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In upper limb rehabilitation training by exploiting robotic devices, the qualitative or quantitative assessment of human active effort
is conducive to altering the robot control parameters to offer the patients appropriate assistance, which is considered an effective
rehabilitation strategy termed as assist-as-needed. Since active effort of a patient is changeable for the conscious or unconscious
behavior, it is considered to be more feasible to determine the distributions of the passive resistance of the patient’s joints versus
the joint angle in advance, which can be adopted to assess the active behavior of patients combined with the measurement of
robotic sensors. However, the overintensive measurements can impose a burden on patients. Accordingly, a prediction method
of shoulder joint passive torque based on a Backpropagation neural network (BPANN) was proposed in the present study to
expand the passive torque distribution of the shoulder joint of a patient with less measurement data. The experiments recruiting
three adult male subjects were conducted, and the results revealed that the BPANN exhibits high prediction accurate for each
direction shoulder passive torque. The results revealed that the BPANN can learn the nonlinear relationship between the passive
torque and the position of the shoulder joint and can make an accurate prediction without the need to build a force distribution
function in advance, making it possible to draw up an assist-as-needed strategy with high accuracy while reducing the
measurement burden of patients and physiotherapists.
1. Introduction

For patients suffering impaired upper limb function after
stroke, adopting rehabilitation robots for rehabilitation exer-
cise can reduce labor burden of therapists, with more accu-
rate measurement of the position and force information in
the rehabilitation training. Thus, the quantitative assessment
of the patient’s health state can be achieved. Recently, the
research and application of the rehabilitation robotics has
been increasingly common [1, 2]. In therapeutic practice,
not all patients lost all their active motion abilities; thus,
patients retaining part of the motion abilities can achieve sig-
nificantly improved training effect of their active participa-
tion in the rehabilitation training [3]. As revealed from
existing studies, overdose robotic assistance will reduce the
patient’s active force output and energy consumption in
rehabilitation training, and the patient’s limbs appear to be
“slacking,” probably reducing the efficiency of rehabilitation
[4]. Thus, compared with the stiff control strategy that moves
the patient’s limbs along a desired trajectory in the training
process given the patient’s active motion ability, the so-
called “assist-as-needed” strategy that provides only the min-
imum assistance required to maximize the patient’s active
participation can enhance the efficiency of rehabilitation [5].

One of the critical problems of the assist-as-needed reha-
bilitation strategy refers to the methods to assess the patient’s
active motion state, which will generate feedback to the
robotic therapy devices to modify the control strategy. A
common method complies with the surface electromyo-
graphic (sEMG), as collected in real time in the rehabilitation
training and analyzed online to extract the patient’s move-
ment intention [6, 7]. However, applying sEMG to calculate
the joint torque usually requires the integration of a complex
musculoskeletal model that contains numerous parameters
difficult to measure in vivo. Moreover, for patients with neu-
rological impairment due to stroke, the sEMG can be
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significantly inconsistent with that of the healthy people, and
the real movement intention of the mentioned patients may
be difficult to successfully extract with the sEMG. There is
another type of active motion state assessment method, cal-
culating the patient’s active force/moment based on the
dynamic model of the human-robot interaction system and
the determined value of the robotic device sensor. Obviously,
the patients’ active force/torque intuitively manifests their
motion intention. In fact, the patient’s active force/torque is
changeable for both of the conscious and unconscious behav-
iors in the rehabilitation training. Furthermore, unlike the
changeable active motion state, a stable nonlinear torque-
angle relationship is identified between the passive compo-
nents of the human joint (e.g., passive resistance of the soft
tissues and gravitational torque, as well as the posture of limb
for a patients). Thus, a measurement before rehabilitation
training to distribute passive components of force/torque of
the human shoulder joint is critical to assess active motion
states based on dynamic models.

