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Simple Summary: Magnoliaceae is one of the most endangered families of angiosperms. The sys-
tematic classification of Magnoliaceae has been controversial for a long time due to minor differences
in morphology. In the present study, six new chloroplast genomes of Magnoliaceae were sequenced,
and the 37 published chloroplast genomes of the family were subjected to phylogenetic analyses.
The results showed that all these chloroplast genomes possess the typical quadripartite structure
with a conserved genome arrangement and gene structures, yet their lengths varied due to the
expansion/contraction of the IR/SC boundaries. Phylogenetic relationships within Magnoliaceae
were determined using complete cp genome sequences. These findings will provide a theoretical
basis for adjusting the phylogenetic position of Magnoliaceae at the molecular level.

Abstract: Magnoliaceae plants are industrial tree species with high ornamental and medicinal value.
We published six complete chloroplast genomes of Magnoliaceae by using Illumina sequencing.
These showed a typical quadripartite structure of angiosperm and were 159,901–160,008 bp in size.
A total of 324 microsatellite loci and six variable intergenic regions (Pi > 0.01) were identified in
six genomes. Compared with five other genomes, the contraction and expansion of the IR regions
were significantly different in Manglietia grandis. To gain a more thorough understanding of the
intergeneric relationships in Magnoliaceae, we also included 31 published chloroplast genomes of
close relative species for phylogenetic analyses. New insights into the intergeneric relationships of
Magnoliaceae are provided based on our results and previous morphological, phytochemical and
anatomical information. We suggest that the genus Yulania should be separated from the genus
Michelia and its systematic position of should be restored; the genera Paramichelia and Tsoongiodendron
should be merged into the genus Michelia; the genera Pachylarnax and Parakmeria should be combined
into one genus. These findings will provide a theoretical basis for adjusting the phylogenetic position
of Magnoliaceae at the molecular level.

Keywords: Magnoliaceae; chloroplast genome; phylogenomics; intergeneric relationship

1. Introduction

Chloroplasts are critical plant organelles that play a prominent role in photosynthe-
sis [1]. Chloroplast genomes (cp genomes) are highly conserved because of the genetic
replication mechanisms of uniparent inheritance and the relatively high level of genetic
variation resulting from the low selective pressure, making them useful for revealing phy-
logenetic relationships [2]. With the development of Illumina and assembly technologies,
the cp genomes of an increasing number of species have been published [3–5]. These cp
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genomes provide valuable information about species identification, trait improvement,
genealogical geography and the conservation of endangered species [6–8].

Magnoliaceae is one of the most endangered families of angiosperms, and it was
listed under Class II National Protection in China [9]. It is considered a key material
indispensable for exploring the origin of angiosperms and also an important component
of tropical to temperate evergreen broadleaf in deciduous broadleaf forests, which are
ecologically important [10]. Magnoliaceae plants are industrial tree species with high
medicinal value [11]. The leaves, flowers and bark of them are rich in monoterpenes and
sesquiterpenes, which have good anti-tumor-promoting and anti-carcinogenesis activities
and are used to treat inflammation and ulceration diseases [12].

The current methods for distinguishing the taxonomic position of Magnoliaceae mainly
consider anatomical and morphological aspects [13]. The systematic classification of Mag-
noliaceae has been controversial for a long time [14]. A total of 12 genera were classified in
the narrow concept of Magnoliaceae for the first time by Dandy in 1964 [15], and afterward,
it was split into 16 and 18 genera according to the characters of stomatal pores on the
leaf epidermis and polygamous flower, respectively [16,17]. A few years later, some tax-
onomists suggested that Magnoliaceae should be divided into two genera (Magnolia L. and
Michelia L.) based on their main morphological traits, while the remaining 16 genera should
be combined with both [18]. In summary, the main controversial differences in the classifi-
cation of Magnoliaceae are the merging or separation of intergeneric relationships [14]. In
our study, we reconstructed the phylogenetic relationship among the genera Yulania Spach,
Michelia L., Paramichelia Hu, Tsoongiodendron Chun, Pachylarnax Dandy and Parakmeria Hu
& W.C.Cheng by using 37 species of Magnoliaceae to carry out a sequence alignment and
phylogenetic analysis of cp genomes. These results provide a molecular-level basis to
determine the systematic taxonomic position of Magnoliaceae species.

