Discussion

As expected, the results of statistical analysis showed that the classification accuracy of a 2-class
MI task was significantly higher than the true chance level. Therefore, the hypothesis H1.1 was rejected
in favor of the alternative hypothesis, which states that the classification accuracy to classify a 2-class
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MI task in a single hand is significantly higher than the true chance level. This result could be extended
to any SMR-based BCI system, as well as other SMR-based FES-BCI systems. The results of statistical
analysis also showed that the accuracy of the FES period was not significantly higher than the true
chance level. Therefore, the hypothesis H1.2 was not rejected. The reasons for these results are as
follows. First, the duration of the FES period might be too short to stabilize the excited brain signal due
to electrical stimulation. Second, electrical artifacts from the FES might be not completely grounded by
the anti-static wrist strap applied to the opposite hand of the affected forearm with the FES electrode.

The results of the classification type showed that the average accuracy of the ensemble method
was higher than other methods, but statistical analysis showed that the difference between classification
types was not significant. One possible reason is that the accuracy of classification among subjects
showed a large variation due to the difference in individual ability. To address this issue, the accuracy
of classification was standardized within participants, and ANOVA analysis was conducted again.
The results of ANOVA showed that the standardized accuracy between classification types was
significantly different (F2, 56 = 3.347; p = 0.0424; ηp2 = 0.10677). Therefore, the modified hypothesis of
H1.3 was rejected, which means that the standardized classification accuracy of the ensemble method
is significantly higher than that of LDA. Finally, two classification features including the user-specific
classifier parameter set and a probability weight for the ensemble method were constructed.

4. Phase 2: Feasibility of the Proposed BCI-FES System

4.1. Objectives and Hypotheses

The objective of Phase 2 was to evaluate the feasibility of the proposed BCI-controlled FES system
by addressing the following questions. (1) Is it feasible to use the proposed SMR-based BCI-controlled
FES system in an online experiment? (2) Does the existence of electrical stimulation affect task
performance? (3) Does the application of adaptive learning affect task performance? More specifically,
the following hypotheses were formulated to answer the research questions.

Hypotheses 2.1 (H2.1): The classification accuracy will be significantly higher than the true chance level.

Hypotheses 2.2 (H2.2): Task performance between two periods, the No-FES period and the Yes-FES period,
will be significantly different.

Hypotheses 2.3 (H2.3): Task performance after applying adaptive learning will be significantly greater than
before.

4.2. Methods

4.2.1. Participants

The same patients who participated in Phase 1 continued this experiment either after a 20-min
break or when the participants felt ready. Any patients who were displeased with the experiment
could cease at any time, but no one had chosen to withdraw.

4.2.2. Experimental Task and Modes

To mimic ADLs, participants were asked to hold, move, and release a small ball from an
initial position to a target position by utilizing the proposed SMR-based BCI-controlled FES system.
The initial and target positions of the ball were set within the comfortable distance in front of participants.
The distance between the initial and the target position was set to 10 cm. There were two different
modes of the experiment that are mainly applied in BCI studies [81]. The first mode is a synchronous,
cue-based experiment that is the same type of experiment as that performed in Phase 1. In this type of
experiment, the participants are usually provided with visual, auditory, or tactile cues and perform
tasks accordingly in a fixed time interval. Afterward, through the offline analysis, the measured
brain signals are divided into groups according to the cues, and the brain features representing each
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group are extracted. Then, classifier parameters are generated to best distinguish each group based on
the features. The second mode is an asynchronous, self-paced experiment where the users perform
a task at their own pace rather than following the cues. The advantage of the asynchronous experiment
is that the BCI system can be more realistic and flexible, because it allows the user to perform the desired
operation at his/her own pace [82]. It would be very useful for patients to be able to control the impaired
body solely through MIs. However, since it is difficult to know when the user performed MI tasks,
the asynchronous mode has a critical issue such that the classification accuracy is low due to the high
false positive ratio [83]. Due to the low accuracy of the MI tasks because of the high false positive ratio,
it is somewhat difficult to perform experiments on patients in a completely asynchronous situation.
As a result, asynchronous BCI research has not been studied as much compared to synchronous BCI
research [60].

More training in synchronous experiments could help to solve this issue, but long-lasting BCI
training is not easy for participants with impaired physical conditions (and/or mental conditions such as
attention deficits after stroke and TBI), since it requires participants to sit down and focus on repetitive
mental tasks while minimizing movement. Furthermore, the results of synchronous experiments are
not always guaranteed to be the same results as those of asynchronous experiments. This is due to
cue differences (Yes versus No), analysis time differences (fixed versus variable), and the nature of
brain signals that have non-stationarity and inter- and intra-variability [84]. Alternatively, we can
consider increasing the accuracy through more practice in the same environment as the asynchronous
mode, but there are also the following issues. First, it is difficult to know when the patient has
successfully performed MIs, as knowing this information is essential to categorize the EEG signals into
the two groups (Yes-SMR versus No-SMR) to initiate the FES system. Second, if the errors, either false
positive or false negative, are accumulated, the participants will be easily confused and frustrated.
Finally, an additional time required to correct the erroneous movements will increase the duration
of the experiment, and we should take into consideration that prolonged FES may increase muscle
fatigue in patients.

Thus, Phase 2 used a semi-asynchronous mode for performing a fixed sequence. This mode has
three important features that combine the advantages of both synchronous and asynchronous modes
as follows: (1) a fixed sequence of tasks to clarify what the user needed to do, (2) error-free results to
prevent participants from being confused or exhausted, and (3) initiating the FES system by detecting
SMRs similar to the asynchronous mode. Under the proposed semi-asynchronous mode, participants
would be free from confusion and frustration while using the SMR-based BCI-controlled FES system at
their own pace. Furthermore, the experimenter can enhance the classification performance by adjusting
the classifier parameters using the most recently measured brain signals under this mode, which is
also known as adaptive machine learning [85,86].

4.2.3. Procedure

Participants were asked to conduct the fixed sequence MI tasks according to a specific goal.
The BCI tasks consisted of (1) opening the hand with FCO MIs similar to the previous study; (2)
stopping the FES system by not imagining any action similar to “stop imagination”; (3) grasping a ball
with SOG MIs; (4) moving the ball to the target position without going through the BCI system, and (5)
holding the ball on the target position by continuously imagining SOG. In this experiment, patients
were asked to perform all tasks as quickly as possible, except the ‘holding the ball’ task, which should
last as long as possible, using the appropriate MIs trained in the previous experiment (see Figure 2).