In general, the upper limb is affected by gravitational for-
ce/torque, passive resistance force/torque generated by joint
biological tissue, active muscle force/torque, and assisted for-
ce/torque provided by the rehabilitation device during reha-
bilitation exercise. In addition, the influence of centrifugal
force and inertial force should also be taken into account
when the movement speed and acceleration is large. How-
ever, considering the safety and comfort of patients, the
speed and acceleration of rehabilitation training are usually
small; thus, the centrifugal force and inertial force can be
neglected. Since the main motion form of the upper limb
joints is rotation, the torque is usually concerned rather than
the force. Passive torque of the shoulder joint is mainly com-
posed of the gravitational torque and the joint resistance tor-
que. The gravitational torque is determined by inertia
parameters such as mass and centroid position. And the joint
resistance torque is mainly determined by the viscoelastic
characteristics of joint biological tissue. In 1980, the shoulder
joint resistance torque of 3 subjects under several simple
movement that was measured of upper arm was measured
by Engin et al. [8]. The results showed that the magnitude
of the shoulder joint resistance torque is obviously different
between subjects, but the trend of the torque-angle curves
of different subjects is similar. Then, in 1986, Engin et al.
measured the shoulder joint resistance torque of the shoulder
joint of 10 subjects beyond the active range of motion of each
subject, and a statistical database of the torque-angle rela-
tionship was formed which can be used in realistic dynamic
simulations of human shoulder joint [9]. However, gravita-
tional influence on the shoulder was factored out in their
research by making the experimental motion performed only
in a horizontal equigravitational plane, which is not easy to
realize in actual rehabilitation state. In 2009, an upper limb
dynamic model is established by Zhang et al., where each seg-
ment of the upper limb was regarded as a rigid body link, and
the joint elastic resistance torque and gravitational torque are
treated as a whole passive torque [10]. The rate of change of
the joint rotation angle according to the dynamic force was
defined as joint stiffness. The measurement experiment
found that the joint stiffness of the subjects after stroke was
significantly increased compared with that of healthy sub-
jects. However, the stiffness value in this study was regarded
as a constant value, without considering the change of joint
stiffness with a joint rotation angle. In 2019, the passive tor-
que of shoulder joint during external rotation and internal
rotation was measured by Wight et al., and the slope of the
best-fit line of the torque-angle curve was defined as stiffness
[11]. However, in their study, the upper limb rotation was
carried out in a fixed plane without considering the distribu-
tion of passive torque in other planes. Obtaining the distri-
bution of shoulder passive torque in a wider range is
beneficial to evaluating health status and drawing up the
rehabilitation strategies, but the measurement of the joint
passive torque over the entire joint range of motion may take
a long time and make the patients fatigued. Thus, the joint
passive torque assessment method with less measurement
data can be beneficial.

Since the artificial neural network (ANN) is capable of
approximating any rational function without the cognition
of the system constitutive model, a prediction method of
the shoulder passive torque, as caused both by the gravity
and the joint soft tissues, was proposed in the present study
based on BPANN, making the expansion of the passive tor-
que distribution of shoulder joint possible.

A passive upper limb abduction experiment was executed
with the 7-DoF lightweight collaborative robot KUKA lbr
iiwa extensively applied in the human-robot interaction
experiments [12]. The position and the force/torque applied
to the robot by human upper limb were recorded by the robot
sensor in the experimental motion. Subsequently, the kine-
matic analysis and static force analysis of the upper limb were
conducted to calculate the motion and the resistance torque
of the shoulder joint. Some of the mentioned angle-torque
results were given into a three-layer BPANN as training data.
Next, the trained BPANN was adopted to assess the passive
torque of the rest joint posture data collected from the iden-
tical subject. Afterwards, the torque assessed by BPANN was
compared with the torque calculated by static force analysis.
The result suggested that the BPANN can accurately assess
the spatial distribution of shoulder passive torque.

Results showed that the BPANN assessment method pro-
posed in this study can predict the passive torque of the
shoulder joint during the upper limb abduction with high
accuracy and make it possible to obtain more passive
torque-angle distribution through less measurement data,
which is critical to reduce the burden on patients.

2. Methods

2.1. Subjects. Three healthy male adults were recruited from
the identical institution where the experiments of this study
were conducted. All subjects were voluntary to participant
in the experiment; they were right-handed, with no history
of shoulder disease.