2. Materials and Methods
2.1. Plant Materials and DNA Sequencing

The young green and disease-free leaves of 6 species for Magnoliaceae were collected
from natural distribution areas (Table 1). The plant species was identified by Assoc. Prof.
Jianhua Qi (College of Forestry, Southwest Forestry University), and the voucher specimens
were stored at the Key Laboratory for Forest Resources Conservation and Utilization in
the Southwest Mountains of China Ministry of Education (2020Y18), Southwest Forestry
University, Kunming, China. DNA extraction and sequencing were performed according
to a previous study by Wang et al. [19].

Table 1. The sampling area and information of six species of the Magnoliaceae family.

Genus Species Protection Grade Sampling Area Longitude/Latitude

Manglietia

Manglietia crassipes Y.L.Law - Guangxi, China 109◦50′ E/23◦40′ N
Manglietia grandis Hu & W.C.Cheng II Yunnan, China 104◦33′ E/22◦48′ N
Manglietia hookeri Cubitt & W.W.Sm. - Yunnan, China 99◦55′ E/21◦10′ N
Manglietia ventii N.V.Tiep. II Yunnan, China 102◦10′ E/24◦23′ N

Yulania
Yulania kobus (DC.) Spach - Yunnan, China 102◦10′ E/24◦23′ N
Yulania soulangeana (Soul.-Bod.) D.L.Fu - Yunnan, China 102◦10′ E/24◦23′ N

Notes: II: Endangered

2.2. Chloroplast Genome Assembly and Annotation

The cp genome sequences of Manglietia dandyi (MF990567) were used as a reference
sequence to assemble the 6 cp genomes of Magnoliaceae using MEGA5.1(Mega Limited,
Auckland, New Zealand) [20]. The annotation of the 6 cp genomes was performed via
Genious 8.1.3 with sequences of other closely related species. The method of genome
annotation was the same as Zheng et al. [21]. The sequences of 6 cp genomes were
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deposited in GenBank NCBI (MW415418, MW415419, MW415420, MW415421, MW415416
and MW415417). The cp genome map was drawn using OGDRAW37 [22].

2.3. Sequence Divergence, Genome Comparison and Single-Sequence Repeat Analysis

The 6 cp genomes of the Magnoliaceae were sequenced performed using the VISualiza-
tion Tool in Shuffle-LAGAN mode for Alignments [23]. We used the DnaSPv. 5.0 software
(J. Rozas et al., Barcelona, The Kingdom of Spain) to set the parameter to a window length
size of 600 bp and the distance between each locus to 200 bp to measure nucleotide diversity
(Pi) [24]. The 6 cp genome sequences were uploaded to the online IRscope software to
visualize their IR/SC boundaries using the .gb format [25]. The simple sequence repeat
(SSR) markers were searched by surveying six genomic sequences of the Magnoliaceae
using MISAv program (http://genome.lbl.gov/vista/index.shtml, accessed on 15 March
2022) [26].

2.4. Phylogenetic Analysis

Sequence alignment was performed using the newly assembled 6 cp genomes and
25 closely related cp genomes, with 6 species of the genera Illicium L., Kadsura Kaempf. ex
Juss. and Schisandra Michx. added for analysis, which were downloaded from the NCBI
(Table S1). Phylogenetic analyses were performed according to a study of Wu et al. [27].

3. Results
3.1. Characteristics of the Six cp Genomes

The six cp genomes of Magnoliaceae are similar to other angiosperms (Table 2 and
Figure 1). The complete cp genome is between 159,901 and 160,008 bp in length, exhibit-
ing a classic four-partition structure with an SSC region (18,800–18,803 bp), LSC region
(87,753–88,534 bp h) and two IR regions (26,207–26,602 bp). Six cp genomes contained
131 genes (86 protein-coding genes, 37 tRNA genes and 8 rRNA genes), which include
44 photosynthesis genes, 58 translation-related genes and 11 other genes (Table S2).

Table 2. Summary of chloroplast genome characteristics of six Magnoliaceae chloroplast genomes.