In Figure 2, the colored boxes represent the tasks that the participant should perform through
the BCI system, and the white boxes represent the tasks that the participant was asked to perform
without using the BCI system. The green boxes on the left indicate MI tasks without FES, and the blue
boxes in the middle show the tasks performed under FES. The following describes each step that
participants were asked to perform in detail.
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Step 1—Open a hand: First, participants were asked to perform the opening MI task by imagining
FCO trained in the previous experiment. Once the BCI system detected an FCO-related SMR, the FES
system was activated for an opening motion of 5 s. If the system did not detect the FCO-related SMR
in the maximum analysis time (6 s), then the system was automatically started so that the experiment
time did not increase excessively. Afterward, the participants were asked to move their hand near
a ball to be ready to grab.

Step 2—Stop FES: After five seconds, the participants were asked to stop the FES system as soon
as possible without imagining any motion similar to “stop imagination” in Phase 2. When the BCI
system detected the absence of MI, the FES system stopped working. To prevent excessive muscle
fatigue and discomfort, if participants could not stop the FES system in the maximum analysis time,
the system automatically stopped operating. Then, participants were given a 10-s break to stabilize
excited brain activity from the physical movements and electrical stimulation, and the BCI system also
stopped classifying brain signals during the break.

Step 3—Grab a ball: After the break, the participants were asked to conduct the SOG MIs to grab
the ball. If an SOG-related SMR was detected, the FES system was activated for grasping motion for 5 s,
and they were asked to move the ball to the target position within 5 s. Similar to Step 1, if the system
did not detect the SOG-related SMR in the maximum analysis time, then the system automatically
initiated a grasping motion.

Step 4—Hold the ball: After the participants had moved the ball over to the target position,
they tried to keep holding the ball for another 5 s. To hold the ball, the grasping SMR should be
maintained when FES was activated for grasping. If the grasping SMR was successfully maintained
during the maximum analysis time, the FES system automatically stopped for safety. This was the task
sequence of this experiment necessary to complete one trial.

Participants were asked to conduct two sets of the sequential tasks in each trial, which lasted until
all tasks were finished. A total of 20 trials were conducted during the experiment. The completion
time varied due to the different performance levels between participants, but the average completion
time was around 40 min.

4.3. Signal Acquisition and Processing

Signal Acquisition and Preprocessing: The signal acquisition and preprocessing procedures were
identical to Phase 1 except for the artifact removal and ICA procedure, because these procedures
require additional computational times and visual inspections that are not suitable for real-time
experiments [87].

Feature Extraction and Selection: CSP and ERD/ERS features used a user-specific CSP projection
matrix and ERD/ERS weighted matrix obtained as the results of Phase 1.

Classification: For the online classification, the ensemble method was utilized, as the results of
the previous study showed that performance of the ensemble method was significantly higher than
the LDA method. During the experiment, EEG signals were categorized as three periods similar to
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Study 1, including the SMR period (to detect the SMR features to initiate the FES system), the ACT
period (classifying different MIs including grasping and opening), and the FES period (to either keep
or stop the FES system). One difference was that the incoming signal was the same, but the role
was changed according to the current goal. For example, if the current status is to try to perform
opening a hand, then the current period is defined as the SMR period. If the SMR feature is detected,
then the role of the same EEG dataset is changed to the ACT period. Therefore, detecting SMRs and
classifying a 2-class MI task are performed sequentially. However, if SMR-related brain features are
not detected, the current role is not changed, and the SMR period is maintained. On the contrary, if
a target role of either grasping or opening is not detected during the ACT period, then the current
status is set back to the SMR period. When the BCI system detects only the target role from the ACT
period, the FES system is activated according to the decision from the BCI system.

Adaptive Learning: When participants completed the first 10 trials, the adaptive learning method
was applied to adjust classifier parameters. Many different adaptive learning methods are available,
and the advantages and computational time of each method vary. More elaborate adaptive learning
methods might yield higher accuracy, but they require more computational time. Adaptive learning
methods can be divided into two groups, supervised and unsupervised learning. As [85] recommended
due to ease and good performance, the Pooled mean (PMean) adaptive estimation method was
chosen. Since this method is the unsupervised adaptive learning method, it can also be utilized in
the asynchronous mode. The PMean estimation can be determined as follows:

µt = (1− η)µt−1 + ηxt, ωOt = −ω
T(µt) (2)

where W0t = the bias of the classifier at trial, η = the updating coefficient (0.1), and xt = the new feature
obtained at trial t.

4.4. Independent and Dependent Variables

Two IVs were manipulated: FES existence type (No-FES versus Yes-FES) and learning type (before
learning versus after learning). The FES existence type indicates the existence of electrical stimulation
during MI tasks, and it has two levels: No-FES (opening and grasping, steps 1 and 3, respectively) and
Yes-FES (stop and keep, steps 2 and 4, respectively). The learning type indicates the application of
the adaptive learning method during the experiment, and the learning type also has two levels: before
learning and after learning.

DVs such as task performance (completion rate, accuracy), sensitivity, information transfer rate,
and subjective assessment were measured. Task performance and subjective assessment were then
statistically analyzed with ANOVA tests. Before conducting ANOVA, two parametric assumptions
were assessed in JMP® (SAS institute Inc., Cary, NC, USA), similar to Phase 1. ANOVA assumptions
were not violated (Shapiro–Wilk test for normality: W = 0.957758, p = 0.2383; Brown–Forsythe test
for homoscedasticity: F3, 28 = 0.0692, p = 0.9759). Thus, a two-way ANOVA was conducted to test
the main effects of two IVs (FES existence and learning) and their interaction effects on one dependent
variable, accuracy.

Task Performance: (1) Completion rate (%)—A completion rate is defined as how quickly
grasping, opening, and stopping FES operation have been performed, or how long it has lasted during
the keep-FES task [88,89]. For example, the completion rate will be 100% if the predetermined MI tasks
to be performed succeed in only one attempt (0 s). However, if the target SMR cannot be performed
before the maximum analysis time (6 s), the completion rate would be 0%. On the contrary, in the case
of performing the keep-SMR task, the SMR must be maintained for 6 s, the maximum analysis time, to
achieve 100% completion rate. (2) Accuracy (%)—The successful task implies that the MI tasks were
performed without error. However, in the case of semi-asynchronous and asynchronous experiments
rather than time-locked and cue-based experiments, the definition of error is not clear. This is because
if the operation does not occur because the SMR-related features are not detected during the SMR
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period, it is a delay rather than an error requiring additional work to be corrected. In addition, due to
the nature of the asynchronous experiment, it is difficult to distinguish whether the delay is intended
due to a failure to implement MIs. However, from another point of view, it is difficult to define this as
a successful task performance if the delay caused by MI induction failure is long enough to affect BCI
performance. Therefore, the accuracy in this experiment was defined as follows. (1) If an incorrect
decision was made during the SMR period (i.e., no SMR was detecting), then it belongs to a delay until
the maximum analysis time (6 s). (2) If an incorrect decision was made during ACT (i.e., the target
action was ‘opening’, but classified as ‘grasping’, and vice versa), then it belongs to an error. (3) If an
incorrect decision was made during the FES period (i.e., the action should be ‘keep’, but it was classified
as ‘stop’, and vice versa), then it belongs to an error. The structure of the classification algorithms
utilized in this phase also agree on this argument, because even if it fails to detect the SMR function,
it is not necessary to correct this error, but only a delay of 1s occurs. (3) Information Transfer Rate:
Many BCI studies have utilized Information Transfer Rate (ITR) to evaluate the performance of BCI
systems, which can convey the amount of information per time (bits/minute) in terms of the accuracy
and speed [90].

