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Abstract

Animal chromosomes are partitioned into contact domains. Pathogenic domain disruptions can 

result from chromosomal rearrangements or perturbation of architectural factors. However, such 

broad-scale alterations are insufficient to define the minimal requirements for domain formation. 

Moreover, to what extent domains can be engineered is only beginning to be explored. In an 

attempt to create contact domains, we inserted a 2-kb DNA sequence underlying a tissue-invariant 

domain boundary—containing a CTCF binding site (CBS) and a transcription start site (TSS)—

into 16 ectopic loci across 11 chromosomes, and characterized its architectural impact. Depending 

on local constraints, this fragment variably formed new domains, partitioned existing ones, altered 

compartmentalization, and initiated contacts reflective of chromatin loop extrusion. Deletions of 

the CBS or the TSS individually or in combination within inserts revealed their distinct 

contributions to genome folding. Altogether, short DNA insertions can suffice to shape the spatial 

genome in a manner influenced by chromatin context.
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Whole-genome chromosome conformation capture (Hi-C) studies have described features of 

animal three-dimensional (3D) genome organization, including compartments and 

domains1–5. Compartments present as plaid-like patterns on Hi-C heatmaps, originally 

defined as multi-megabase open (A compartment) and closed (B compartment) chromatin 

regions1, recently characterized as finer segregations often reflective of transcriptional 

activities6–8. Topologically associating domains (TADs)2, 3, or contact domains4, are 

megabase/sub-megabase squares on Hi-C maps representing regions of enriched 

interactions. Separating adjacent domains are boundaries, across which interactions are 

depleted. Among the genomic features frequently co-localized with boundaries are TSSs of 

housekeeping genes and architectural proteins such as CTCF and cohesin2, 3. In fact, CTCF 

or cohesin depletion perturbs, but does not abolish domain configurations genome-

wide6, 7, 9, whereas transcription inhibition can compromise boundary strength10. TADs 

have been found to remain largely conserved in evolution as integral functional units8, 11–14, 

and defective domain organization due to chromosomal rearrangements or disrupted binding 

of architectural factors at targeted genomic loci have been implicated in diseases11, 15–18. 

Meanwhile, a new domain (neo-TAD) and regulatory circuitry can result from large-scale 

genomic duplications or inversions spanning domain boundaries11. However, important 

questions remain as to what features are minimally required for creating a domain19, 20. Are 

domains created via megabase-scale genomic rearrangements, or can their formation be 

driven by kilobase-sized DNA elements? Moreover, because neither all sites bound by 

CTCF or cohesin nor all housekeeping gene TSSs are at domain boundaries2, 3, is a DNA 

element demarcating a domain boundary in one context able to delineate a new domain 

boundary when inserted into other contexts? How is the potentially intrinsic ability to 

demarcate domains encoded by sequences of boundary-associated DNA, and to what extent 

is it modulated by genomic context? Here, using a gain-of-function approach, we examined 

whether, and how, a putative boundary element can organize de novo domains in the context 

of multiple ectopic insertion sites.

Results

Random insertions of a domain boundary-associated DNA fragment

To obtain multiple insertions of a putative boundary sequence genome-wide for subsequent 

multiplexed architectural characterization by Hi-C (Fig. 1a), we used a Sleeping Beauty 

transposon-based approach21 in near-haploid human HAP1 cells22. The 2-kb DNA fragment 

we selected resides within a tissue-invariant domain boundary3, 4. It is bound by CTCF, 

cohesin subunits and other architectural proteins, and contains a TSS of PARL, a 

housekeeping gene23, 24 (Supplementary Fig. 1, Fig. 1a inset). Following transposition, we 

established clonal lines and prioritized Clones 21 (C21) and 25 (C25), which contained ten 

and six insertions, respectively—named C21 Sites1 – 10 (C21S1 – C21S10) and C25 Sites1 

– 6 (C25S1 – C25S6)—across a total of 11 chromosomes (Extended Data Fig. 1a-f). All 

inserted DNA fragments retain their TSS function, initiating unidirectional transcripts at 

levels similar across all integration sites (as measured by RT-qPCR, Extended Data Fig. 1g), 

suggesting that any resulting architectural differences among insertions are not attributable 

to variations in transcription levels.
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Ectopic boundary insertions variably demarcate new domains

To characterize how the insertion of a boundary-associated DNA fragment shapes human 

genome architecture, we performed in situ Hi-C on clones C21 and C25, and on parental 

(WT) HAP1 cells. Overall, the results from the 3 samples were highly concordant 

(Supplementary Fig. 2), ruling out drastic genome-wide architectural perturbations caused 

by transpositions or significant biases from clonal variations.

Significantly, examination of integration sites revealed at least four instances of apparent de 
novo contact domain formation (Fig. 1b, d, f; Extended Data Fig. 2; Extended Data Fig. 3a-

f). These domains (at least 80 kb in size), identified at a resolution of 20-kb bins using 

insulation score with a window of 200 kb, are defined as regions demarcated by two 

boundaries—one created at the insertion site and the other that may or may not be a pre-

existing boundary. (Note: we use the term “contact domains” or “domains” here to refer to 

squares on a Hi-C heatmap representing in general terms regions of enriched interactions, 

but not in particular refence to TADs, sub-TADs, compartment domains, or transcription 

domains. However, below we describe the characteristics of newly created domains and the 

mechanisms by which they might be formed.) Intriguingly, these de novo domains all 

showed distinct patterns. At Clone 21 Site 4 (C21S4), for example, the inserted 2-kb 

element, together with endogenous downstream convergent CBSs, demarcated a new 

domain ~250 kb in size (Fig. 1b, Extended Data Fig. 2a). In this case, the new ~250-kb 

domain corresponded to the length of the insert-driven transcript, which did not extend 

beyond the two convergent CBSs downstream—though whether the two downstream CBSs 

causally contribute to transcription termination here remains unclear25 (Fig. 1b, Extended 

Data Fig. 2a). The insert thereby partitioned a ~1.7-Mb genome domain into smaller 

domains, which is visible as a cross pattern on the Hi-C heatmap (Fig. 1b-c, Extended Data 

Fig. 2a-b). This partitioning did not extensively alter the expression of adjacent genes (Fig. 

1b and Extended Data Fig. 2a: RNA). Insulation scores were diminished (reflective of 

increased insulation) specifically at both ends of the transcribed region, also corresponding 

to the inserted and endogenous CTCF sites (Fig. 1c, Extended Data Fig. 2b) and supporting 

the formation of a new domain. Collectively, these observations suggest that both the act of 

transcription and the pairing of CTCF sites might contribute to domain formation at the 

C21S4 locus.

In addition, at Clone 21 Site 2 (C21S2), the insertion delimited a de novo ~300-kb domain 

with a strong, endogenous domain boundary to its left, while also increasing interactions 

within this newly formed domain (Fig. 1d-e, Extended Data Fig. 2c-d). This newly formed 

domain enclosed a ~100 kb transcribed region induced by the insert, and a pre-existing 

unannotated transcribed region, previously a subtle small square by itself on the Hi-C map 

(Fig. 1d, Extended Data Fig. 2c). This observation demonstrates that a larger domain can 

appear as a result of one smaller domain emerging immediately adjacent to another. 

Furthermore, at Clone 21 Site 5 (C21S5), the element inserted into the body of the actively 

transcribed GRIK2 gene, forming a subtle but clearly detectable structure similar to what has 

recently been described as a stripe26, 27 (Fig. 1f-g, Extended Data Fig. 2e-f): a single locus 

forms enriched interactions with its contiguous chromatin region. This finding supports the 
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sufficiency for forming a stripe, indicative of a loop extrusion process26, 28, 29, via insertion 

of a short CBS- and TSS-containing element.

Together, these results highlight that insertions of a 2-kb putative boundary DNA element 

can form de novo domains with distinct attributes, potentially altering various aspects of 

genome folding. Moreover, the observed variability in effects of the insertions of the same 

sequence at different locations indicates modulation by chromosomal contexts.

In addition to the effects of insertions on domain structure, a closer examination of the new 

domain at the C21S4 locus revealed a plaid pattern, detectable even >30 Mb downstream, 

reminiscent of a compartment change (Extended Data Fig. 4). Indeed, compartment analysis 

showed that the de novo domain formed around the insertion site, originally part of a large B 

compartment, trended towards an A compartment (Fig. 1b: Compartment, Extended Data 

Fig. 4). We observed additional instances supporting a focal B-to-A change as a result of the 

CBS-TSS insertion. At the previously described C21S2 locus, the transcription unit added 

by the insertion extended the A-compartment-like region, previously around the existing 

transcription unit, further towards the insertion site (Fig. 1d: Compartment). Compartment 

changes have been reported at the multi-megabase scale genome-wide, associated with 

development, differentiation, reprogramming or infection30–34. This finding exemplifies that 

a single 2-kb insertion might trigger a focal B-to-A compartment switch in the absence of 

global perturbations or cell state changes.

Insertions into pre-existing boundaries can further strengthen them

Five of the integration events occurred within pre-existing boundaries, enabling us to explore 

how the addition of a boundary-associated DNA element affects a pre-established boundary. 

At four of these loci, interactions across existing boundaries further decreased (Fig. 2, 

Extended Data Fig. 5, and Extended Data Fig. 3g-l). These insertion-associated reductions in 

interactions across pre-existing boundaries could implicate either a broader chromatin region 

(Fig. 2a-c) or a more focal region (Fig. 2d-f). Whereas previous computational analyses 

indicated that domain boundary strength scales with total CTCF levels35 and with 

architectural protein occupancy24, these experimental findings imply that the addition of a 

boundary-associated DNA element might further strengthen an existing domain boundary.

De novo domain formation is impacted by genomic context

Notably, five insertions of this CTCF-TSS element did not result in significant domain-level 

changes (Fig. 3a-b, Extended Data Fig. 6)—this prompted us to probe contextual constraints 

that may limit new domain formation. One particular insertion event, which occurred within 

a ~350-kb domain at the C25S2 locus, did not demarcate an obvious new domain as 

measured by Hi-C (Fig. 3a-b). The ~2-Mb surrounding region is conspicuous in its complex 

architecture denoted by a high density of CBS and genes (Fig. 3a), in stark contrast to 

previously discussed genomic contexts where new domains formed (Fig. 1b, d, f). To 

examine this region at a higher resolution, we performed Capture-C36, RNA-seq, and CTCF, 

RAD21 and H3K27ac ChIP-seq. Together, these results revealed that this locus—located in 

a region rich in CTCF, cohesin, H3K27ac, and transcribed genes—was not devoid of 

changes in interactions; rather, these changes were confined to an intra-domain, sub-100-kb 

Zhang et al. Page 4

Nat Genet. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



range, unable to manifest themselves as new domains (Fig. 3c, d). Curiously, gained 

interactions upon insertion were limited to < ~25 kb, as far as transcription elongation from 

the inserted TSS (Fig. 3c). In contrast, de novo domains formed by the insertions were 

mostly accompanied by effective transcription elongation approaching or above ~100 kb 

(Fig. 1b, d, f). These observations suggest that both existing architectural complexity and 

restriction of transcription elongation may constrain the contexts in which new domains may 

be formed. We further scrutinized the genomic contexts of all 16 experimentally introduced 

insertions: restricted transcription elongation as well as existing CTCF or TSS density, albeit 

not statistically powered, coincide with a low likelihood of de novo domain formation 

(Supplementary Table 1, Extended Data Fig. 6). Conceptually, since Hi-C measures 

interaction patterns resulting from multiple, sometimes competing modes of genome 

organization37, we cannot discern whether different contextual constraints occur together or 

independently. One possible explanation for the lack of observable domain-scale effects of 

these insertions might be low permissibility for transcription elongation, restricting 

transcription-mediated contacts to an unresolvable range in Hi-C. Another possibility is the 

high baseline level of pre-existing architectural complexity—likely mediated by the high 

density of CBSs and genes observed in the surrounding regions—which may prevent the 

detection of any comparatively modest changes caused by the insertions.