2.2. Experimental Protocol. The subjects were seated at a high
chair. The subject’s right upper limb was connected to the
end tool flange of the robot through the orthosis (Figure 1).
To avoid the effect of forearm movement, the elbow joint of



Figure 1: The orthosis of right upper limb.
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Figure 2: World frame and flange frame of the robot.
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the orthosis was locked in a 90° posture, while the shoulder
joint movement was not restricted by the orthosis. The sub-
jects were required to maintain the stability of their trunk
and avoid the rotation of their upper arm while their right
upper limb being dragged by the robot to complete abduction
movement in different planes of elevation.

The motion path of the robot was generated by dragging
teaching method. In the preliminary stage, the robot was set
to a low-stiffness impedance control mode, thus making it
possible for the robot to follow the subject’s movement. In
the dragging stage, the subject was required to move his
upper limb along the specified abduction trajectory actively
and dragging the compliant robot. The robot recorded the
rotation angle of each axis at a frequency of 100Hz during
the dragging step automatically. Subsequently, the trajectory
reproduction step was executed in the passive upper limb
abduction, in which the robot was set to a impedance control
mode with higher stiffness, and the axes angle data recorded
in the dragging step was transferred to the controller as the
position parameter successively. Thus, the robot can regener-
ate a similar trajectory of the dragging step. Though the
impedance control mode in trajectory reproduction step
may lose some positioning accuracy compared with the posi-
tion control mode for the effect of human upper limb, it can
comply with the natural movement trajectory of the upper
limbs better, ensuring the safety of the robot and the subjects.
Moreover, its compliant properties also helps avoid the sud-
den change of the joint torque of the robot attributed to the
human upper limb as an uncertain load. Accordingly, the
impedance control mode is chosen for the passive abduction
experiment in the present study. To ensure the safety of reha-
bilitation training, usually the speed during the motion is
slow. Thus, this study only focused on the shoulder resistance
performance at low speed, and the speed of each axis of the
robot was also limited to 1/10 of its maximum speed.

Before the start of the experiment, the subjects were
required to fully warm up the upper limbs. During the pas-
sive abduction, the upper limbs of the subjects should not feel
being pulled or pushed by the robot obviously. To ensure the
stability of the passive torque, all subjects were required to
participate in the preexperiment before the formal experi-
ment to determine their muscle relaxation level in the passive
abduction. Besides, the sEMG signals of the upper limb mus-
cles related to the active motion were harvested to monitor
their muscle activity. As revealed from the results of preex-
periment results, the subjects can maintain muscle relaxation
during passive exercise. To avoid the interference of the elec-
trode patches and the wires on the subject’s motion, no
sEMG signal was harvested in the formal passive exercise
experiment.

The identical passive abduction trajectory was repeated 2
times in a single experiment. If significant difference is iden-
tified between the determined values of the two motion along
the identical trajectory, the data will be considered invalid.
The position data (axes angle) and force data of the experi-
ment were recorded with the DataRecorder function built
in the robot control software; thus, the data of the operation
of the robot at the specified frequency (50Hz in the present
study) can be recorded.

2.3. Kinematics. The motion and force of real human upper
limbs can be significantly complicated, and it is acceptable
to make a reasonable simplification when performing kine-
matic analysis. In the present study, the following assump-
tions were made:
(1) The flexibility of the biological tissue is not consid-
ered. The hand takes up a small proportion in the
upper limb, and the effect of its motion on the upper
limb is negligible. The elbow motion is locked by the
orthosis. In the mentioned case, the entire upper limb
and the connected orthotics can be considered a
whole rigid body for kinematic analysis

(2) The shoulder joint is simplified as a ball and socket
joint rotating around a fixed point on the human
body, and the spatial position of the center of the
shoulder joint is assessed with the least-square
sphere-fitting method
Thus, the upper limb is considered a rigid body that
rotates around the ball and socket joint at a fixed center. Sub-
sequently, the shoulder joint posture can be calculated from
the robot position data recorded by the DataRecorder func-
tion. The robot axes angle can be adopted to calculate the
position and posture of the flange frame relative to the world
coordinate system of the robot by robot forward kinematics.
Besides, the world and the flange frames of the robot are illus-
trated in Figure 2.

To quantitatively express the movement of the shoulder
joint, the local frame of the shoulder (Figure 3) was built
according to the ISB recommendation [13] at its rotation
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center. In the preliminary stage of the experiment, the sub-
jects altered their sitting posture as guided by the experiment
supervisor, thereby making the coronal, sagittal, and vertical
axes of their body parallel to the X0-axis, Y0-axis, and Z0-axis
of the robot world frame, respectively.