Subjective Assessment: Participants were asked to complete the NASA Task Load Index (NASA-TLX)
questionnaire to measure the subjective mental workload, which is the same as in Phase 2 [91]. Then,
the results of studies were analyzed to compare changes in the subjective mental workload between
the two experiments.

4.5. Results

4.5.1. Task Performance

Table 2 summarizes the completion rate of each task. As the goal of ‘keep FES’ was to maintain
grasping FES as long as possible by continuing SOG MI tasks, the completion rate of ‘keep FES’ was
calculated. The results showed that the average completion rate of each task including ‘grasping’,
‘opening’, ‘keep FES’, and ‘stop FES’ were 55.94%, 53.44%, 62.08%, and 57.71%, respectively. There
were some excessive values between subjects. For example, the completion rates of the ‘opening’ action
for subject ‘S04′ and ‘S03′ were 93.3% and 29.2%, respectively. Furthermore, within the participants,
there were large variations in the completion rate. For example, Subject ‘S04′ showed the highest
completion rate (95%) for the ‘stop FES’ task among all the participants, but that for ‘keep FES’ was
the lowest completion rate (13.3%). The average completion rate for the ‘keep FES’ task was lower
than other values, and the reason is that the ‘keep FES’ task required six successive successes to obtain
a 100% completion rate, while other tasks only needed the first-time success.

Table 2. Average completion rate for each task (%).

Grasping Opening No-FES Keep Stop Yes-FES Grand

Average Average Average

S01 71.7 70.8 71.3 31.7 68.3 50.0 60.6
S02 71.7 60.8 66.3 26.7 70.0 48.3 57.3
S03 38.3 29.2 33.8 40.0 84.2 62.1 47.9
S04 42.5 93.3 67.9 13.3 95.0 54.2 61.0
S05 78.3 50.0 64.2 90.0 71.7 80.8 72.5
S06 73.3 72.5 72.9 52.5 59.2 55.8 64.4
S07 45.0 55.0 50.0 68.3 22.5 45.4 47.7
S08 65.0 90.0 77.5 51.7 40.0 45.8 61.7

SD 15.0 19.8 13.4 22.9 21.8 11.0 19.9

Average 55.7 65.2 63.0 46.8 63.9 55.3
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Table 3 shows the average completion rate for each IV. The results showed that the average
completion rate of the No-FES period was higher than that of the Yes-FES period. Furthermore,
the average completion rate after applying the adaptive learning method was higher than before.

Table 3. Average completion rate of each independent variable (IV) (%).

Before Learning After Learning

No-FES Yes-FES Average No-FES Yes-FES Average Grand

S01 71.7 49.2 60.4 70.8 50.0 60.4 60.4
S02 57.5 39.2 48.3 75.0 48.3 61.7 55.0
S03 44.2 62.5 53.3 23.3 62.1 42.7 48.0
S04 55.8 49.2 52.5 80.0 54.2 67.1 59.8
S05 58.3 72.5 65.4 70.0 80.8 75.4 70.4
S06 73.3 50.0 61.7 72.5 55.8 64.2 62.9
S07 40.0 43.3 41.7 60.0 45.4 52.7 47.2
S08 46.7 61.7 54.2 45.0 65.0 55.0 54.6

SD 11.38 10.41 7.19 17.80 10.73 9.26 7.25

Average 55.94 53.44 54.69 62.08 57.71 59.90

The accuracy of each task is shown in Table 4. The results showed that the accuracy of the No-FES
period was a little higher than that of the Yes-FES period, but the differences were not large. There was
some evidence that the classifiers might be biased to a certain direction because Subject S05 tended to
say ‘keep FES’, while Subject S04 tended to say ‘stop FES’.

Table 4. Accuracy of each task (%).

Grasping Opening No-FES Keep Stop Yes-FES Grand

Average Average Average

S01 60.0 55.0 57.5 50.0 45.0 47.5 52.5
S02 65.0 55.0 60.0 35.0 55.0 45.0 52.5
S03 30.0 35.0 32.5 50.0 60.0 55.0 43.8
S04 40.0 85.0 62.5 15.0 80.0 47.5 55.0
S05 70.0 45.0 57.5 90.0 45.0 67.5 62.5
S06 70.0 60.0 65.0 60.0 55.0 57.5 61.3
S07 35.0 50.0 42.5 75.0 10.0 42.5 42.5
S08 65.0 70.0 67.5 65.0 10.0 37.5 52.5

SD 15.5 14.3 11.2 21.8 22.6 8.9 6.7

Average 54.4 56.9 55.6 55.0 45.0 50.0

Table 5 shows the accuracy of each IV, and the results showed that the accuracy of each FES
condition increased after applying learning. It indicates that the adaptive learning procedure enhanced
the identifiability of both classification algorithms. Between two periods, the improvement of
the No-FES period was higher than that of the Yes-FES period.
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Table 5. Accuracy of each IV (%).

Before Learning After Learning

No-FES Yes-FES Average No-FES Yes-FES Average Grand

S01 55.0 45.0 50.0 60.0 50.0 55.0 55.0
S02 50.0 30.0 40.0 70.0 60.0 65.0 65.0
S03 30.0 55.0 42.5 35.0 55.0 45.0 45.0
S04 55.0 40.0 47.5 70.0 55.0 62.5 62.5
S05 50.0 55.0 52.5 65.0 80.0 72.5 72.5
S06 60.0 55.0 57.5 70.0 60.0 65.0 65.0
S07 30.0 40.0 35.0 55.0 45.0 50.0 50.0
S08 65.0 40.0 52.5 70.0 35.0 52.5 52.5

SD 12.1 8.7 7.0 11.4 12.2 8.7 8.7

Average 49.4 45.0 47.2 61.9 55.0 58.4 58.4

Table 6 shows the ITR of each IV, and the ITR values increased a little bit after applying the adaptive
learning method, but the difference was great. The results of ITR also indicated that the performance
of the proposed SMR-based BCI system fell into the average ITR ranges (10–25 bit/min) [7].