Next, we examined whether CTCF-TSS insertions affect transcription. Transcriptome-wide, 

WT, Clone 21, and Clone 25 were highly congruent: only ~95 and ~160 genes were 

differentially expressed in C21 and in C25, respectively (Extended Data Fig. 7a-e). The only 

differentially expressed gene near insertions (excluding gene-body insertions) was MLKL 
(Extended Data Fig. 7e-f), a recently characterized gene essential for necroptosis38, 39 and 

implicated in diseases40–42. An insertion event occurred in C25 in or near a putative cis-

regulatory region43–45 ~80 kb away from the MLKL gene, coinciding with the ~80% 

reduction in its transcript level (Extended Data Fig. 7g-h). Capture-C showed that the 

insertion formed strong contacts with GLG1 promoter, with which the MLKL promoter also 

interacted, albeit weakly (Extended Data Fig. 7h). However, we cannot ascertain the exact 

mechanism for the downregulation of MLKL upon insertion, nor is it clear why GLG1 
expression is unaffected by the new contacts. Intriguingly, all the remaining ~191 genes 

within 1.5 Mb from any insertion were not differentially expressed (Extended Data Fig. 7e), 

while 4 out of 9 genes with gene-body insertions were differentially expressed, suggesting 

that most of the gene expression changes were limited to gene-body insertions. Since 

transposon insertions are nearly random, the influence of insertions on the spatial pairing 

between genes and their putative cis-regulatory elements is difficult to decipher. One 

possible explanation for the absence of differential expression of insertion-proximal genes is 

that these insertions might not have occurred between gene promoters and their 

enhancers46, 47 active in HAP1 cells.

Ectopic CTCF binding and TSS contribute distinctly to domain formation

To interrogate newly formed domains at higher resolution, we carried out ChIP-seq for 

H3K27ac, CTCF and RAD21, RNA-seq, and Capture-C experiments (Fig. 4 and Fig. 5). We 

first examined the C21S4 locus, where an insertion event demarcated a new domain whose 

long-range chromatin interaction pattern became more A compartment-like (Fig. 1b, c; Fig. 
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4b; Extended Data Fig. 4). Several H3K27ac peaks emerged within the new domain in the 

clone bearing the insertion, along with a de novo transcript >200 kb in length (Fig. 4g: ChIP 

H3K27ac and RNA). These changes are concordant with the active chromatin features 

expected in a domain with compartment A signature1, 6–8. Elevated RAD21 levels were also 

detected at several sites in the new domain upon insertion (Fig. 4f-g and Extended Data Fig. 

8k: R1-R5). In particular, the insertion increased interactions of the immediately-

neighboring chromatin with a pair of convergent CTCF peaks ~250 kb downstream (Fig. 4f-

g: green arrow)—both CBSs gained RAD21 binding upon insertion (Fig. 4g and Extended 

Data Fig. 8k: R4 and R5), while only the left CBS had moderately increased CTCF binding 

(Fig. 4g and Extended Data Fig. 8j: C4). This increased accumulation of cohesin upon CBS-

TSS insertion likely strengthened insulation at the downstream CTCF sites, which now 

demarcates the new domain (Fig. 4b, e, g).

To dissect the contributions of CTCF and TSS to genome folding, we deleted the CBS and 

the TSS that are ~50 bp apart within the insert, alone and in combination via CRISPR48, 49, 

followed by additional Hi-C and Capture-C (Fig. 4 and Extended Data Fig. 8). Importantly, 

removal of the CBS, which spared transcription (Extended Data Fig. 8b), did not disrupt the 

newly formed domain with A-compartment features (Fig. 4c), despite weakened insulation 

at the insertion locus (Fig. 4e: red arrow). However, it did reduce the interactions between 

the insertion locus and downstream CBSs (Fig. 4h). Notably, deletion of the CBS led to the 

emergence of a loop at the corner of the new domain (Fig. 4c), which coincided with 

elevated cohesin accumulation at both putative loop anchors (Fig. 4h and Extended Data Fig. 

8k: R1, R4, R5). In contrast to CBS deletion, TSS deletion at this locus largely eliminated 

the de novo domain (Fig. 4d, e; Extended Data Fig. 8c). This was accompanied by reduced 

cohesin binding at the CTCF sites ~250 kb downstream and other nearby loci34, 50 (Fig. 4i, 

Extended Data Fig. 8k). Deletion of both the CBS and the TSS in one clone restored local 

chromatin structure to pre-insertion configuration as assayed by Hi-C (Extended Data Fig. 

8e, g), coinciding with further reduction in local cohesin accumulation close to the pre-

insertion levels (Extended Data Fig. 8i: Clone21 CTCF-/TSS- #2, Extended Data Fig. 8k). In 

the other clone with the combined CBS and TSS deletion, we noticed a reversion to a 

diploid state that must have occurred after the initial transposon insertion. However, the 

process of editing resulted in a large ~27-Mb heterozygous deletion, rendering the region of 

interest de facto haploid (Extended Data Fig. 8d, h, f). The remaining allele has desired edits 

that were subsequently characterized with Capture-C (Extended Data Fig. 8i). We next 

assessed how CBS and/or TSS folds its nearby genomic fragment by using Directionality 

Index (DI)3 on Capture-C data: computing DI across increasing distances uncovers 

directional contact preferences, while being agnostic to the mechanisms by which 

directional contacts are formed. The intact 2-kb element preferentially contacts downstream 

regions (as signaled by a positive DI): such preference is evident within 50 kb, becomes 

more pronounced at 250 kb, and then flattens towards 1 Mb (Fig. 4a, b, f, g, j). CBS deletion 

did not abate the immediate directional preference at 50 kb, but did decrease preference for 

downstream contacts at 1-Mb range (inclusive of the strong CTCF/cohesin-occupied 

boundary marked by the purple arrow in Fig. 4a, f) and to a lesser degree at 250-kb range 

(Fig. 4c, h, j). Conversely, TSS deletion heavily reduced preference for downstream 

interactions from within 50 kb up to ~250 kb (Fig. 4d, i, j). Deletions of both CBS and TSS 
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neutralized the genomic fragment’s interaction preference close to the baseline level prior to 

insertion (Fig. 4j, Extended Data Fig. 8i). Therefore, at the C21S4 locus, the TSS folds local 

chromatin into a new domain through transcription elongation of ~250 kb.

Next, we applied this systematic approach to investigate the new domain at C21S2 (Fig. 5, 

Extended Data Fig. 9). Disruption of the CBS here moderately reduced transcription 

(Extended Data Fig. 9b) and diminished the interactions with both CBSs downstream (Fig. 

5c, Extended Data Fig. 9i: R6, R7). By contrast, these interactions, likely mediated by 

CTCF-CTCF pairing, remained largely unaffected upon TSS deletion (Extended Data Fig. 

9c; Fig. 5d, i). Unlike the new domain at C21S4, where the TSS is more important for its 

formation, here the CBS and the TSS act more cooperatively to change chromatin folding. 

Whereas the inserted CBS is responsible for the strengthened insulation (Fig. 5a-e) and for 

long-range interactions (Fig. 5h), the TSS establishes short-range unidirectional contact 

preference (Fig. 5f-j). Deletions of both the CBS and the TSS restored the contact preference 

and cohesin levels to its original state (Extended Data Fig. 9d-i, Fig. 5j). Altogether, these 

results determine that within the 2-kb insertion element, the ~100-bp sequence comprising 

the CBS and TSS is the most instructive for genome folding, while the relative importance 

of CBS and TSS to new domain formation can be context specific. Thus, genetic dissections 

disentangled two components of boundary elements often co-localized and intertwined: CBS 

forms distal interactions with convergent CBSs between demarcating boundaries, while TSS 

enforces strong directionality bias in genome folding in the orientation of transcription 

elongation.

Having illustrated how the 2-kb CBS-TSS element is capable of altering genome folding at 

multiple ectopic loci, we scrutinized its function at its endogenous context. While the 

deletion of the 2-kb element at its endogenous PARL gene locus did not lead to the fusion of 

two neighboring domains (Extended Data Fig. 10a, b, d, e), the boundary seemed to have 

shifted ~60 kb to the left (Extended Data Fig. 10c). This shift is roughly the distance 

between the TSSs of PARL and its neighboring transcribed gene and a nearby CBS 

(Extended Data Fig. 10f), suggesting that nearby TSS/CBS elements may assume boundary 

function in the absence of the 2-kb element51, 52.

Chromatin context may modulate how SINE B2 transposons shape the mouse genome

The tissue-invariant boundary element we inserted here drives detectable new domain 

formation in a context-dependent manner. Intrigued by this finding, we wondered to what 

extent transposable element insertions during evolution contribute to new genome domain 

formation, and whether context might affect the likelihood of such outcome. To this end, we 

considered a class of transposable elements linked to domain boundary formation3: SINE 

B2, which harbors CBS and Pol III TSSs. SINE B2 elements are often transcribed at low 

levels, escaping detection by conventional RNA-seq53, 54, in contrast to human endogenous 

retroviruses (HERV), whose high level of transcription is essential for their boundary 

activity19. This suggests a different mechanism of action that potentially relies less on high 

levels of transcription and more often on CBSs4, 52, 55, presenting an opportunity to compare 

and contrast the contribution of boundary formation by transcription and CTCF separately. 

SINE B2 elements have inserted into tens of thousands of loci in the mouse (but not primate) 
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genome since mouse diverged from its placental ancestor ~75 million years ago56, 57. This 

provides a window into recent evolution for exploring how these insertions expanding CBSs 

may have contributed to the formation of putative new domain boundaries—defined as 

mouse Hi-C boundaries overlapping with mouse-specific CTCF-bound SINE B2 insertions 

while lacking ancestral CTCF binding52, 56. To approach this question, we analyzed CTCF 

ChIP-seq data54 in a mouse erythroid cell line and identified ~7,136 SINE B2 elements 

bound by CTCF58 (Fig. 6a). We also carried out Hi-C for this cell line, which revealed 

~7,508 domain boundaries genome-wide54. Among these, we identified ~625 putative new 

boundaries harboring ~701 (~9.8% of the ~7,136) CTCF-bound SINE B2 insertions (Fig. 