Species Manglietia
crassipes

Manglietia
grandis

Manglietia
hookeri

Manglietia
ventii

Yulania
kobus

Yulania
soulangeana

Total length (bp) 159,901 160,008 159,905 159,950 159,778 159,778
LSC length (bp) 87,959 88,534 87,973 88,008 87,840 87,753
SSC length (bp) 18,800 18,803 18,776 18,800 18,734 18,734
IR length (bp) 26,571 26,207 26,578 26,571 26,602 26,602

Overall GC content (%) 39.3 39.3 39.3 39.3 39.3 39.3
Total gene number 131 131 131 131 131 131
GenBank accession MW415418 MW415419 MW415420 MW415421 MW415416 MW415417

3.2. Comparative Genomic, IR Expansion and Contraction, and SSR Analysis

To investigate the levels of sequence polymorphism, the six cp genomes of Magnoli-
aceae species were compared (Figure 2). The results showed that the structures, orders and
contents of these six cp genomes were all conserved. The Pi values of these six genomes
ranged from 0 to 0.0153. Although aligned sequences showed relatively low divergences,
some hotspot regions with high variation were also identified. The variable regions with Pi
exceeding 0.01 in the six cp genomes were ndhF-trnL-UAG, ndhD-ndhE, rpl32-trnL-UAG,
petG-psaJ, psaC-ndhA, trnF- and GAA-ndhK (Figure 3).

http://genome.lbl.gov/vista/index.shtml
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Figure 1. Structural map of the six chloroplast genomes of Magnoliaceae species.

The six CP genomes’ IR/LSC and IR/SSC boundary structures were compared
(Figure 4). The results showed that the IR boundaries of the cp genomes of the six Mag-
noliaceae species were comparatively conserved. Only the rpl2 gene of Manglietia grandis
expanded to the LSC region, with an expansion length of 308 bp, and the rpl2 genes of the
remaining five species were in the IRb region. Among them, the distributions of genes on
the IRb/SSC and SSC/IRa boundaries were similar for the ndhF and ycf1 genes, and the
length of the ycf1 gene on the SSC/IRa boundary ranged from 5558 to 5594 bp, all of which
were pseudogenes. The characteristics of SSRs in six cp genomes were analyzed, a total
of 324 repeats were certified in six genomes, and most SSRs included the A/T rather than
the G/C motif (Figure 5b and Table S3). Mononucleotide repeats were the most abundant
SSR in all the species; pentanucleotide repeats were the least abundant. The analysis of
long repeats in six species revealed more forward and palindromic repeats than reverse
and complementary repeats (Figure 5C,D).
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3.3. Phylogenetic Analysis

Phylogenetic analysis of six species was performed using the ML method (Figure 6);
the results showed that most of the nodes had 100% bootstrap values. The phylogenetic
tree showed that the 37 species of Magnoliaceae can be broadly divided into two clusters.
Among them, the genera Yulania, Paramichelia, Michelia, Tsoongiodendron, Alcimandra Dandy,
Pachylarnax, Parakmeria, Woonyoungia Y.W.Law, Manglietia Blume, Talauma Juss. and Lirioden-
dron L. were clustered into one group, and the genera Illicium, Kadsura and Schisandra were
also clustered into one group. In our phylogenetic tree, Pachylarnax, Parakmeria and Michelia
were closely related to Paramichelia and Tsoongiodendron, but the genera Illicium, Kadsura
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and Schisandra are not clustered into a group with Magnoliaceae species. In addition, we
also compared the Flora Reipubicae Popularis Sinicae (FRPS) and Flora of China (FOC)
plant classifications in Magnoliaceae, finding that the taxonomic statuses of the genera
Paramichelia, Tsoongiodendron, Pachylarnax and Parakmeria were different.
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4. Discussion

Here, for the first time, we present cp genomes for six Magnoliaceae species, including
four Manglietia species and two Yulania species. These cp genomes are consistent with the
characteristics of most angiosperm species [28], and did not differ significantly from each
other in terms of structure and length (159,901–160,008 bp). In addition, we found that the
mean contents of AT and GC in these six cp genomes were 61.7% and 39.3%. In the genome,
the higher the AT content, the lower the DNA density, and the sequences were more prone
to denaturation and mutation [29]. Therefore, we speculated that the six cp sequences of
Magnoliaceae were somewhat mutagenic and their chloroplast gene sequences might be
more prone to variation than those of other species.

The results of the IR boundary analysis showed that the contraction of the IR region
(26,207 bp) was the most pronounced in Manglietia grandis, with an expansion of the rpl2
gene in its IR to LSC region of 308 bp, while the rpl2 genes of the other five species were
intact and located in the IR region. This indicated that the boundary change of LSC /IR is
the dominant factor affecting the expansion and contraction of the cp genome IR region of
Manglietia grandis. However, such an expansion is small, and no important expansions or
contractions were observed in these cp sequences. This result is similar to the expansion of
the chloroplast genomes of other Magnoliaceae species in the IR region [30], but different
from the contraction of Zingiberaceae and Arecaceae [31,32]. This indicates that different
species have evolved under the influence of different factors, resulting in different degrees
of expansion and contraction of IR/SC boundaries, thus showing the diversity in genome
length and boundaries [33].