Table 6. Information Transfer Rate (ITR) for each IV (bit/min).

Before Learning After Learning
Grand

No-FES Yes-FES Average No-FES Yes-FES Average

S01 13.12 12.71 12.91 12.87 13.03 12.95 12.93
S02 11.81 14.13 12.97 12.24 13.47 12.86 12.91
S03 10.80 12.39 11.60 14.03 9.53 11.78 11.69
S04 11.68 15.91 13.79 14.96 14.03 14.50 14.14
S05 11.88 10.69 11.29 10.47 12.95 11.71 11.50
S06 13.29 10.10 11.70 13.29 13.20 13.25 12.47
S07 10.52 10.10 10.31 9.40 12.03 10.71 10.51
S08 13.47 10.52 12.00 11.10 14.03 12.56 12.28

Average 12.07 12.07 12.07 12.29 12.78 12.54 12.30

An ANOVA was also performed to test the main effects of IVs, the existence of FES, and the learning
type and interactions between IVs with participant as a blocking variable on the completion rate and
ITR, separately. An ANOVA was also performed to test the main effects of IVs, the existence of FES, and
the learning type, and interactions between IVs and the participants as a blocking variable on accuracy.
There were significant differences in learning type (F1, 21 = 8.2273; p = 0.0092; ηp2 = 0.28149), but
the main effect of the FES existence type and interaction effect were not significant. In addition, Tukey’s
HSD test showed that the average accuracy during the No-FES period after applying adaptive learning
was significantly higher than that during the Yes-FES period before applying adaptive learning.

4.5.2. Workload

To analyze the subjective mental workload changes between the two BCI experiments in Phase 1
and 2, the participants were asked to answer the NASA-TLX questionnaire after each experiment [91].
To test the significance of the differences between the experiments, a two-tailed Student’s t-test was
performed with the differences (scores of the second experiment—score of the first experiment) of each
question. Table 7 shows that mental demand and frustration increased significantly, while performance
significantly decreased compared to the first experiment.
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Table 7. Results of t-test for each question.

Estimate SD t Ratio Pr. > |t|

Mental Demand 3.5 1.4516 2.41 0.0467*
Temporal Demand 3.125 1.574773 1.98 0.0876

Performance −4.25 1.485044 −2.86 0.0243*
Effort 0.25 1.346291 0.19 0.858

Frustration 6.25 1.644797 3.8 0.0067*

* Probability (Pr.) < 0.05.

4.6. Discussion

4.6.1. The Feasibility of the Proposed BCI-FES System

Phase 2 investigated the feasibility of the proposed BCI-FES system under the semi-asynchronous
mode not only for classifying a 2-class MI task in a single hand after detecting the existence of SMR
but also for detecting the presence of MI-evoked SMRs when FES was activated. The results showed
that the classification accuracy of the No-FES period, detecting the existence of SMR and classifying
a 2-class MI task in a consecutive manner after applying the adaptive learning method (61.9%; t = 2.71,
p = 0.0301) was significantly higher than the true chance level (50.15% with 10 trials for both detecting
SMR and classifying a 2-class MI task). However, the classification accuracy of the No-FES period
before applying the adaptive learning method (49.4%) was not significantly higher than the true chance
level (53.77%). In addition, the accuracies of decoding voluntary and passive SMRs for both learning
types (45.0% and 55.0%) was not significantly higher than the true chance level. Therefore, the null
hypothesis of H2.1 could be rejected only in the No-FES period after applying adaptive learning, and it
is in favor of the alternative hypothesis, which states that the classification accuracy of the No-FES
period after applying adaptive learning is significantly higher than the true chance level. Although
the classification accuracy of the No-FES period after applying adaptive learning was significantly
higher than the true chance level, it did not achieve the threshold level (70%) for effective control
through a BCI system [92].

Some reasons to explain these results are as follows. First, the visual cues presented in
the synchronous experiments in Phase 2 created an experimental environment that was different than
the semi-asynchronous experiments in Phase 2. During the experiment in Phase 1, the video clips
were provided to help participants mimic MI tasks, while there was no visual guidance in Phase 2.
Therefore, the patients might have confused target MI tasks or missed the timing of MI tasks during
the semi-asynchronous experiment. The different decision-making procedures could be another reason.
For example, the experiment under the synchronous mode in Phase 1 consisted of three classification
periods, known as SMR, ACT, and FES periods, and the accuracies of the SMR periods and ACT
periods were separately analyzed. In contrast, in Phase 2, SMR and ACT classifiers were combined
in a sequential mode under the semi-asynchronous mode. In this condition, the SMR classifier was
for a go–no-go decision similar to a switch, and the ACT classifier classified between grasping and
opening only if the SMR classifier determined ‘Go’. Therefore, the accuracy of the final decision can be
calculated by multiplying two probabilities. Thus, the expected accuracy of the combined classifiers
was 52.4% where the accuracies of the SMR and ACT periods in Phase 1 were 73.49% and 71.25%,
respectively, which was similar to the actual accuracy of 52.8%. In addition, the difficulty of classifying
a two-class MI task can explain low accuracy. For example, the results of the other study [93] using
a 2-class MI task similar to this study showed that the classification accuracy of the offline analysis did
not exceed the threshold level (70%).

In addition, the reasons for the low accuracy of classifying voluntary and passive SMRs can be
explained similar to Phase 1, such that (1) electrical artifacts from the FES might be not completely
grounded, (2) the duration of the FES period might be too short, and (3) it was difficult to stay calm
without movement-related imagination when FES was activated as a few participants mentioned.
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4.6.2. FES Existence Type

The ANOVA results revealed that there were no significant main effects of the FES existence type
on task performance, as well as any interaction effect between the FES existence type and learning
type. The results between the two studies were different in that the classification accuracy of the FES
period with electrical stimulation was significantly lower than the SMR and ACT periods. One reason
for the different results is that each experiment was performed in a different classification procedure as
explained previously. As the final decision was made by sequentially combining the results from both
SMR and ACT periods, the expected accuracy of the combined classifier (52.4%) decreased compared
to that of each period. Furthermore, the maximum analysis time (6 s) might be too short to modulate
SMRs during the detecting SMR period. Finally, the sample size might be too small to have enough
statistical power. Due to these reasons, the ANOVA results might not show any significant main effect
of the FES existence type on task performance.