6b). Next, we explored whether the outcome of CTCF-bound SINE B2 insertions to 

detectably alter domain structure could be modulated by local context. We used the number 

of TSSs within 200 kb of a CTCF-bound SINE B2 element (the TSS density) as a proxy for 

architectural complexity59–61. By comparing co-localization rates between CTCF-bound 

SINE B2 and putative new boundaries across the TSS density spectrum (Fig. 6c), we found 

that out of the total ~7,136 CTCF-bound SINE B2 insertions, 527 occurred in the most TSS-

spare regions (with no other TSSs within 200 kb of the SINE B2 element). Of these, 10.06% 

(53/527) co-localized with putative new domain boundaries (Fig. 6c). By contrast, 721 

CTCF-bound SINE B2 insertions took place in the most TSS-dense regions (Fig. 6c) 

(defined as having ≥ 11 TSS within 200 kb), and only 5.27% (38/721) of them co-localized 

with putative new boundaries (Fig. 6c). Since it is impossible to ascertain chromatin 

architecture for the genome of the placental ancestor, we are unable to annotate the list of 

definitive new mouse boundaries. Nevertheless, based on these findings, we speculate that in 

recent mouse genome evolution, CTCF-bound SINE B2 insertion events may be more likely 

to contribute to the creation of detectable domain boundaries in TSS-sparse regions than in 

regions with high TSS densities.

Discussion

Our results establish that insertions of a 2-kb element can demarcate new domains of several 

hundred kilobases and shape chromosome architecture potentially up to tens of megabases 

away (Extended Data Fig. 4)—with both transcription and CTCF contributing to local 

changes in domain structure. Different de novo domains formed by the same sequence may 

manifest distinct facets of genome organization (Fig. 6d). First, a new domain can be 

repackaged from the B to the A compartment. While compartments have historically been 

thought of as much larger than domains (tens of Mb in size), our creation of a de novo 
domain by changing its compartment signature is consistent with more recent observations 

that small genomic segments can be autonomous in their ability to compartmentalize, 

through comparative analysis8, 62 or global cohesin depletion37. Second, a larger domain can 

be formed via confluence of two smaller ones 63, which is also evident in 3D genome re-

configuration upon mitotic exit54. Third, a stripe, perhaps reflective of cohesin-mediated 

loop extrusion26, can be formed with a CTCF-TSS insertion. Moreover, through genetic 

dissections, we have unraveled functional elements driving genome folding. Specifically, the 

TSS enforces on adjacent chromatin a strong directional contact preference in the direction 

of transcription, contributing to Directionality Index-based boundary detection3. Meanwhile, 

convergent CBSs form distal interactions to demarcate boundaries (Fig. 6d). Importantly, 
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genomic contexts can not only modulate effects of the inserted element to display discrete 

features of de novo domains, but may also pose constraints that limit or mask measurable 

new domain formation64. Under these latter scenarios, the effects of CTCF-TSS insertion—

especially the proximal directional bias introduced by a TSS—are not entirely absent, but 

rather confined to an intra-domain, sub-100-kb range (Fig. 6d) that might be further resolved 

with emerging techniques with sub-kilobase resolution65, 66. Through our experimental 

findings and our analysis of recent genome evolution, we have begun to explore possible 

contextual constraints—they might include low permissibility for transcription elongation 

and/or existing architectural complexity marked by a high density of CBSs and/or gene 

TSSs.

The loop extrusion model states that a domain is formed as cohesin extrudes chromatin until 

it is stalled by CTCF28, 29; however, given the fact that many CBSs are not at boundaries, 

does the sequence underlying a domain boundary, in addition to a CBS alone64, encode the 

function of domain demarcation? Only recently have several putative boundary elements 

with different compositions begun to be tested in mammalian systems, leading to varying 

results. The integrations of a ~72-kb Firre cDNA consisting of ~15 CBSs with various 

combinations of convergent CTCF pairs did not lead to measurable chromatin structural 

changes, regardless of the element’s transcription state20. Insertions of three CBSs in cis 
formed loops and stripes, though it was not immediately clear whether new boundaries or 

domains formed27. By contrast, a locally repositioned (deleted from its endogenous site and 

inserted ~1 Mb away) element with two pairs of divergently oriented CBSs still functioned 

as a boundary51, though it is unknown whether this element can still form a boundary 

without the deletion of its endogenous copy or when placed beyond its local context. 

Without any CBS, a HERV element has been shown to function as a boundary in a 

transcription-dependent manner, with its transcripts confined within ~8 kb, the element’s 

length19. Our data clearly demonstrate DNA-encoded ability to alter genome folding—a 

~100-bp element spanning the TSS and CBS within the 2-kb insertion is mostly responsible 

for new domain formation while manifesting itself as a domain boundary. Specifically, the 

TSS folds its nearby chromatin along the direction of transcription, whereas the CBS forges 

comparatively focal contacts with endogenous CTCFs at the distal demarcating boundary. 

Meanwhile, the ability of domain organization/boundary formation is subject to modulation 

by context, which possibly underlies the observation by colleagues19, 20, 27 and by us that 

not all insertions have resulted in domain-level changes. These observations underscore the 

importance of using multiplexed edited genomes, beyond local, individual loci, to more 

comprehensively investigate how domain formation is causally connected with DNA 

sequences and genomic contexts (Fig. 6d). Here, we have leveraged genome editing and Hi-

C for multiplexed characterization of the inserted putative boundary DNA element’s effects 

on the human genome—creating de novo domains that display multiple important features 

of chromatin architecture. This work demonstrates that it is feasible to harness short DNA 

insertions to explore a diverse genomic space towards understanding how sequence and 

context together influence genome architecture, and ultimately towards rationally 

engineering the 3D genome.
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Methods

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Methods (Experiments)

HAP1 cell culture and maintenance—HAP1 cells22 (a kind gift from Bas van Steensel 

through the 4D Nucleome consortium) were cultured in IMDM with 10% FBS and 1% 

penicillin/streptomycin at 37°C with 5% CO2. To enrich near-haploid population, HAP1 

cells were routinely stained with a cell-permeant dsDNA dye, followed by fluorescence 

assisted cell sorting (FACS). Briefly, HAP1 cells were trypsinized, pelleted, counted using a 

hemocytometer, and re-suspended at a density of 1 million cells/ml growth medium 

containing 10 μg/ml Hoechst 33342 (Thermo Fisher, H3570) for 30 minutes. Stained cells 

were then pelleted, resuspended in 1 ml MACS buffer (1× PBS pH 7.2, 0.5% BSA and 2 

mM EDTA), and subsequently sorted on a MoFlo Astrios (Beckman Coulter). The sorting 

gate was stringently set to enrich cells with half of the DNA content of a diploid (2n) cell 

line (HUDEP-268) at G1. Growth medium was then added to sorted cells for continued 

culture.

Sleeping Beauty transposon genome editing—The candidate 2-kb DNA (see 

Methods section “Boundary-underlying DNA selection”) was PCR-ed (primer sequences 

in Supplementary Table 2) with HAP1 gDNA as the template, and was cloned into pSA-

MCS69 (a kind gift from Alessandra Recchia and Zoltán Ivics, this plasmid can be requested 

from them upon ordering Addgene plasmid 26557 and finishing the MTA for it), to generate 

pSA-MCS-2kb (Plasmid sequence GenBank file: Supplementary Data 1). HAP1 cells were 

co-transfected with the two components of the Sleeping Beauty transposon system: the 

transposon vector with the 2-kb insert, pSA-MCS-2kb, and the transposase vector, 

pCMV(CAT)T7-SB10021 (a kind gift from Zoltán Ivics and Zsuzsanna Izsvák, Addgene 

plasmid 34879), together with pmaxGFP (Lonza), using Nucleofector Kit L (Lonza) and the 

program X-001 on an Amaxa electroporator (Lonza). 24 hours after transfection, the top 1% 

GFP+ transfected HAP1 cells were sorted on a FACSJazz sorter (BD Biosciences) as single 

cells into five 24-well plates, as well as a pooled population (~340 cells). 34 single-cell 

clones recovered after sorting. gDNA was harvested from sorted clonal and pooled 

populations as they continued to expand.

Insertion copy number estimation—To screen for single-cell clones with higher 

transposition copy numbers, real-time PCR was performed using gDNA from edited single-

cell clones, with two primer pairs (IR-qPCR-1 and IR-qPCR-2, Supplementary Table 2) 

targeting the Inversed Repeat regions that are part of each transposition flanking the 2-kb 

insert, but not in the endogenous genome, as well as another primer pair (hCD4, 

Supplementary Table 2) targeting an endogenous genome locus. The estimated insertion 

copy number was then calculated using the following formula:
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Est . Ins . Copy . Num = mean(2CtIR − 1 − CtCD4
2 , 2CtIR − 2 − CtCD4

2 )

Insertion copy number for the sorted, pooled and transfected HAP1 population was also 

estimated using this approach.

Insertion site mapping and validation—Capture using biotinylated oligonucleotides 

and pull-down with streptavidin beads were used to map transposon insertion sites as 

outlined in Extended Data Figure 1b. Specifically, for each clone chosen to have its 

transposition sites mapped, 8 μg of gDNA, prepared with PureLink™ Genomic DNA Mini 

Kit (Thermo Fisher, K182001), was sonicated at 100% amplitude, 30 seconds on/30 seconds 

off, for 40 minutes, in a bath sonicator (QSonica Q800R3). Sonicated DNA was cleaned up 

using AMPure XP beads (Beckman Coulter), End Repaired, dA-Tailed (NEBNext® 

Ultra™), adaptor ligated, indexed (NEBNext® Multiplex Oligos for Illumina®), and P5/P7 

amplified (NEBNext® Q5® Hot Start HiFi PCR Master Mix). This library prepared DNA, 

dried in a PCR machine with the tube cap open, was resuspended in 7.5 μl NimbleGen 2× 

Hybridization buffer, 3 μl NimbleGen Hybridization Component A, and 2.5 μl nuclease-free 

water, and incubated for 10 minutes at room temperature. Resuspended DNA was then 

denatured at 95°C in a PCR machine for 10 minutes. 2 μl 1.5 μM 5’ biotinylated 

hybridization oligonucleotide (IR_Junc_Hyb, Supplementary Table 2), which targets the 

Inversed Repeat regions immediately proximal to the endogenous genome, was subsequently 

added. After vortexing for a few seconds and spinning down, the mixture was incubated in a 

PCR machine at 47°C (lid temperature 57°C) overnight. Each mixed library DNA and 

biotinylated hybridization oligonucleotide was then added to 40 μl washed Dynabeads™ 

MyOne™ Streptavidin C1 (Thermo Fisher 65001) at 47°C in a thermomixer for 1 hour. 