The upper limb and the orthosis are considered a rigid
body, and the orthosis is rigidly fixed on the robot flange,
so the homogeneous transformation matrix between the
robot flange frame and the shoulder frame is considered
invariant with upper limb motion. The actual value of the
transformation matrix was determined, to be specific, the
robot axes angle when the shoulder joint was on its initial
posture where shoulder abduction/adduction angle, flexio-
n/extension angle, and internal rotation/external rotation
angle were 0° on the whole. Subsequently, the position and
posture of the flange frame could be calculated, while the
shoulder frame posture was already known (all rotation angle
was 0°). Thus, the rotation matrix between the two frames
was calculated. Besides, by employing the radius from the
shoulder rotation center sphere-fitting, the translation vec-
tor between the two frames was calculated. With the rota-
tion matrix and the translation vector, the homogeneous
transformation matrix between the robot flange frame and
the shoulder joint frame was determined, which can be
adopted to calculate the posture of shoulder frame from
the robot axes angle as expressed Equation (1), where Ts
denotes the homogeneous transformation matrix of shoul-
der joint frame relative to the robot world frame, TF repre-
sents the homogeneous transformation matrix of robot
flange frame calculated by forward kinematics relative to
the robot world frame, and R

FT indicates the homogeneous
transformation matrix of the shoulder joint frame relative
to the robot flange frame.

Ts = TF
R
FT ð1Þ

Overall, the posture of rigid body is not expressed by the
rotation matrix which contains 9 elements directly, whereas
it is decomposed into 3 rotation angles in a certain order.
The ISB recommended by adopting the YXY order Euler
angle to present the shoulder joint (GH joint, actually) pos-
ture. However, some existing studies suggested that the
YXY sequence Euler angles gives gimbal deadlock problem,
and the clinical amplitude coherence is poor [14]. In the
present study, the two angles globographic method was
adopted to describe the shoulder motion, excluding the
rotational effect of the upper arm. The globographic angles
were calculated by a landmark point fixed on upper arm,
which was taken as the elbow point. The elbow point was
obtained by manual measurement.

Though the subjects were required to move their upper limb
within a single plane in the passive abduction movement exper-
iments, the elbow joint sampling points did not exhibit the single
plane distribution. The mentioned finding is because the move-
ment trajectories were generated by the subjects themselves and
because the designated primary movement tended to be accom-
panied by an unconscious “secondary movement” [15].

It was found in the experiments that the results of sphere
fitting were quite different at different stages of a same move-
ment, especially at the end stage. For example, the projection
of an abduction trajectory in 0° plane of elevation of subject
S1 on the XY plane was shown in Figure 4. The trajectory
curve displays a significantly different curvature between
the initial and final stages. This is primarily attributed to
the translation of the shoulder joint center and for the
rigid connection between upper limb and robot that made
the rotation of the robot axis more difficult under the
larger rotation angle; the effect of the center translation
was more obvious than in human natural voluntary move-
ment. Accordingly, for the data of each motion trajectory,
the former part was taken for sphere fitting, and the shoulder
joint angle was calculated by the intersection point of the line
connecting the sample point and the fitting sphere center and
the fitting sphere. The fitting sphere with the same trajectory
shown in Figure 4 and its corresponding intersection point
on the sphere is illustrated in Figure 5.

2.4. Static Force Analyses. The passive abduction experiment
in the present study was conducted at a slow speed, so the
human-robot system is considered quasi-static, and the effect
of inertial force was ignored. Moreover, low-speed also
reduced the effect of velocity-related viscous part in the pas-
sive torque of the shoulder joint.
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The force/torque applied on the upper limb under quasi-
static is illustrated in Figure 3. The robot applies an assist force
FR on the original point of the flange frame and an assist tor-
queMR to the upper limb through the orthosis. The shoulder
joint generated a resistance force Fs applied on its rotation
center and a resistance torque Ms. The gravity G was applied
on the center of mass of the upper limb. Furthermore, the
gravity G and assist force FR would generate torque MG and
MFR at the shoulder rotation center, respectively.