4.6.3. Learning Type

The statistical analysis confirmed that the application of the adaptive learning method had
a significant effect on the classification accuracy, and the post-hoc analysis showed that the application
of the adaptive learning method significantly increased the accuracy similar to other studies [61].
However, other task performance, such as the completion rate and ITR, did not show any significant
main effect of the learning type. The difference in the experiment environment between offline (with
visual cues) and online (without visual cues) experiments can explicate this effect. As the offline
experiment utilized visual cues with fixed time intervals, the classifiers also affected the visual
stimulus-evoked potential even after the intensive artifact removal procedures. With this effect,
the classifier would not have worked normally in an online experiment without a visual cue.

4.6.4. Subjective Assessment

The resultant NASA-TLX showed that most of the participants’ mental demand, temporal
demand, effort, and frustration scores increased in the second experiment compared to the first, while
performance decreased. The two-tailed Student’s t-test results showed that mental demand and
frustration significantly increased, while performance significantly decreased compared to the first
experiment. These results also help explain the low classification accuracy because higher mental
demand and temporal demand cause mental fatigue, which results in lower performance [94]. To
address this issue, [95] set a series of exercises for participants to eat ice cream by MI and an
external device, and the authors confirmed that the workload was greatly reduced. These results
suggested that the BCI experiment should be more interesting, and, as suggested by the participants
in the post-experiment questionnaire, an attempt to reduce the tedium and length of the MI training
period may be necessary.

In the post-experiment questionnaire, some participants complained of either shoulder or upper
arm muscle fatigue instead of the forearm. There are three possible reasons to explain shoulder muscle
fatigue. First, the participants were asked to move their forearm to hold and move a ball during
the experiment. In order to perform these sequential tasks, stretching movements of the upper arm
and shoulder must be accompanied. These movement may lead to shoulder muscle fatigue because
the stretching movement could cause muscle pain due to the spastic muscles [96]. Another reason is
that unnatural responses to FES might cause muscle fatigue. Although the current amplitude of FES
was gradually increased by utilizing the ramp time function, some patient showed the retraction of
the shoulder as an adverse reaction to electrical stimulation. This unnecessary tension of the body may
have caused fatigue of the shoulder and upper arm muscles. Finally, this may be due to the awkward
posture caused by the wires in the BCI-FES system, which limited the movement of the patients.
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5. General Discussion

5.1. SMR-Based BCI Systems for a 2-Class MI Task in a Single Hand

In this study, relatively new concepts of MI tasks were tested to build a novel SMR-based
BCI system that could support a 2-class MI task in a single hand. Most SMR-based BCI research
are categorized into two groups. The first group utilized SMR features to initiate a 1-dimensional
application similar to an on/off switch [41,97], while the other group controlled a 2-dimensional
application such as the left/right, up/down, go/back motions of a robot, a wheelchair, a browser, and
a game [98–100]. This is because the characteristic of the SMR features induced by MIs is most distinct
only near the contralateral motor cortex in the left and right hemispheres.

Due to these limitations, the MI study has made many efforts to increase the classes (beyond left
and right). A common example is the use of MI together with visual stimuli, also known as hybrid BCI,
for browsers [99] or e-mail clients [100]. In this case, a monitor that can display visual stimuli can be
used without restriction because it is a required device of browsers or e-mail clients. However, it is not
natural to use visual stimuli to control upper or lower extremities using an exoskeleton, orthosis, or
FES. In addition, it is awkward to employ imaginary movements of left and right hands to implement
two movements in a single hand. Therefore, it is very important to study the two movements in
a single hand as in this study.

However, few studies explored distinct SMR features induced by different rhythmic MIs. [66]
investigated four MI tasks consisting of two MI types (wrist extension and rotation) and two speeds
(fast and slow), and the authors reported that the speed variable had greater classification ability than
the MI types. Similarly, [65] employed slow-continuous and fast-transient MI tasks to classify a 2-class
MI task in a single hand such as grasping or opening. Therefore, in this experiment, the different speed
MI tasks were utilized to elicit the discriminative SMR patterns. As the MI task is a mental imagination,
clear MI instruction is essential for participants to follow different hand movements at the correct
speed and timing. To address this issue, video clips were utilized to train the exact motion and speed
to participants [101,102]. Although visual cues explain the tasks easily, this method also has a critical
issue: a strong visual artifact. Therefore, elaborate removal methods are required. After participants
had completed training, their brain signals were analyzed to extract two important features, such as
the features to initiate the BCI system and to classify the MI tasks. In this study, the ERD/ERS and CSP
methods were used with the sub-band division procedure. The advantages of the sub-band method
are (1) the efforts for feature selection can be minimized by automated weighing techniques, and (2)
wide frequency bands can be utilized. However, the disadvantage of this method is computational
time, because all combinations of frequency bands and channels (or time bins) should be separately
classified. In addition, to address the limitations of the SMR-based BCI such that (1) a long training
period is required, and (2) the classification accuracy of SMR is relatively lower than visual-based
BCIs [83], the ensemble method can be utilized by fusing multiple classifiers, such as LDA and SVM
methods, to make one better and/or robust decision similar to this study.

Once the offline analysis is completed, the BCI system and algorithms should be tested under
the online condition. Let us assume one moderate classifier that has 70% accuracies for both detecting
SMR and classifying ACT will be used. Then, the expected accuracy for a certain target without error
would be with a 49% chance (0.7 × 0.7 = 0.49) with a 30% chance in idle status (no SMR was detected)
and a 21% chance in wrong status. If any mistake occurs, then the same procedure and chances will
follow. For this reason, there is a great need for a new type of training and practical experiment methods
that can alleviate this problem—for example, fixed sequence training under the semi-asynchronous
mode, which was proposed in this study.

5.2. Semi-Asynchronous Mode

Figure 3 illustrates the results of good and bad trials. The x-axis of the diagram shows time in
seconds, and the y-axis displays the current FES status. Black boxes indicate the waiting time given at
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the beginning or between sequences. Green boxes indicate the time when the BCI system does not
classify in the 5 s given immediately after performing the MI task between periods. Red boxes mean
incorrect classification results, and blue boxes imply the time that successfully performed the keep-FES
task. This box should appear for 5 s, meaning it was done perfectly without mistakes (5 correct
decisions), unlike the red box.
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Figure 3a is an example of a successful trial that not only shows a balanced overall accuracy but
also does not make any consecutive incorrect decisions. However, as an example of low performance,
the right graph shows the successive failure of the opening-MI task, and the FES system automatically
performed the opening task in accordance with the 6-s maximum analysis time. In addition, the two
green boxes at the top right indicate that the participant did not successfully perform the keep-FES
task, and there is only one blue bar, meaning one-time success. Five seconds after the opening-MI task
was started, the participants should be in a calm state without any imagination to stop FES. Figure 3b
indicates that the stop-FES task was not normally performed, since many red bars appear, as shown in
the figure.