With 100 μl pre-heated 1× Wash Buffer I added to the beads-DNA mixture, the tubes were 

vortexed and placed on a magnetic stand, with the supernatant containing unbound DNA 

subsequently removed. DNA-bound streptavidin beads were then washed twice with 

Stringent Wash Buffer, followed by one wash each with Wash Buffers I, II and III (all Wash 

Buffers, together with NimbleGen 2× Hybridization buffer and Nimblegen Hybridization 

Component A, were supplied in the SeqCap EZ Hybridization and Wash Kits, Roche 

NimbleGen, 05634261001). Hybridized DNA was eluted off the beads with 25 μl 0.125 M 

NaOH, neutralized with 25 μl 1 M Tris-HCl, pH 8.8, followed by AMPure XP beads 

cleanup. Eluted DNA was then enriched with PCR using P5/P7 primers (NEBNext® Q5® 

Hot Start HiFi PCR Master Mix), for 12 cycles. PCR-enriched pulldown DNA underwent an 

additional round of biotinylated oligonucleotide hybridization and streptavidin beads 

pulldown as described above. Pulldown enrichment was confirmed using qPCR prior to 

Illumina sequencing. After the insertion sites are mapped (see “Insertion-site mapping” in 

Methods (Analyses) section), the location and orientation of each insertion was validated via 

targeted PCR.

In situ Hi-C—In situ Hi-C was performed as previously described4, 9, 70. Briefly, ~10 

million HAP1 cells, WT, Clone 21, Clone 25 and all the CRISPR-edited subclones were 

crosslinked in 2% formaldehyde at room temperature for 10 minutes, and then quenched in 
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0.125 M glycine for 5 minutes, on an orbital shaker. Cells were then transferred from a 

culture flask to a 15 ml tube, pelleted, washed with 1 ml cold PBS, transferred to an 

Eppendorf tube, pelleted, resuspended in 1 ml cold Cell Lysis Buffer (10 mM Tris pH 8.0, 

10 mM NaCl, and 0.2% NP-40/Igepal), and incubated on ice for 10 minutes. Nuclei were 

then pelleted, washed once using 800 μl NEBuffer™ DpnII, pelleted, and resuspended in 

500 μl NEBuffer™ DpnII. A final concentration of 0.3% SDS was added, and samples were 

incubated at 37°C, 950 rpm for 1 hour in a thermomixer. A final concentration of 1.8% 

Triton X-100 was then added to each sample, which was subsequently incubated at 37°C, 

950 rpm for 1 hour. 40 μl nuclease-free water, as well as 300 U DpnII (NEB R0543M), was 

added, and samples were digested at 37°C, at 950 rpm overnight in a thermomixer. Another 

300 U DpnII were added for an additional 4 hours of digestion with mixing. The samples 

were then incubated at 65°C, 950 rpm for 20 minutes. Nuclei were then pelleted, 

resuspended in 1× NEBuffer™ 2, with biotin-14-dATP, dTTP, dCTP and dGTP and DNA 

polymerase I, Large (Klenow) Fragment (NEB M0210), and incubated at 37°C, 950 rpm in a 

thermomixer for 90 minutes. Ligation reaction was subsequently carried out in a total 

volume of 1.2 ml with 4,000 U T4 DNA Ligase (NEB) at 16°C for 4 hours, followed by 30 

minutes at room temperature. 20 μl of 20 mg/ml Proteinase K and 120 μl of 10% SDS were 

then added to each sample, followed by crosslinking reversal at 65°C overnight. An 

additional 10 μl proteinase K was added to each sample, which was incubated at 55°C for 2 

hours. 2 μl DNase-free RNase was added to each sample, followed by incubation at 37°C for 

30 minutes. Phenol-chloroform extraction was performed to purify DNA.

DNA was sonicated to 200–300 bp in a bath sonicator (QSonica Q800R3), followed by 

beads clean-up. Biotinylated nucleotides-filled ligation junctions were pulled down with 50 

μl Dynabeads™ MyOne™ Streptavidin C1 (Thermo Fisher 65001). Sequencing libraries 

were subsequently prepared as described above in the “Insertion site mapping and 
validation” section: End Repair, dA-Tailing, adaptor ligation, followed by 6 cycles of 

indexing PCR.

The quality and size of each library was evaluated using the Agilent Bioanalyzer 2100 

(Agilent Technologies, Santa Clara, CA), followed by quantitation using real-time PCR 

using the KAPA Library Quant Kit for Illumina (KAPA Biosystems, KK4835). Libraries 

were then pooled and sequenced in paired-end mode on the NextSeq 500 to generate 2 × 75 

bp reads using Illumina-supplied kits as appropriate.

Capture-C—Capture-C was performed as previously described36, 70, 71. Briefly, ~10 

million cells HAP1 cells were crosslinked in 1% formaldehyde at room temperature for 10 

minutes, and then quenched in 1 M glycine for 5 minutes, on an orbital shaker. Cells were 

then pelleted, washed with 1 ml cold PBS, transferred to an Eppendorf tube, pelleted, 

resuspended in 1ml cold Cell Lysis Buffer (10 mM Tris pH 8.0, 10 mM NaCl, and 0.2% 

NP-40/Igepal), and incubated on ice for 10 minutes. Nuclei were then pelleted, washed once 

using NEBuffer™ DpnII, pelleted, and resuspended in 500 μl NEBuffer™ DpnII. Samples 

were incubated in 0.3% SDS at 37°C, 950 rpm for 1 hour in a thermomixer, followed by the 

addition of a final concentration of 1.8% Triton X-100, for 1 hour at 37°C, 950 rpm. After 

adding 40 μl water, 300 U DpnII was added for in situ digestion at 37°C, overnight. An 

additional 300 U DpnII was then added, and samples were incubated for 4 more hours at 
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37°C, followed by 20 minutes at 65°C, 950 rpm. Nuclei were pelleted, resuspended in a total 

volume of 1.2 ml with 4,000 U T4 DNA Ligase (NEB), and incubated at 16°C for 4 hours 

and then at room temperature for 30 minutes. 20 μl of 20 mg/ml Proteinase K and 120 μl of 

10% SDS were added, and samples were incubated at 65°C overnight to reverse 

crosslinking. An additional 10 μl proteinase K was added to each sample for 2 more hours at 

55°C. 2 μl DNase-free RNase was added to each sample, followed by incubation at 37°C for 

30 minutes. DNA was then extracted with phenol-chloroform.

DNA was sonicated to 200–300 bp in a bath sonicator (QSonica Q800R3), followed by 

beads clean-up. Sequencing libraries were subsequently prepared similarly as described in 

“Insertion site mapping and validation” section: End Repair, dA-Tailing, adaptor ligation, 

6 cycles of indexing PCR, and 6 cycles of amplification using P5/P7.

After sequencing library preparation, two rounds of target enrichment/capture were carried 

out using biotinylated hybridization oligonucleotides (sequences in Supplementary Table 2) 

similarly as described in “Insertion site mapping and validation” section. Pulldown 

enrichment was confirmed using qPCR. Target enriched libraries were quality checked and 

quantified as in situ Hi-C samples prior to 2 × 75 bp sequencing on the Illumina NextSeq 

500.

ChIP—Chromatin immunoprecipitation (ChIP) was performed as previously described72, 

using the 10 μg/ChIP H3K27ac antibody (Active Motif 39685), 10 μL stock/ChIP CTCF 

antibody (Millipore 07–729) and 10 μg/ChIP Rad21 antibody (abcam ab992). Briefly, ~20 

million HAP1 cells were fixed in 1% formaldehyde in fresh culture medium at room 

temperature for 10 minutes, followed by quenching in 1 M glycine for 5 minutes. 

Crosslinked cells were lysed for 10 minutes in 1 ml cold Cell Lysis Buffer (10 mM Tris pH 

8.0, 10 mM NaCl, and 0.2% NP-40/Igepal), supplied with Protease Inhibitors (Sigma-

Aldrich P8340) and phenylmethylsulfonyl fluoride (PMSF). Nuclei were pelleted, 

resuspended in 1ml room temperature Nuclei Lysis Buffer (50mM Tris pH 8, 10 mM EDTA, 

1% SDS), with Protease Inhibitors and PMSF, and were incubated on ice for 20 minutes. 

The samples were sonicated at 100% amplitude, 30 seconds on/30 seconds off, for 45 

minutes, in a bath sonicator (QSonica Q800R3). Sonicated materials were centrifuged, with 

the supernatant subsequently collected, and diluted with 4ml IP Dilution Buffer (20 mM Tris 

pH 8, 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.01% SDS), with Protease Inhibitors 

and PMSF. 50 μl protein A/G agarose beads (Thermo Fisher 15918014, Thermo Fisher 

15920010) and 50 μg isotype-matched IgG control were added to sonicated chromatin to 

pre-clear it for >2 hours at 4°C. Beads were then spun down, with 200 μl supernatant 

containing pre-cleared chromatin saved as “input” before immunoprecipitation. The 

remaining pre-cleared chromatin was split into equal volumes, each incubated with antibody 

or 10 μg/ChIP isotype-matched control (mouse IgG (Sigma I8140) or rabbit IgG (Sigma 

I8765)) pre-bound protein A/G beads, and rotated overnight at 4°C.

Chromatin-bound beads were washed on ice, once with IP Wash 1 (20 mM Tris pH 8, 2 mM 

EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), twice with High Salt Buffer (20 mM 

Tris pH 8, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.01% SDS), once with IP Wash 

2 (10 mM Tris pH 8, 1 mM EDTA, 0.25 M LiCl, 1% NP-40/Igepal, 1% sodium 

Zhang et al. Page 13

Nat Genet. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deoxycholate), and twice with TE. Beads were then moved to room temperature, and were 

eluted twice with a total volume of freshly prepared 200 μl Elution Buffer (100 mM 

NaHCO3, 1% SDS). Into each IP and input, 12 μl 5 M NaCl and 2 μl RNase A (10 mg/ml, 

Roche through Sigma 10109169001) were added, and samples were incubated at 65°C 

overnight. 3 μl proteinase K (20 mg/ml, Roche through Sigma 3115879) was then added, for 

an additional 2 hours at 65°C. DNA was column cleaned up using a QIAquick PCR 

Purification Kit (QIAGEN 28106).

For ChIP-sequencing, library construction was performed using Illumina’s TruSeq ChIP 

sample preparation kit (Illumina IP-202–1012), followed by size selection using SPRIselect 

beads (Beckman Coulter, B23318). Libraries were quality checked, quantified prior to 1 × 

75 bp sequencing on the Illumina NextSeq 500.

RNA-seq—HAP1 cells were washed with PBS, and resuspended in 1 ml TRIzol (Thermo 

Fisher), with 200 μl chloroform then added. RNA was extracted using RNeasy Mini Kit 

(Qiagen). For the initial round of WT and transposon-engineered cell lines, sequencing 

libraries were constructed from 500 ng of DNase-treated, total RNA using the ScriptSeqv2 

Complete Kit (Illumina BHMR1224). Briefly, the RNA was depleted of rRNA using the 

Ribo-Zero removal reagents and fragmented. First strand cDNA was then synthesized using 

a 5’ tagged random hexamer and reverse transcription, followed by annealing of a 5’ tagged, 

3’-end blocked terminal-tagged oligonucleotide and second strand synthesis. The Di-tagged 

cDNA fragments were purified, barcoded, and PCR-amplified for 15 cycles. For the 

subsequent CRISPR-edited clones, as the ScriptSeqv2 Complete Kit was discontinued, 

TruSeq Stranded Total RNA (Illumina: 20020598) was used per manufacturer’s instructions, 

which relies on a dUTP-based second strand synthesis to preserve the strandedness of RNA. 