In fact, the rigidly connected robot flange provided con-
straints of all 6 DoF for the upper limb, and the shoulder
joint, which was approximated as a ball and socket joint, gen-
erated additional constraints for the upper limb; thus, the
upper limb static force system became an overdetermined
problem. For this reason, there are infinite sets of solutions
for the static equilibrium state of the system in theory. How-
ever, an ideal ball and socket joint would only provide force
constraints without torque constraints. Likewise, in a specific
joint angle, the resistance force Fs of shoulder joint may
change following the external force/torque, whereas the resis-
tance torque Ms is relatively stable, primarily determined by
the joint tissue characteristics. Moreover, the experimental
results revealed that the high repeatability of MR and FR of
a specific subject in the identical trajectory.

The static equilibrium equation is written in Equation
(3).

Fs + FR + G = 0, ð2Þ

Ms +MR +MG +MFR = 0: ð3Þ
The robot assist force FR and assist torque MR were cal-

culated by the robot joint external torque by Equation (4)
derived from the principle of virtual work, where f denotes
the generalized force of the robot, τe represents the external
torque on the robot joint calculated by the robot based on
its torque sensor measurements with the built-in dynamic
model, and J+ indicates the pseudo-inverse matrix of the
7 × 6 robot Jacobian matrix. The external torque data were
smoothed with a moving average filter to reducing the
influence of high-frequency noise.

f =
FR

MR

" #
= J+τe: ð4Þ

The gravity and the center of mass of the orthosis was
determined in advance; its effect was removed from the
result. The passive torque of shoulder joint MP can be cal-
culated as Equation (5).

MP =Ms +MG = −MR −MFR: ð5Þ

2.5. ANN Prediction. Unlike conventional function fitting
methods, the ANN expresses the mapping relationship
between input data and output data through the structure
and parameters (e.g., weights and biases here) of the layered
network. A three-layer feedforward ANN was used here to
express the torque-angle relationship of shoulder joint. The
number of units of the input layer was two and that of the out-
put layer was three. The number of the hidden units was deter-
mined initially by an empirical equation and altered according
to assessed effects. After the network structure was deter-
mined, the weights and biases of the network could be altered
by training. Backpropagation (BP) algorithm is commonly
used in ANN training, calculating the gradient of the error
with respect to the weights for a given input by propagating
error backwards through the network [16]. The topological
structure of BPANN is illustrated in Figure 6.

Two globographic angles were selected as the input data
and the three components of shoulder passive torque relative
to the direction of robot world frame calculated in section
2.4. The activation functions of the hidden and output units
were sigmoid. All data were normalized before being trans-
ferred to a neural network. The training of the BPANN was
carried out in the Neural Network Toolbox of MATLAB. In
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Figure 7: Globographic angle results. (a) Globographic angle of abduction in 0° plane of elevation. (b) Globographic angle of abduction in 30°

plane of elevation.

0 5 10 15
Time/s

–10

–5

0

5

10

To
rq

ue
/N

·m

Torque X
Torque Y
Torque Z

(a)

–10

–5

0

5

10

To
rq

ue
 X

 (N
·m

)

Torque X
Torque Y
Torque Z

0 1 2 3 4 5 6 7 8 9
Time (s)

(b)
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terms of the training parameters, the maximum number of
training epochs was 1000, the performance goal is 0.001 where
the performance was measured by the mean square error
(MSE) of the network output, and the learning rate is 0.01.
The Levenberg-Marquardt optimization was chosen to be
the backpropagation algorithm due to its faster training speed.

3. Results

3.1. Kinematics. The globographic angle results of the abduc-
tion trajectories in 0° plane of elevation and 30° plane of ele-
vation of subject S1 were shown in Figures 7(a) and 7(b),
respectively. The angle curves suggested that a secondary
movement took place, especially in the moment as presented
in Figure 7(b).
3.2. Shoulder Passive Torques. The passive torque calculation
results of the two moments in Figure 7 are, respectively,
shown in Figures 8(a) and 8(b). It can be seen that the passive
torque on the shoulder joint is quite different in different
motion trajectories of the same subject.
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3.3. BPANN Prediction. In the two motions of subject S1 as
presented in Figure 7, 1123 groups of angle-torque data were
collected. First, 500 groups of data were selected randomly to
train the BPANN, and the rest groups of data acted as test set
to verify the prediction effect of the network.