However, under the complete asynchronous mode, it is difficult to know which timing shows
the onset of MI by users due to the nature of the self-paced experiment. Furthermore, participants
also get confused if errors are accumulated and easily get frustrated with low performance, especially
for disabled groups. Therefore, a novel experiment design was proposed that tried to achieve
the advantages of both modes by addressing the disadvantages of each. As a result, users successfully
finished the experiment without excessive delay. Furthermore, the adaptive learning method was also
applied under the proposed mode which was not feasible or difficult to apply in asynchronous mode.
Thus, in this experiment, fixed sequence training in the semi-asynchronous mode was proposed. This
mode has three important features that combined both synchronous and asynchronous methods as
follows: (1) the sequence of tasks is fixed to clarify what the user should do; (2) there are error-free
results to prevent them from being confused or exhausted, and (3) it utilizes an SMR detecting initiation
module similar to the asynchronous mode. Under the proposed semi-asynchronous mode, participants
would be free from confusion and frustration. Furthermore, the experimenter could utilize the brain
signal under the semi-asynchronous mode to enhance the classification algorithms by adjusting
the classification parameters based on the most recent data, which is also known as adaptive machine
learning [85,86].

The outcome of this study was the construction of a multi-class SMR-based BCI system with
natural MI tasks, as well as restoring the motor functions of disabled individuals. The results of
Studies 1 and 2 were to address the low classification accuracy with electrical stimulation by applying
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the adaptive learning method under semi-asynchronous mode. Then, the proposed experiment mode
plays an important role to bridge the gap between the two modes. Furthermore, this approach can not
only improve task performance by minimizing the misclassification rate but can also enhance user
performance by increasing self-esteem and reducing frustration.

6. Conclusions and Future Research

The results of the present study showed that the application of a user-specific FES parameter
significantly reduced perceived muscle pain and discomfort compared to a fixed parameter used
in the previous studies. Furthermore, all participants were able to classify a 2-class MI task in
a single hand by utilizing two different rhythmic MIs, including SOG and FCO, and the ensemble
classification method was able to classify a 2-class MI task significantly higher than the LDA method.
Finally, the application of the adaptive learning method significantly increased the classification
accuracy of the proposed SMR-based BCI-controlled FES system with fixed sequence training under
semi-asynchronous mode.

6.1. Contributions to BCI-FES Research

A few BCI research studies have investigated a 2-class MI by applying different MI task types
such as different speeds and motions, and some research studies used FES systems for stroke and
TBI patients. However, this study was one of the few studies to apply both the FES system and
the BCI system with a 2-class MI task in a single hand for stroke and TBI patients. Furthermore,
in this study, the semi-asynchronous mode with the fixed sequence was proposed that combines
the advantages of both synchronous and asynchronous modes. The advantages of the proposed
semi-asynchronous mode are (1) participants would be free from confusion and frustration because
there is no error; (2) the experimenter can utilize the brain signals under the semi-asynchronous mode
to enhance the classification algorithms, and (3) it is easy to change to two modes, both synchronous
and asynchronous, with a small modification.

6.2. Research Implications in Human Factor and Ergonomics (HF/E)

The outcomes of this study have four important HF/E implications. First, both the proposed FES
platform and the SMR-based BCI system can be utilized as a test bed to investigate important HF/E
topics such as the effects of individual differences, environmental factors, task performance, and user
satisfaction. Second, assistive technologies could be developed and connected to the SMR-based BCIs,
such as robot controls, communication, and entertainment games, which would make it possible to
explore multitudes of HF/E topics using BCI technology. Third, the SMR-based BCI-controlled FES
systems can connect those with motor disabilities (e.g., stroke and TBI patients) to other people, greatly
improving their quality of life, enhancing ADL capacity, and even increasing self-esteem. Finally,
the results of the study are expected to be utilized to gain an understanding of neuroplasticity in
the musculoskeletal rehabilitation of stroke and TBI patients in clinical studies.

6.3. Research Limitation and Future Work

The main limitation of this study was that the sample size was too small to have enough statistical
power. If additional experiments are conducted, some main effects that we concluded to be not
significant are likely to change. The small sample size also prevented the expansion of the study,
such as investigating differences in performance according to severity and differences between stroke
and TBI patients. With a small sample size, caution must be applied, as the findings might not be
transferable to other BCI user groups.

Two types of MI such as kinesthetic motor imagery (KMI) and visual motor imagery (VMI) have
been widely used in the BCI research community. Studies have showed that their subjective evaluation
for vividness and the amount of shared cortical circuits corresponding with motor execution may each
differ across individuals [103]. More research utilizing kinesthetic MI is still required. The classification
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accuracies during the FES period for both asynchronous and semi-asynchronous experiments were
not higher than the true chance level, and it implies that the proposed SMR-based BCI system could
not distinguish between voluntary MI-evoked SMRs and FES-driven passive-movement-evoked
SMRs. There are three possible reasons to explain this low accuracy. First, when FES was activated,
the electrical artifacts might be not completely grounded by the anti-static wrist strap applied to
the opposite hand of the affected forearm. Thus, it is possible that electrical stimulation was mixed
with the EEG signals, making it difficult to classify. Second, these passive movements driven by
FES might have prevented the patients from stopping the MI tasks, as some participants mentioned
that it was difficult to stay calm without movement-related imagination when FES was activated.
Finally, although the participants were asked not to perform any voluntary physical movements
during the experiments, they might simultaneously perform spontaneous movements by following
the FES-driven motion. Since EMG signals were not measured in this study, it was not known whether
the motion had progressed. Therefore, this limitation should be solved through further study.