Libraries were quality checked and quantified prior to 2 × 76 bp sequencing on the Illumina 

NextSeq 500.

RT-qPCR—Extracted RNA was reverse transcribed using iScript Reverse Transcription 

Supermix (Bio-Rad), which contains a combination of oligodT and random primers. qPCR 

was carried out with Power SYBR Green (Thermo Fisher). Transcripts were normalized 

relative to the geometric mean of Cts of 11 housekeeping genes. Supplementary Table 2 

contains all RT-qPCR primer sequences.

CRISPR genome editing—The guide RNA (gRNA) targeting the CBS within the 2-kb 

insert was designed using the Benchling CRISPR gRNA design tool. Oligos (Supplementary 

Table 2) encoding this gRNA were annealed and cloned into a plasmid co-expressing Cas9 

and gRNA, with GFP, modified from pX330 (Addgene, 42230). Clone 21 HAP1 cells were 

transfected with this pX330 using Nucleofector Kit L (Lonza) and program X-001 on an 

Amaxa electroporator (Lonza). 24 hours post-transfection, GFP+ cells were sorted on a 

FACSJazz sorter (BD Biosciences) as single cells, which were expanded as clonal 

populations and subsequently subcloned. To genotype genome edits at each transposon 

insertion locus, PCR, Sanger sequencing, and Inference of CRISPR Edits73 were performed. 

Clones with CBS disruptions at insertion loci where new domains had formed were 

identified for downstream characterizations. A CRISPR RNP-based74 paired-cut approach 

was used for subsequent rounds of editing. For TSS editing, TSS- cells were derived from 
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Clone 21 cells, whereas CTCF-/TSS- cells were derived from the subclone with CBS 

disruptions at the C21S2 and C21S4 insertion loci that was previously derived from Clone 

21. Cells with the deletion of the endogenous 2-kb element (WT 2kb Del) were derived from 

WT cells. Specifically, 150 pmol per sgRNA (2 sgRNAs, thus 300 pmol in sgRNA) 

(Synthego) along with 150 pmol spCas9 protein (Synthego) were mixed and incubated at 

room temperature for 10 minutes. The RNP mixture was then added to Nucleofector Kit L 

solution (Lonza) with 2 μg pmaxGFP plasmid (Lonza), this transfection solution was then 

added to ~1 million trypsinized and pelleted HAP1 cells. The resuspended cells were 

transfected using program X-001on an Amaxa electroporator. GFP+ (likely transfection-

positive) cells were FACS sorted the next day as a pooled population. This transfected 

population was then FACS sorted into single cells ~4–5 days later. After ~2 weeks of 

growth, clonal cells were characterized by RNA using RT-qPCR (TSS-edited) and DNA (for 

2-kb deleted and selected TSS-edited clones with decreased transcription). Clonal cells with 

TSSs edited at both C21S2 and C21S4 insertion loci, along with clones with a complete 2-

kb deletion were expanded for further characterizations.

Methods (Analyses)

Boundary-underlying DNA selection—The selection process was summarized in 

Supplementary Figure 1a. Briefly, K562 boundary coordinates (hg19) were obtained from 

the domain calls using Arrowhead4 (GEO: GSE63525), with domain start and end 

coordinates extended 5 kb both upstream and downstream. Human Embryonic Stem Cells 

(hESC) boundary coordinates were obtained from the domain calls using the Directionality 

Index (DI)3 (http://chromosome.sdsc.edu/mouse/hi-c/download.html), with domain start and 

end coordinates extended 20 kb both upstream and downstream. K562 and hESC boundaries 

were intersected using BEDTools75. This shared list of boundaries was then intersected with 

K562 CTCF ChIP-seq peaks67, 76 (DCC accession: ENCSR000EGM, Michael Snyder Lab, 

ENCODE Consortium), narrowing down to a list of shared boundaries with K562 CTCF 

binding. This list was subsequently intersected with the top 100 K562 CTCF binding sites 

ranked by the number of co-bound putative architectural proteins24. The boundary at 

chr3:~183,600,000 was chosen as the candidate domain boundary, following visual 

examinations of K562 Hi-C heatmap4 (GEO: GSE63525). As shown in Supplementary 

Figure 1, this candidate boundary was further confirmed to be present in GM12878, HMEC, 

HUVEC, IMR90 and NHEK cell lines4 (GEO: GSE63525), and by additional analytical 

methods77, 78 such as Insulation Score79 and Armatus80. The top 100 K562 CTCF binding 

site ranked by architectural proteins co-occupancy at this boundary was verified to have the 

bindings of CTCF (DCC accession: ENCSR000AKO, Bradley Bernstein Lab, ENCODE 

Consortium), SMC3 (DCC accession: ENCSR000EGW, Michael Snyder Lab, ENCODE 

Consortium), RAD21 (DCC accession: ENCSR000FAD, Sherman Weissman Lab, 

ENCODE Consortium) and Pol2 (DCC accession: ENCSR000FAY, Sherman Weissman 

Lab, ENCODE Consortium) in K562 (Supplementary Fig. 1c). In HAP1, similarly, this site 

was also bound by CTCF and SMC123 (GEO: GSM2493878 and GSM2493882). The 

candidate 2-kb DNA fragment was chosen to have the CTCF-Cohesin binding site in the 

middle; it also contains a TSS of a housekeeping gene: PARL81.
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Insertion-site mapping—Demultiplexed Illumina sequencing reads underwent adapter 

trimming, with read pairs removed if both reads mapped to the Inversed Repeat. Read1 of 

the remaining read pairs were further filtered to those that had a partial match to the Inversed 

Repeats, with right-trimming performed to remove these Inverse Repeats sequence 

fragments. All these steps were carried out using the BBDuk tool (https://jgi.doe.gov/data-

and-tools/bbtools/bb-tools-user-guide/bbduk-guide/). Adapter- and Inverse Repeats-trimmed 

sequence fragments were then mapped to hg19 using Bowtie 282. Resulting SAM files were 

converted to BAM files, which were then sorted, both using SAMtools83. Genome-wide 

coverage was then obtained using BEDTools75. Genome coordinates with > 25× coverage 

were visualized as peaks, and the insertion sites were identified to be between the two bases 

with the highest coverage in each peak. Each insertion site was subsequently validated using 

targeted PCRs.

Hi-C data processing—Two replicates of each sample, WT, Clone 21, Clone 25 and all 

the CRISPR-edited subclones underwent a pilot sequencing run, generating at least ~30 

million raw reads for each replicate. Reads from each replicate were then mapped to hg19 

using Bowtie 282. Detection and filtering of valid interaction pairs, assignment to restriction 

fragment and binning, and interaction matrix balancing with iterative correction and 

eigenvector decomposition (ICE)84 were all performed using the HiC-Pro pipeline85. With 

each replicate of a given sample having highly reproducible metrics: >~58% valid 

interaction pairs-raw read pairs ratio, <~18% trans interaction, and contact ranges of 

interaction pairs, two replicates of the sample were subsequently pooled for further analysis. 

Deeper sequencing was subsequently performed to yield ~248–300 million raw reads for 

each sample (with subsampling performed where necessary), generating ~161–173 million 

valid interaction pairs per sample, after HiC-Pro processing (Supplementary Table 3). ICE 

balanced interaction matrices were binned at 20-kb resolution, and used for downstream 

analyses, unless otherwise specified. Genome-wide Hi-C contacts Pearson correlations 

between two samples were calculated on non-empty bins shared between two samples.

Heatmap generation—To generate heatmaps for each insertion site, ICE balanced 

matrices for the clone with the insertion, the subclones with edited derivatives, as well as for 

WT and the other clone without the insertion at this position, were extracted with the 

insertion bin in the middle and with 150 bins (3 million bps) on either side of it. These 

extracted matrices, adjusted for minor coverage differences via division by a scaling factor 

reflective of the total number of valid interactions, were plotted using lib5C86, whose 

dependencies include pandas, scipy and numpy, in linear scale using color scheme “red8” 

from matplotlib87, highlighting a megabase-scale region centering around each insertion. 

Linear features extracted as .BedGraph from BigWig format using UCSC kentUtils 

accompanying each Hi-C heatmap included: CTCF motif orientation, obtained through 

PWMScan88, using the JASPAR 201889 CTCF motif, with p-value cutoff 5 × 10−5 and 

overlapped with CTCF peaks identified from our ChIP-seq data with a signal cutoff of 20; 

RNA-seq, eigenvectors reflective of compartment states; and CTCF & RAD21 ChIP-seq.

Insulation score—Insulation score computations were implemented in R mechanistically 

similar to those in Crane et al., 201579. Given an ICE balanced interaction matrix with the 
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insertion bin at the center, averaged interactions within a sliding window of 10 bins by 10 

bins (15 bins by 15 bins when the insert was at a pre-established boundary), were recorded 

for each bin along the diagonal of interaction matrices. The insulation score for each 

diagonal bin was then normalized to all insulation scores across its nearby 240 bins (4.8 Mb 

chromosomal region), with the log2 ratio subsequently calculated. Positive log2 values 

indicate relatively enriched interactions, whereas negative log2 values suggest relatively 

depleted interactions, with local minima marking domain boundaries. Shared domain 

boundaries genome-wide among WT and insertion clones were identified similarly: 

averaged interactions within a sliding window of 10 bins by 10 bins, log2 after normalized to 

all scores chromosome-wide, and local minima determined, with a minimum domain size of 

4 bins (80 kb).

Compartment analysis—After HiC-Pro processing, allValidPairs format was converted 

to .hic format using Juicer Tools90. Eigenvectors, the first principal component of the 

distance-adjusted correlation matrix, were calculated for the each of the selected 

chromosomes in cis (intrachromosomal) with insertions with KR normalization at 50-kb 

resolution using Juicer Tools90. The signs were manually adjusted when necessary to reflect 

active/inactive chromatin states, based on H3K27ac ChIP and RNA-seq data we generated. 

Adjusted eigenvalues around the insertions were then plotted.