The number of hidden layer units impacted the predic-
tion effect of the BPANN. Generally, with the increase of
the number of neural network layers and hidden layer ele-
ments, the nonlinear fitting ability of neural network is
enhanced. However, too complicated network structure will
increase the calculate complexity and may lead to over-fit-
ting, thus reducing the generalization ability of the BPANN.
Therefore, the network structure should be determined
according to the prediction effect in practical application.
In this paper, the training performance of the network with
5~20 hidden layer units was tested, and the training curves
of the networks with different hidden layer units were shown
in Figure 9. It can be seen that when the number of the units
is small, the network needs more training epochs to achieve
the performance goal. Especially when the number of units
is very small, the network cannot meet the performance goal,
even after more training epochs than 1000. For example,
when the number of hidden layer units is 5, the network per-
formance hardly changed with iterative calculation after 84
training epochs, which can not meet the set accuracy goal
(0.001). However, although more units can make the net-
work reach the specified accuracy with fewer training epochs,
the computational complexity of each epoch is larger. In this
paper, the number of the hidden layer units was chosen to be
9, with which the structure of the network will not be too
complicated, and at the same time, the accuracy target can
be achieved at a relatively fast speed.

The passive torque prediction error of the test set data in
each direction was shown in Figure 10. For clarity of illustra-
tion, not all sample points in the test set were shown in
Figure 10, and one point was taken for every 5 points for
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Table 1: MAV and MSE of ANN assessment.

MAV[N·m] MSE[N·m] RE

X 6.399 0.093 0.0145

Y 5.172 0.139 0.0269

Z 1.728 0.104 0.0602
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plotting. It can be seen that the prediction error was small
compared with the magnitude of each passive torque compo-
nent, and the specific mean absolute value (MAV) and mean
square error (MSE) of the passive torque prediction are listed
in Table 1. The relative error (RE) is defined as the ratio of the
MSE to MAV. The results showed that the BPANN can pre-
dict the torque of the shoulder joint with high accuracy.

For subject S2 and S3, similar accurate passive torque
perditions can be conducted by BPANN, which was not
repeated in this paper for the sake of length. Although the
upper limb is often treated as a rigid body link system, in fact,
the biological tissue is not rigid and its characteristics, such as
inertial parameters and elastic characteristics, will change
with the limb motion. Especially for the shoulder joint, its
actual motion is coupled by the common motion of the gle-
nohumeral joint, the acromioclavicular joint, the sternoclavi-
cular joint, and the scapulothoracic joint, making the motion
and the passive torque on the joint complicated and nonlin-
ear. The coupling motion and passive torque of the shoulder
joint has large differences between individuals, but for a spe-
cific individual, the relatively stable regularity of shoulder
joint motion and passive torque can be found [8, 17]. Consid-
ering the BPANN has the ability to learn any nonlinear rela-
tion between independent variables and dependent variables,
it is suitable for learning the nonlinear relationship between
passive moment and joint angle of shoulder joint of a specific
individual and expanding the torque-angle distribution. The
results showed that the BPANN above can predict the passive
torque of a joint angle which is not in the training set with
high accuracy.

4. Conclusion

In the present study, a shoulder passive torque prediction
method based on BPANNwas proposed to expand the shoul-
der passive torque-angle relationship. Experiments were car-
ried out to measure the kinematics and torques on the
shoulder joint of 3 healthy subjects, and the measurement
data was used as training set and testing set of a three-layer
BPANN to test the prediction effect. The results revealed that
the BPANN can learn the nonlinear relationship between the
passive torque and the position of the shoulder joint and
make accurate prediction without the need to build a force
distribution function in advance, which is required in con-
ventional curve fitting methods. The prediction method can
expand the spatial distribution of the passive torque on
shoulder joint with less measurement data, making it possible
to draw up an assist-as-needed strategy with high accuracy
while reducing the measurement burden of patients and
physiotherapists. That is, the BPANN is capable of learning
the regularity between the shoulder joint passive torque and
the joint position for a specific individual and expand the
spatial distribution with less measurement data.
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