Although the classification accuracy of the No-FES period after applying adaptive learning
under semi-asynchronous mode was significantly higher than the true chance level, it did not achieve
the threshold level (70%) for an effective control through a BCI system [92]. Moreover, the adaptive
learning method significantly increased the accuracy similar to other studies [61], but these results might
be due to an order effect that the participants were accustomed to the semi-asynchronous experiment
while continuing to conduct the experiment. The other limitation was that adequate FES electrode
placement was altered during supination and pronation, leading to sharp muscle pain. Participants
were asked to minimize supination and pronation to prevent any muscle pain and discomfort; however,
this restriction made their movement unnatural. As [104] reviewed, the array types of FES electrode are
available, which could help to solve this issue by synchronizing between supination (pronation) and
the electrode onset in real time. Finally, this study did not consider the reinforcement or attenuation of
SMRs over time. It might be possible to identify the change of SMRs as the time progressed while
conducting a long-time experiment, and the relationship between the time and MI task performance
could be evaluated to determine the proper duration of the SMR-based BCI experiment with respect
to the fatigue and tiredness of participants. In this way, task performance can be maximized, and
attention deterioration can be minimized.
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68. Popović, D.B. Advances in functional electrical stimulation (FES). J. Electromyo. Kinesi. 2014, 24, 795–802.
[CrossRef] [PubMed]

69. Schalk, G.; McFarland, D.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A General-Purpose
Brain-Computer Interface (BCI) System. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [CrossRef] [PubMed]

70. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including
independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]

71. Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully Automated Statistical Thresholding for EEG artifact
Rejection. J. Neurosci. Methods 2010, 192, 152–162. [CrossRef] [PubMed]

72. Schalk, G.; Mellinger, J. A Practical Guide to Brain—Computer Interfacing with BCI2000: General-Purpose Software
for Brain-Computer Interface Research, Data Acquisition, Stimulus Presentation, and Brain Monitoring; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 2010.

73. Pfurtscheller, G.; Neuper, C. Future prospects of ERD / ERS in the context of brain-computer interface (BCI)
developments. Prog. Brain Res. 2006, 159, 433–437.

http://dx.doi.org/10.1016/0013-4694(77)90092-X
http://dx.doi.org/10.1016/0013-4694(92)90133-3
http://dx.doi.org/10.1109/TCYB.2018.2841847
http://dx.doi.org/10.1097/NPT.0b013e3181c1fc0b
http://dx.doi.org/10.1186/1743-0003-9-56
http://www.ncbi.nlm.nih.gov/pubmed/22897888
http://dx.doi.org/10.1161/01.STR.0000226902.43357.fc
http://www.ncbi.nlm.nih.gov/pubmed/16741183
http://dx.doi.org/10.2340/16501977-0020
http://www.ncbi.nlm.nih.gov/pubmed/17225031
http://dx.doi.org/10.1088/1741-2560/8/2/025002
http://www.ncbi.nlm.nih.gov/pubmed/21436519
http://dx.doi.org/10.1088/1741-2560/4/2/R01
http://dx.doi.org/10.1007/s10548-009-0121-6
http://dx.doi.org/10.1109/TNSRE.2003.814481
http://dx.doi.org/10.1016/j.neulet.2012.11.039
http://dx.doi.org/10.1186/1741-7015-9-75
http://dx.doi.org/10.1016/j.clinph.2009.05.006
http://dx.doi.org/10.1016/j.jelekin.2014.09.008
http://www.ncbi.nlm.nih.gov/pubmed/25287528
http://dx.doi.org/10.1109/TBME.2004.827072
http://www.ncbi.nlm.nih.gov/pubmed/15188875
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1016/j.jneumeth.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/20654646


Brain Sci. 2020, 10, 512 26 of 27

74. Golub, M.D.; Chase, S.M.; Batista, A.P.; Yu, B.M. Brain–computer interfaces for dissecting cognitive processes
underlying sensorimotor control. Curr. Opin. Neurobiol. 2016, 37, 53–58. [CrossRef]

75. Nam, C.S.; Nijholt, A.; Lotte, F. Brain–Computer Interfaces Handbook: Technological and Theoretical Advances;
CRC Press: Boca Raton, FL, USA, 2018.

76. Pfurtscheller, G.; Lopes, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic
principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [CrossRef]

77. Novi, Q.; Guan, C.; Dat, T.H.; Xue, P. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer
Interface. In Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala
Coast, HI, USA, 2–5 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 204–207.

78. Bashashati, A.; Fatourechi, M.; Ward, R.K.; Birch, G.E.E. A survey of signal processing algorithms in
brain–computer interfaces based on electrical brain signals. J. Neural Eng. 2007, 4, R32–R57. [CrossRef]

79. Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [CrossRef]
80. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI

1995, 14, 1137–1145.
81. Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89,

1123–1134. [CrossRef]
82. Tonet, O.; Tecchio, F.; Sepulveda, F.; Citi, L.; Rossini, P.M.; Marinelli, M.; Tombini, M.; Laschi, C.;

Dario, P. Critical Review and Future Perspectives of Non-Invasive Brain-Machine Interfaces. European
Space Agency, the Advanced Concepts Team, Ariadna Final Report (05-6402). 2006. Available
online: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-BIO-ARI-056402-Non_
invasive_brain-machine_interfaces_-_Pisa_S%27Anna.pdf (accessed on 20 June 2020).

83. Ortner, R.; Allison, B.Z.; Korisek, G.; Gaggl, H.; Pfurtscheller, G. An SSVEP BCI to Control a Hand Orthosis
for Persons with Tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 19, 1–5. [CrossRef] [PubMed]

84. Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279.
[CrossRef] [PubMed]

85. Vidaurre, C.; Sannelli, C.; Müller, K.-R.; Blankertz, B. Machine-Learning-Based Coadaptive Calibration for
Brain-Computer Interfaces. Neural Comput. 2011, 23, 791–816. [CrossRef]

86. Wolpaw, J.R.; McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive
brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 17849–17854. [CrossRef]

87. Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing
electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [CrossRef]

88. Kuiken, T.A.; Li, G.; Lock, B.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Englehart, K.B. Targeted
Muscle Reinnervation for Real-time Myoelectric Control of Multifunction Artificial Arms. JAMA 2009, 301,
619–628. [CrossRef]

89. Wodlinger, B.; Downey, J.E.; Tyler, E.C.; Schwartz, A.B.; Boninger, M.L.; Collinger, J.L. Ten-dimensional
anthropomorphic arm control in a human brain−machine interface: Difficulties, solutions, and limitations. J.
Neural Eng. 2014, 12, 16011. [CrossRef]

90. Wolpaw, J.R.; Ramoser, H.; McFarland, D.; Pfurtscheller, G. EEG-based communication: Improved accuracy
by response verification. IEEE Trans. Rehabil. Eng. 1998, 6, 326–333. [CrossRef]

91. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical
research. Adv. Psychol. 1988, 52, 139–183.