Capture-C—Two biological replicates for were performed for parental WT cells and for 

most cell lines. In subclones with the deletion of TSS and the deletions of both CBS and 

TSS, four biological replicates were performed. Raw reads were processed using published 

scripts71. Briefly, Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/), a wrapper for FastQC and Cutadapt91, was used to access the quality and to 

trim adapter sequences of raw sequences. Trimmed reads were then merged or interleaved 

using FLASH92. Once concatenated, the reads were in silico DpnII digested, aligned to 

hg19, and analyzed using CCanalyser371. Interactions were then pooled from all replicates 

for each genotype and were normalized to total interactions. To compare how the insertion 

element and its edited derivatives alter how the immediate insertion-proximal chromatin 

folds, we used Directionality Indexs3 to quantify directional interaction preference over a 

series of distance ranges. Specifically, we focus on the restriction fragment targeted by the 

capture oligonucleotides as the center, and computed its Directionality Index for each of the 

distance range of 50 kb, 100 kb, 250 kb, 500 kb, and 1 Mb, respectively, using the equation3:

DI = (B − A)
B − A

A − E 2
E + B − E 2

E

where B is the sum of the captured fragment’s normalized interactions to the right (in 

increasing genome coordinate) within a given distance range, while A is the sum of the 

captured fragment’s normalized interactions to the left (in decreasing genome coordinate). E 

is the expected number of contacts under null hypothesis, showing no contact preference: E 

= (A + B)/2. Conceptually, this quantification approach detects at which distance did the 

directional contact preference introduced by the inserted CBS/TSS, CTCF-, TSS-, or CBS-/

TSS- elements emerges, propagates or reduces.
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ChIP-seq—Raw sequencing reads (Supplementary Table 4) were mapped to hg19 using 

Bowtie93. SAM files were converted to BAM files using SAMtools. For histone marks 

(H3K27ac), BAM files were converted to Wiggle using MACS94, and subsequently 

converted to bigWig for visualization. BAM files were converted to BED for subsequent 

peak calling using Sicer95. For transcription factors or factors with narrower peaks as in 

CTCF and RAD21 in our case, MACS was used for peak calling and for generating Wiggle 

files. For the ChIP-seq data tracks visualized in detail (such as those in Figs. 3, 4 and 5), 

bamCoverage from Deeptools96 was used to generate counts-per-million (CPM)-normalized 

bigWig files from bam files. The CPM-normalized bigWig files were converted to bedgraphs 

to accompany Hi-C heatmaps. DiffBind97 was used for differential binding analysis of 

CTCF and RAD21 near insertions. Comparisons between Clone 21 and Non-Clone 21, 

which consists of 3 cell lines without Clone 21 insertions: WT, WT with the deletion of the 

endogenous 2 kb (WT 2 kb Del), and Clone 25, each with 2 ChIP-seq replicates, were 

performed using the consensus peak set which includes peaks identified in at least 2 

replicates and re-centered to include 250 bp upstream and downstream from consensus 

summits. Each pairwise comparison between Clone 21 CTCF/TSS and other CRISPR 

subclones derived from it was based on 2 ChIP-seq replicates of each cell line (genotype). 

The consensus peak set for these comparisons includes peaks identified in at least 3 

individual replicates among ChIP-seq data of the same factor for all samples, with each peak 

again re-centered to include 250 bp upstream and downstream from a consensus summit. P-

values are derived after performing a negative binomial Wald test through DiffBind97 (http://

bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf).

RNA-seq—Two biological replicates were performed for each cell line. For differential 

expression (DE) analysis, reads were mapped to the indexed Ensembl hg19 transcriptome 

(GRCh37.67) and quantified using Salmon98. Transcript-level quantifications were then 

imported in R, using tximport99, for gene-level (EnsDb.Hsapiens.v75) measurements with 

DESeq2100. Genes with less than 10 reads were excluded from downstream DE analysis. 

DESeq2 was performed to identify DE genes between Clone 21 and non-Clone 21, and 

between Clone 25 and non-Clone 25, at an FDR < 0.01.

For RNA-seq analysis for genome tracks visualization, the sequence reads were processed 

using the ENCODE long RNA-Seq pipeline (https://www.encodeproject.org/pipelines/

ENCPL002LPE/). Briefly, raw sequencing reads were initially accessed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Mapping to hg19 was 

performed using STAR101, with the default normalization reads per million mapped reads 

(RPM, or CPM) unchanged. Resulting bedGraph files were then converted to bigWig format 

for genome browser visualization with strand specificity. Insertion-proximal regions were 

extracted from bigWig files as bedGraph to accompany Hi-C heatmaps.

Recent evolution of the mouse architectural genome—Ancestral CTCF binding, 

defined as CTCF peaks shared among humans, macaques, mice, rats and dogs, and 

presumably in their common placental ancestor, was obtained from Schmidt et al., 201256 

(ftp://ftp.ebi.ac.uk/pub/databases/vertebrategenomics/FOG03/calls/CTCF_mouse_5way.gff). 

More recent, highly rodent-specific, CTCF-Pol III TSS insertions expanded by SINE B2 
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elements, was obtained from Thybert et al., 201858 (ftp://ftp.ebi.ac.uk/pub/databases/

vertebrategenomics/FOG21/repeatPeaks/mus_musculus_RepeatAssociated.txt). These two 

CTCF peak lists were intersected with CTCF binding in G1E-ER4 cells102, a mouse 

erythroid cell line, for which we have generated both CTCF binding and in situ Hi-C data54, 

to obtain ancestral CTCF peaks as well as recently gained, rodent-specific SINE B2 CTCF 

binding for downstream analysis. Mouse genome domain boundaries (20-kb resolution) 

were obtained using 3DNetMod103 on in situ Hi-C data54 from G1E-ER4 cells. Putative 

recently gained genome domain boundaries associated with SINE B2 CTCF expansion were 

defined as boundaries that colocalize with SINE B2 CTCF binding, and not with ancestral 

CTCF binding. TSS annotations were obtained from intersecting RefSeq and UCSC known 

genes databases, with 1 bp upstream output. All SINE B2 CTCF sites were then grouped by 

nearby TSS density: the number of TSSs within a 200-kb window. Finally, Fisher’s exact 

test (two-sided) was used to test whether CTCF-bound SINE B2 insertions into regions with 

0 TSSs and with ≥ 11 TSSs within a 200-kb range differentially colocalize with putative 

recently gained, SINE B2 CTCF-associated domain boundaries, based on a 2-by-2 

contingency table.

Reporting Summary—Further information on research design is available in the Nature 

Research Life Sciences Reporting Summary linked to this article.

Data availability—All main, extended data and supplementary figures include publicly 

available data. All Hi-C, Capture-C, RNA-seq, ChIP-seq, and other applicable next-

generation sequencing raw data and processed data generated from this study are available 

under accession GSE137376 (GEO database). Mouse CTCF ChIP-seq and mouse Hi-C 

domain boundaries (both asynchronous) shown in Figure 6a-c are derived from Zhang et. al., 

2019 (DOI: 10.1038/s41586-019-1778-y), accession number GSE129997 (GEO database). 

In Supplementary Figure 1: Hi-C heatmaps from all cell lines, except for HAP1, are from 

GEO: GSE63525 by Rao et. al., 2014 (DOI: 10.1016/j.cell.2014.11.021); K562 ChIP-seq 

data are from ENCODE, CTCF (DCC accession: ENCSR000AKO), SMC3 (DCC accession: 

ENCSR000EGW), RAD21 (DCC accession: ENCSR000FAD) and Pol2 (DCC accession: 

ENCSR000FAY).

Code availability—Code used in this study is available upon request as well as on GitHub 

(https://github.com/dizhmp/boundary-insertion).
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Extended Data

Extended Data Fig. 1: 
Generation and characterization of transposon genome-edited clones with multiple 

insertions.

a, Estimated insertion copy numbers using qPCR (see Methods) after transposon insertion in 

pooled cells and in single-cell-derived clones (numbered). N=1 qPCR measurement.
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b, Insertion site mapping: fragmented gDNA containing insertions are captured by 

biotinylated oligos capturing the inversed repeats (green rectangles), which flank the 2 kb 

element (orange rectangles). Junction reads are mapped to identify insertion sites.

c, Junction read coverage for Clone 21: horizontal axis denotes genomic coordinates (single 

nucleotide resolution) with > 25X coverage; vertical axis shows read coverage. The spike in 

the middle of each peak consists of two neighboring nucleotides between which an insertion 

is located. Data from N=1 experiment.

d, The locations and orientations of Clone 21 insertion sites. The CBS and TSS are in cis 
(Fig. 1a). “→” denotes that the CBS is on the plus strand and that the TSS transcribes from 

left to right, and vice versa for “←”. Each insertion site orientation was confirmed in (g).

e, Junction read coverage for Clone 25, similar to (c). Data is from N=1 experiment.

f, The locations and orientations of Clone 25 insertion sites, similar to (d).

g, Insertion-driven transcription in both directions/strands measured by quantitative PCR 

with reverse transcription (RT-qPCR). Transcript levels were normalized relative to the 

geometric mean of the Ct values of 11 housekeeping genes. N=2 independent experiments 

for each genotype.
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Extended Data Fig. 2: 
Insertion-driven new domains: detailed comparisons (an extension to Figure 1).

Throughout, red arrow: insertion site; green arrow: upstream or downstream CBSs; blue/

purple arrow: nearby boundaries; orange arrowhead in the browser tracks: site and 

orientation of the insertion. Green lines demarcate new domains. Yellow/green rectangles 

(squares) indicate regions with overall depleted (enriched) contacts upon insertion.

(a) and (b): related to Fig. 1b-c
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a, An extension to Fig. 1b showing Hi-C maps for both no-insertion controls (left and 

middle) and the insertion clone (right) at C21S4, each accompanied by corresponding data 

tracks.

b, Log2 fold changes in interaction frequencies between two no-insertion controls (left), and 

between the insertion clone and no-insertion controls (middle and right) for the region in (a). 

Yellow/green rectangles: depleted interactions upon insertion; yellow/green squares: 

increased interactions between two B-compartment domains partitioned by the new domain 

with A compartment signature.

(c) and (d): related to Fig. 1d-e.

c, An extension to Fig. 1d showing both no-insertion controls at C21S2.

d, Log2 fold changes in interaction frequencies between no-insertion controls and between 

insertion and no-insertion controls for the region in (c).

(e) and (f): related to Fig. 1f-g.

e, An extension to Fig. 1f showing both no-insertion controls at C21S5.

f, Log2 fold changes between no-insertion controls and between insertion and no-insertion 

controls for the region in (e).

Each Hi-C heatmap presents merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were performed for 

each genotype, with 1 of each displayed.
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Extended Data Fig. 3: 
Additional insertion loci with possible domain-level changes.

Throughout, red arrow: insertion site; green or blue arrow: nearby boundaries; orange/blue 

arrowhead in the browser tracks: site and orientation of insertion. Green lines demarcate 

(possible) new domains. Yellow/green rectangles indicate regions with overall depleted 

contacts upon insertion.
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a, De novo domain upon insertion at C21S1: Hi-C maps for both no-insertion controls (left 

and middle) and the insertion clone (right) at C21S1, each accompanied by corresponding 

data tracks.

b, Insulation scores for the region in (a).

c, Log2 fold changes in interaction frequencies between the two no-insertion controls (left) 

and between the insertion clone and no-insertion controls (middle and right) for the region in 

(a).

d, A small subtle domain forms upon insertion at C25S3 locus.

e, Insulation scores for the region in (d).

f, Log2 fold changes in interaction frequencies for the region in (d).

g, Modest strengthening of an existing boundary upon insertion at C25S4.

h, Insulation scores for the region in (g).

i, Log2 fold changes for the region in (g).

j, Subtle strengthening of an existing boundary upon insertion at C25S1. The black 

arrowheads point at insertion-associated changes.

k, Insulation scores for the region in (j).

l, Log2 fold changes for the region in (j).