92. Perelmouter, J.; Birbaumer, N. A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng.
2000, 8, 227–232. [CrossRef] [PubMed]

93. Roset, S.A.; Gant, K.; Prasad, A.; Sanchez, J.C. An adaptive brain actuated system for augmenting rehabilitation.
Front. Neurosci. 2014, 8, 415. [CrossRef] [PubMed]

94. Fazel-Rezai, R.; Allison, B.Z.; Guger, C.; Sellers, E.W.; Kleih, S.C.; Kübler, A. P300 brain computer interface:
Current challenges and emerging trends. Front. Neuroeng. 2012, 5, 14. [CrossRef] [PubMed]

95. Rohm, M.; Schneiders, M.; Müller, C.; Kreilinger, A.; Kaiser, V.; Müller-Putz, G.R.; Rupp, R.R. Hybrid
brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals
with high-level spinal cord injury. Artif. Intell. Med. 2013, 59, 133–142. [CrossRef] [PubMed]

96. Vuagnat, H.; Chantraine, A. Shoulder pain in hemiplegia revisited: Contribution of functional electrical
stimulation and other therapies. J. Rehabil. Med. 2003, 35, 49–56. [CrossRef]

http://dx.doi.org/10.1016/j.conb.2015.12.005
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1088/1741-2560/4/2/R03
http://dx.doi.org/10.1109/MCAS.2006.1688199
http://dx.doi.org/10.1109/5.939829
https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-BIO-ARI-056402-Non_invasive_brain-machine_interfaces_-_Pisa_S%27Anna.pdf
https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-BIO-ARI-056402-Non_invasive_brain-machine_interfaces_-_Pisa_S%27Anna.pdf
http://dx.doi.org/10.1109/TNSRE.2010.2076364
http://www.ncbi.nlm.nih.gov/pubmed/20875978
http://dx.doi.org/10.3390/s120201211
http://www.ncbi.nlm.nih.gov/pubmed/22438708
http://dx.doi.org/10.1162/NECO_a_00089
http://dx.doi.org/10.1073/pnas.0403504101
http://dx.doi.org/10.1111/1469-8986.3720163
http://dx.doi.org/10.1001/jama.2009.116
http://dx.doi.org/10.1088/1741-2560/12/1/016011
http://dx.doi.org/10.1109/86.712231
http://dx.doi.org/10.1109/86.847824
http://www.ncbi.nlm.nih.gov/pubmed/10896195
http://dx.doi.org/10.3389/fnins.2014.00415
http://www.ncbi.nlm.nih.gov/pubmed/25565945
http://dx.doi.org/10.3389/fneng.2012.00014
http://www.ncbi.nlm.nih.gov/pubmed/22822397
http://dx.doi.org/10.1016/j.artmed.2013.07.004
http://www.ncbi.nlm.nih.gov/pubmed/24064256
http://dx.doi.org/10.1080/16501970306111


Brain Sci. 2020, 10, 512 27 of 27

97. Blokland, Y.; Spyrou, L.; Thijssen, D.; Eijsvogels, T.M.; Colier, W.; Floor-Westerdijk, M.; Vlek, R.; Bruhn, J.;
Farquhar, J. Combined EEG-fNIRS Decoding of Motor Attempt and Imagery for Brain Switch Control:
An Offline Study in Patients With Tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 22, 222–229.
[CrossRef]

98. Huang, D.; Qian, K.; Fei, D.-Y.; Jia, W.; Chen, X.; Bai, O. Electroencephalography (EEG)-Based Brain–Computer
Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization
and State Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 379–388. [CrossRef]

99. Yu, T.; Li, Y.; Long, J.; Gu, Z. Surfing the internet with a BCI mouse. J. Neural Eng. 2012, 9, 36012. [CrossRef]
100. Yu, T.; Li, Y.; Long, J.; Li, F. A Hybrid Brain-Computer Interface-Based Mail Client. Comput. Math. Methods

Med. 2013, 2013, 1–9. [CrossRef]
101. Kim, T.; Kim, S.; Lee, B. Effects of Action Observational Training Plus Brain-Computer Interface-Based

Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized
Controlled Trial. Occup. Ther. Int. 2015, 23, 39–47. [CrossRef]

102. Looned, R.; Webb, J.; Xiao, Z.G.; Menon, C. Assisting drinking with an affordable BCI-controlled wearable
robot and electrical stimulation: A preliminary investigation. J. Neuroeng. Rehabil. 2014, 11, 51. [CrossRef]
[PubMed]

103. Toriyama, H.; Ushiba, J.; Ushiyama, J. Subjective Vividness of Kinesthetic Motor Imagery Is Associated with
the Similarity in Magnitude of Sensorimotor Event-Related Desynchronization Between Motor Execution
and Motor Imagery. Front. Hum. Neurosci. 2018, 12, 295. [CrossRef] [PubMed]

104. Keller, T.; Kuhn, A. Electrodes for transcutaneous (surface) electrical stimulation. J. Autom. Control. 2008, 18,
35–45. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNSRE.2013.2292995
http://dx.doi.org/10.1109/TNSRE.2012.2190299
http://dx.doi.org/10.1088/1741-2560/9/3/036012
http://dx.doi.org/10.1155/2013/750934
http://dx.doi.org/10.1002/oti.1403
http://dx.doi.org/10.1186/1743-0003-11-51
http://www.ncbi.nlm.nih.gov/pubmed/24708603
http://dx.doi.org/10.3389/fnhum.2018.00295
http://www.ncbi.nlm.nih.gov/pubmed/30108492
http://dx.doi.org/10.2298/JAC0802035K
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	FES Rehabilitation for Stroke and TBI Patients 
	SMR-Based BCI-Controlled FES Systems 
	Limitations of Current SMR-Based BCIs for FES 

	Phase 1: Development and Evaluation of an SMR-Based BCI 
	Objectives and Hypotheses 
	Methods 
	Participants 
	Visually Guided Instructions for MI Tasks 
	Procedure 
	Signal Acquisition and Processing 
	Independent and Dependent Variables 

	Results: Accuracy (%) 
	Discussion 

	Phase 2: Feasibility of the Proposed BCI-FES System 
	Objectives and Hypotheses 
	Methods 
	Participants 
	Experimental Task and Modes 
	Procedure 

	Signal Acquisition and Processing 
	Independent and Dependent Variables 
	Results 
	Task Performance 
	Workload 

	Discussion 
	The Feasibility of the Proposed BCI-FES System 
	FES Existence Type 
	Learning Type 
	Subjective Assessment 


	General Discussion 
	SMR-Based BCI Systems for a 2-Class MI Task in a Single Hand 
	Semi-Asynchronous Mode 

	Conclusions and Future Research 
	Contributions to BCI-FES Research 
	Research Implications in Human Factor and Ergonomics (HF/E) 
	Research Limitation and Future Work 

	References