Each Hi-C heatmap presents merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were performed for 

each genotype, with 1 of each displayed.
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Extended Data Fig. 4: 
An ectopic insertion can redirect its local chromatin from B to A compartment.

Throughout, left: compartment eigenvectors (cyan denotes B compartment; red denotes A 

compartment) for the ~14 Mb region marked by the green rectangle on the chromosome 

diagram; middle: Hi-C heatmaps for this ~14 Mb region surrounding C21S4; right: distal 

interactions between this ~14 Mb region and a ~40 Mb region downstream marked by the 

purple rectangle. Black arrows: compartment switch; orange arrowhead: location of the 

insertion; black arrowhead: corresponding locations in no-insertion controls.
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a, No-insertion control 1 (WT) at C21S4.

b, No-insertion control 2 (Clone 25) at C21S4.

c, Insertion clone (Clone 21) at C21S4: compartment eigenvectors demonstrate the insertion 

locus trending from a strong B compartment towards A as the largest change in the region. 

The Hi-C heatmap for the ~14 Mb with the insertion at the center shows a plaid like pattern, 

with gained interactions between the insertion locus and its nearby A compartment regions. 

Distal interactions (right) shows the insertion locus forming distal interactions with other A-

compartment regions (black arrows), which are absent in (a) and (b).

Each Hi-C result depicts merged data from 2 independent Hi-C experiments for each 

genotype.
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Extended Data Fig. 5: 
Boundary-associated DNA insertions can strengthen pre-established boundaries: additional 

controls (an extension to Figure 2).

Throughout, red arrow: insertion site; green or blue arrow: nearby boundaries; Blue/orange 

arrowhead in the browser tracks: site and orientation of the insertion. Yellow/green 

rectangles indicate regions with overall depleted contacts upon insertion.

(a) and (b) are related to Fig. 2a-c.
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a, An extension to Fig. 2a showing both no-insertion controls (left and middle) and the 

insertion clone (right) at C25S5, each accompanied by corresponding data tracks.

b, An extension to Fig. 2c: log2 fold changes in interaction frequencies between two no-

insertion controls (left) and between the insertion clone and no-insertion controls (middle 

and right) for the region in (a).

(c) and (d) are related to Fig. 2d-f.

c, An extension to Fig. 2d showing both no-insertion controls at C21S7.

d, An extension to Fig. 2f: log2 fold changes in interaction frequencies between two no-

insertion controls and between the insertion clone and no-insertion controls for the region 

shown in (d).

Each Hi-C heatmap represents merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were conducted for 

each genotype, with 1 of each exhibited.
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Extended Data Fig. 6: 
Insertion loci without apparent detectable domain-level changes.

Throughout, red arrow: insertion site; orange/blue arrowhead in the browser tracks: locus/

orientation of the insertion.

a, An insertion at C21S6: Hi-C maps for both no-insertion controls (left and middle) and the 

insertion clone (right) at C21S6, each accompanied by corresponding data tracks.

b, Insulation scores for the region in (a).
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c, Log2 fold changes in interaction frequencies between two no-insertion controls (left) and 

between the insertion clone and no-insertion controls (middle and right) for the region in (a).

d, Hi-C contact maps at C21S10.

e, Insulation score profiles for the region in (d).

f, Log2 fold changes in interaction frequencies between two the no-insertion controls and 

between the insertion clone and no-insertion controls for the region in (d).

g, Hi-C contact maps at C25S6.

h, Insulation score profiles for the region in (g).

i, Log2 fold changes in interaction frequencies for the region shown in (g).

Each Hi-C heatmap presents merged data from 2 independent experiments performed for 

each genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were performed 

for each genotype, with 1 of each displayed.
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Extended Data Fig. 7: 
Transcription of insertion-proximal genes remains mostly stable, with MLKL as an 

exception.

a, An MA plot showing Clone 21 vs. non-Clone 21 transcriptomes. Each dot: a gene; red 

dots: differentially expressed (DE) genes at an FDR < 0.01; color-coded circles: insertion-

proximal genes by distance ranges; red line: no-change line; two orange lines: +/− 1 log2 

fold change.

b, Clone 25 vs. non-Clone 25 transcriptomes.
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c, Clone 21 has ~95 DE genes transcriptome-wide (related to (a)).

d, Clone 25 has ~160 DE genes transcriptome-wide (related to (b)).

e, DE status of all insertion-proximal genes. The DE gene between 50 kb and 500 kb to an 

insertion, MLKL, is characterized in (f) and (h).

In (a)-(e), 2 RNA-seq experiments were performed for each genotype. DE analysis was 

conducted with Clone 21 vs. non-Clone 21 (WT and Clone 25) and Clone 25 vs. non-Clone 

25 (WT and Clone 21).

f, RT-qPCR of MLKL and GLG1/RFWD3, two genes flanking the insertion (see (h)). N=2 

independent experiments for each genotype.

g, GWAS significant variants near GLG1/RFWD3/MLKL insertion locus43–45.

h, GLG1/RFWD3/MLKL locus (blue arrowhead: location/orientation of the insertion) using 

ChIP-seq/RNA-seq/Capture-C. The insertion coincides with reduced RAD21 binding at a 

peak immediately downstream. The insertion contacts the promoter of GLG1 (Capture-C: 

Probing the insert). MLKL promoter also interacts with GLG1 promoter (Capture-C: 

Probing MLKL promoter), albeit no apparent changes in interactions of MLKL promoter 

upon insertion. Capture-C presents merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq, 1 H3K27ac ChIP-seq and 2 RNA-seq experiments 

were conducted for each genotype, with 1 of each shown.
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Extended Data Fig. 8: 
CRISPR dissections of insertion, and CTCF/RAD21 at C21S4.

a, Left: sgRNAs within the insertion element (red lines: Pol2/CTCF peak centers). Right: 

TSS_sgRNA_2&4 and TSS_sgRNA_3&4 reduce transcription more effectively at C21S4. 

N=1.

b, CRISPR deletion of the inserted CBS spares transcription.

c, Clone 21 TSS-: TSS_sgRNA_2&4-edited Clone 21 abrogates transcription, with the CBS 

intact.
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d, e, Clone 21 CTCF-/TSS- #1&#2: Clone 21 with its CBS already disrupted (b) further 

edited with TSS_sgRNA_2&4 and TSS_sgRNA_3&4, respectively. In (b)-(e), N=2 

experiments for each genotype.

In (f), (g) and (i), red arrow: insertion site; green arrow: downstream CBSs; blue/purple 

arrow: strong boundary nearby; orange arrowhead: insertion location/orientation.

f, Hi-C of Clone 21 CTCF-/TSS- #1 (d) at C21S4: a ~27 Mb heterozygous deletion (h) 

influences heatmap interpretation.

g, Hi-C of Clone 21 CTCF-/TSS- #2 (e) at C21S4: domain configuration restored close to 

pre-insertion level (Fig. 4a).

h, Virtual 4C (black arrow: viewpoint; red star: C21S4; GRIK2: C21S5): Clone 21 CTCF-/

TSS- #1 has both short-range contacts and strong >25-Mb distal contacts, suggesting a 

heterozygous deletion between C21S4 and C21S5 (grey bars: chromosomes; dashed line: 

deletion).

i, CBS-/TSS- restores nearby chromatin folding pattern to pre-insertion levels. Differentially 

bound CTCF (C2, C4) and RAD21 peaks (R1-R5) upon insertion highlighted. Directionality 

Index of Clone 21 CTCF-/TSS- #1 Capture-C: Fig. 4j.

In (f)-(i), each Hi-C/Capture-C describes merged data from at least 2 independent 

experiments for each genotype. 2 CTCF/RAD21 ChIP-seq and 1 H3K27ac ChIP-seq for 

each genotype, with 1 of each shown.

j, Pairwise comparisons between genotypes of CTCF binding (C2 and C4: (i) and Fig. 4f-i).

k, Pairwise comparisons between genotypes of RAD21 binding (R1-R5: (i) and Fig. 4f-i).

In (j)-(k), non-Clone 21: 3 genotypes without Clone21 insertions, each with 2 ChIP-seq 

replicates. Clone21 CTCF/TSS and derived CRISPR clones: 1 genotype, each with 2 ChIP-

seq replicates. P-values (not adjusted for multiple comparisons): from a two-sided Wald test.
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Extended Data Fig. 9: 
CRISPR dissections of insertion, and RAD21 distribution at C21S2.

a, TSS_sgRNA_2&4 and TSS_sgRNA_3&4 (as in Ext Data Fig. 8a) reduce transcription 

more effectively at C21S2 in CRISPR-Cas9 RNP-transfected cells. N=1 experiment.

b, Deletion of the inserted CBS reduces but does not abolish transcription at C21S2.

c, Clone 21 TSS- derived from TSS_sgRNA_2&4-edited Clone 21 abrogates transcription, 

with the CBS intact.
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d, Clone 21 CTCF-/TSS- #1: derived from CBS-disrupted Clone 21 (b) further edited with 

TSS_sgRNA_2&4.

e, Clone 21 CTCF-/TSS- #2: derived from CBS-disrupted Clone 21 (b) further edited with 

TSS_sgRNA_3&4.

In (b)-(e), N=2 independent experiments for each genotype.

In (f)-(h), red arrow: insertion site; green or blue arrow: downstream CBSs; orange 

arrowhead in the browser tracks: locus/orientation of the insertion.

f, g, Hi-C maps of Clone 21 CTCF-/TSS- #1 (d) and of Clone 21 CTCF-/TSS- #2 (e), 

respectively, at C21S2: deletions of both the CBS and the TSS restore the domain 

configuration close to pre-insertion level (Fig. 5a).

h, Capture-C and corresponding data tracks showing that CTCF-/TSS- rescues local 

chromatin contact pattern close to that of WT. Differentially bound RAD21 peaks (R6, R7) 

upon CBS-TSS insertion highlighted. Directionality Index of Clone 21 CTCF-/TSS- #1 

Capture-C: Fig. 5j.

In (f)-(h), each Hi-C/Capture-C depicts merged data from at least 2 independent experiments 

for each genotype. 2 CTCF/RAD21 ChIP-seq and 1 H3K27ac ChIP-seq for each genotype, 

with 1 of each shown.

i, Pairwise comparisons between genotypes of RAD21 binding at two RAD21 peaks (R6 and 

R7, as in h and Fig. 5f-i). Non-Clone 21: 3 genotypes without Clone 21 insertions, each with 

2 ChIP-seq replicates. All others: 1 genotype, each with 2 ChIP-seq replicates. P-values (not 

adjusted for multiple comparisons) are derived from a two-sided Wald test through DiffBind.
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Extended Data Fig. 10: 
Deletion of the endogenous 2 kb element leads to a boundary shift, while local domain 

organization is stable.

a, Hi-C of no-deletion control showing the endogenous boundary where the 2 kb element 

(blue arrowhead) is derived, accompanied by corresponding data tracks.

b, Deletion of the 2 kb (crossed-out blue arrowhead) leaves the overall domain configuration 

largely intact. The highlighted ~400 kb region is further examined in (c) and (f).
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c, Insulation scores show overall concordance, with a possible shift in boundary by ~60 kb 

to the left upon deletion.

d, Genotyping confirms the desired deletion between sgRNAs flanking the 2 kb.

e, ChIP-seq further verifies the deletion, as reflected in lack of signal (black arrows) within 

the 2 kb element (highlighted).

f, Upon 2 kb deletion (highlighted in red), the point of local maximal insulation shifts ~60 

kb to the left (c), coinciding with the distance between the TSSs of PARL and its nearest 

transcribed gene: MAP6D1 (highlighted in yellow). This shift (red line) also corresponds to 

the distance between the deleted CBS and its nearest CTCF peak to the left, which now has 

reduced CTCF/RAD21 binding.

Each Hi-C result presents merged data from 2 independent experiments for each genotype. 2 

CTCF & RAD21 ChIP-seq experiments for each genotype, with 1 of each shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Domain boundary insertions create de novo contact domains.
a, Schematic of experimental design.

Throughout, red arrow: insertion site; green arrow: up- or down-stream CBSs; blue/purple 

arrow: nearby boundaries; black arrow: notable architectural changes; orange arrowhead in 

the browser tracks: site and orientation of the insertion.

b, Hi-C contact maps of control (no insertion, left) and Clone 21 Site 4 (C21S4, right): de 
novo domain formation upon insertion. Additional no insertion control in Extended Data 

Figure 2.
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c, Insulation scores from Hi-C results in (b), revealing strengthened insulation at the 

insertion site (C21S4) and the downstream CBSs demarcating a new domain.

d, Hi-C contact maps of control (left) and Clone 21 site 2 (C21S2, right): a small pre-

existing domain (between blue and green arrows) appears to coalesce into a larger new 

domain (between blue and red arrows) upon insertion. Additional no insertion control in 

Extended Data Figure 2.

e, Insulation scores from Hi-C results in (d) showing strengthened insulation at the insertion 

site.

f, Hi-C contact maps of C21S5: an insertion creates stripe-shaped contacts.

g, Insulation scores from Hi-C results in (f) demonstrating strengthened insulation evident at 

the insertion and at the 3’ end of GRIK2 (green arrow).

Each Hi-C heatmap presents merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were performed for 

each genotype, with 1 of each displayed.
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Figure 2 |. Domain boundary insertions can strengthen pre-established boundaries.
Throughout, red arrow: insertion site; green/blue arrow: nearby boundaries. The orange 

(Clone 21)/blue (Clone 25) arrowhead in the browser tracks marks the site and orientation of 

the insertion.

In a, c, d, f, yellow/green rectangles denote corresponding regions with overall decreased 

interactions upon insertion.
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a, Hi-C contact maps of control (no insertion, left) and Clone 25 Site 5 (C25S5, right). The 

insertion strengthens an existing domain boundary by decreasing interactions across it. 

Additional no insertion control in Extended Data Figure 5.

b, Insulation scores from Hi-C results in (a) showing strengthened insulation upon insertion.

c, Log2 fold changes in interaction frequencies between no-insertion controls (left) and 

between the insertion clone and no-insertion control (right) for the region in (a).

d, Hi-C contact maps of control (no insertion, left) and Clone 21 Site C21S7. The insertion 

strengthens an existing boundary by decreasing interactions in its immediate proximity. 

Additional no insertion control in Extended Data Figure 5.

e, Insulation scores from Hi-C results in (d).

f, Log2 fold changes in interaction frequencies between no-insertion controls (left) and 

between the insertion clone and no-insertion control (right) for the region in (d). Each Hi-C 

heatmap presents merged data from 2 independent experiments performed for each 

genotype. 2 CTCF & RAD21 ChIP-seq and 2 RNA-seq experiments were conducted for 

each genotype, with 1 of each shown.
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Figure 3 |. An insertion into a complex genomic region modestly changes short-range 
interactions, without domain-level impact.
Throughout, red arrow: insertion site; green/purple arrow: a nearby boundary; Blue 

arrowhead in the browser tracks: site and orientation of the insertion. Black arrows: notable 

transcriptional/architectural changes.

a, Hi-C maps of control (no insert, top) and clone 25 site 2 (C25S2, bottom) showing no 

obvious domain-level changes upon insertion.
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b, Insulation scores from Hi-C results in (a), confirming the little apparent changes at the 

insertion site. Variations at the two boundaries (green and purple arrows) flanking the 

insertion likely caused by the empty bin on the control Hi-C heatmap in (a).

c, Examination of the ~600-kb region surrounding C25S2 reveals modest changes. The 

insertion coincides with possible reductions in RAD21 and CTCF binding ~8 kb to the left. 

Insertion-driven de novo transcripts do not elongate beyond ~25 kb. Capture-C anchored at 

the insertion site shows gained interactions along transcribed region, and reduced 

interactions in the opposite direction (Capture-C: Clone 25 vs. WT). Colored lines denote 

distance ranges for measuring Directionality Indices in (d).

d, Directionality Indices (DI) revealing that the insertion induces preferential contacts to the 

left (negative DI).

Hi-C/Capture-C results represent merged data from 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq, 1 H3K27ac ChIP-seq and 2 RNA-seq experiments 

were performed for each genotype, with 1 of each shown.
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Figure 4 |. TSS can influence domain formation by switching its compartment signature.
Hi-C of each genotype (insets) at C21S4 (a-d), and corresponding data tracks (f)-(i). Colored 

arrows mark corresponding loci in (a)-(i) (red arrow: insertion site; green arrow: downstream 

CBSs; blue/purple arrows: strong boundaries nearby). The orange arrowhead in the browser 

tracks: site and orientation of the insertion.

a, Hi-C of control (No Insert) cells.

b, Hi-C of Clone 21 with CBS/TSS insertion showing the new domain.

(a) and (b) same as in Fig. 1b shown here for comparison.
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c, The new domain persists upon CBS deletion.

d, The new domain diminishes upon TSS deletion.

e, Insulation scores from Hi-C results in (a)-(d).

f, WT no insert ChIP/RNA-seq/Capture-C tracks of C21S4 in (a). Differentially bound 

CTCF/RAD21 peaks upon CBS-TSS insertion highlighted throughout (f)-(i). C2, C4: CTCF 

peaks 2 and 4. R1-R5: RAD21 peaks 1–5.

g, CBS/TSS insertion as in (b) produces >250-kb transcripts (RNA), spreads active histone 

marks (H3K27ac), increases interactions with the downstream boundary CBSs and diffusely 

within the new domain (Capture-C), and coincides with increased local CTCF/RAD21 

binding (Extended Data Fig. 8j-k).

h, CBS deletion as in (c) does not eliminate transcription or the gained H3K27ac marks, but 

reduces interactions with the downstream boundary CBSs (Capture-C).

i, TSS deletion as in (d) abolishes transcription and the gained H3K27ac marks, while 

largely sparing CBS-associated interactions (Capture-C). TSS deletion is accompanied by 

locally reduced RAD21 (Extended Data Fig. 8k). Colored horizontal lines denote distance 

ranges for DI analysis in (j).

j, Directionality Index on Capture-C data (f)-(i) uncovers contributions of CBS and TSS to 

local chromatin folding (Extended Data Fig. 8i: CTCF-/TSS-).

Hi-C/Capture-C results depict merged data of at least 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq, 1 H3K27ac ChIP-seq and 2 RNA-seq experiments 

were performed for each genotype, with 1 of each shown.
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Figure 5 |. TSS and CTCF cooperatively contribute to new domain formation by driving 
proximal and distal genome folding, respectively.
Hi-C of each genotype (insets) at C21S2 (a)-(d), and corresponding data tracks (f)-(i). Red 

arrow: insertion site; green or blue arrow: downstream CBSs; orange arrowhead in the 

browser tracks: site and orientation of the insertion.

a, Hi-C of no-insertion control.

b, CTCF/TSS insertion forms a new domain (between red and blue arrows).

(a) and (b) same as in Fig. 1d displayed here for ease of comparison.

Zhang et al. Page 52

Nat Genet. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c, CBS deletion perturbs the new domain.

d, TSS deletion partially reduces boundary strength at insertion, as in (e).

e, Insulation scores from Hi-C results in (a)-(d).

f, WT no insert ChIP/RNA-seq/Capture-C tracks of C21S2 in (a). Differentially bound 

RAD21 peaks upon CBS-TSS insertion highlighted throughout (f)-(i). R6, R7: RAD21 

peaks 6 and 7.

g, CBS/TSS insertion as in (b) produces ~100-kb transcripts (RNA), increases interactions 

with the downstream CBSs and diffusely within the new domain (Capture-C), and coincides 

with increased local RAD21 (Extended Data Fig. 9i).

h, CBS deletion as in (c) does not eliminate transcription, while diminishing interactions 

with the downstream CBSs to the left (Capture-C).

i, TSS deletion as in (d) spares CBS-associated interactions (Capture-C). Colored horizontal 

lines indicate distance ranges for DI analysis in (j).

j, Directionality Index on Capture-C data (f)-(i): TSS and CTCF drives proximal and distal 

chromatin folding, respectively (Extended Data Fig. 9h: Clone 21 CTCF-/TSS-).

Hi-C/Capture-C results depict merged data of at least 2 independent experiments for each 

genotype. 2 CTCF & RAD21 ChIP-seq, 1 H3K27ac ChIP-seq and 2 RNA-seq experiments 

were performed for each genotype, with 1 of each shown.
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Figure 6 |. Possible context dependency in how SINE B2 elements shape mouse genome 
architecture in recent evolution, and graphic summary of this study.
a, SINE B2-derived CTCF peaks (~7,136, sky blue) constitute ~21.6% of all CTCF peaks 

(~33,057) in mouse genome54.

b, Putative SINE B2-mediated new domain boundaries (~625, yellow) may constitute ~8.3% 

of all mouse domain boundaries (~7,508)54.

c, A clustered column-line chart (columns: counts; line: percentage) showing the distribution 

of all ~7,136 CTCF-bound SINE B2 insertions (blue columns), those that co-localize with 
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putative new boundaries (red columns), and putative new boundaries possibly mediated by 

CTCF-bound SINE B2 insertions (yellow columns, from the yellow portion in (b)), based on 

their nearby TSS density (horizontal axis): the number of TSSs within a 200-kb window of 

each CTCF-bound SINE B2 insertion. Each red dot in the line plot indicates at each TSS 

density the percentage of putative new boundary-colocalized CTCF-bound SINE B2 (red 

column) among all CTCF-bound SINE B2 (blue column). At TSS density = 0, 10.06% 

(53/527) CTCF-bound SINE B2 co-localize with putative new boundaries, compared with 

5.27% (38/721) at TSS density ≥ 11 (two-sided Fisher’s exact test, P = 0.0019).

d, Graphic summary of this study.
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