The varied SSRs in cp genomes have a greater taxonomic distance between them than
nuclear and mitochondrial genomes; they are widely used in studies of the genetic diversity
and germplasm resources of plant populations [34]. We identified 324 SSRs in cp genomes
of six Magnoliaceae species, most of which had mononucleotide repeats composed of
A/T. These SSRs can be used to develop microsatellite markers for genetic diversity and
evolution analyses [35]. We also screened a total of seven highly variable regions through
nucleotide diversity analysis. Among them, four were located in the LSC region and three
in the SSC region. This indicates that the LSC and SSC regions of these six Magnoliaceae
species have high nucleotide variability, and these highly variable regions can be used as
potential polymorphic molecular markers for evolutionary studies [36].

These six cp genome sequences were phylogenetically analyzed with their 31 rela-
tives; the results showed that species of Magnoliaceae clustered in a group, and the genera
Illicium, Schisandra and Kadsura, which do not belong to Magnoliaceae, were divided into a
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separate group. This result is consistent with the classification of Angiosperm Phylogeny
Group (APG IV) system [37]. Meanwhile, the most of nodes had high bootstrap values in
our phylogenetic tree, and the results of phylogenetic analysis for monophyletic genera
are consistent with previous studies, indicating that the phylogenetic tree in this study is
reliable [13,38]. The aim of this study was to determine the intergeneric relationships within
Magnolioideae, as the systematic classification of Magnoliaceae has been controversial for
a long time [14]. It has previously been demonstrated that the genus Yulania is included in
the genus Michelia due to its pre-branching characteristics [39]. However, the contents of
volatile oils obtained from flower and the pit vessel characteristics of wood of these two
genera were significantly different in subsequent studies [40]. In particular, reproductive
isolation was discovered due to the discontinuity of geographical distribution of the two
genera; the genus Yulania was separated from the genus Michelia [41,42]. This result is
consistent with the phylogenetic analysis conducted in our study. Furthermore, it was
consistent with previous conclusions inferred from Matk and ndhF sequences [43]. Similar
results were reported for the Bupleurum family, with new insights into its phylogenetic
status provided through assessing the cp genomes and morphological characteristics of
fruits and leaves [34,44]. We thus suggest that the genus Yulania should be separated from
the genus Michelia, and its systematic position should be restored.

In the present study, the genera Paramichelia, Tsoongiodendron and Michelia were clus-
tered into one clade, which is identical to the results of another phylogenetic analysis based
on molecular markers [45]. This strongly supports the idea of a close relationship between
these three genera. It has been argued that the genera Paramichelia and Tsoongiodendron
should be separated from the genus Michelia according to the different characters of the
ripe fruit carpels [17]. This tiny difference is considered by traditional taxonomists to be
the result of parallel evolution [46]. In other words, these three genera come from the same
ancestor and therefore show the same trend in evolution [47]. Based on all this evidence,
we share the view that the genera Paramichelia and Tsoongiodendron should be merged into
the genus Michelia. Similarly, Flora of China suggested adjusting the genera Paramichelia
and Tsoongiodendron to genus-level status in the systematic position [48].

The genus Pachylarnax was established based on its polygamous flower [49], and it
is considered to be more closely related to the genus Manglietia [50]. This argument was
not consistent with the result of the phylogenetic analysis in our study; we suggested
that, compared with Manglietia, the genus Parakmeria is more closely related to Pachylarnax.
Meanwhile, this view is also consistent with the results of the phylogenetic analysis using
the B-class MADS-box gene [51]. Additionally, the genera Pachylarnax and Parakmeria
both have the high-taxonomic-value characteristic of curling young leaves [52]. We thus
recommend that the genera Pachylarnax and Parakmeria should be combined into one genus.
Furthermore, based on all the results related to phylogenetic relationships, we compared
the two classifications and found that the FRPS can locate the species attribution more
precisely than FOC in Magnoliaceae.

5. Conclusions

This study reports the complete cp genome sequence of six Magnoliaceae species:
M. crassipes, M. grandis, M. hookeri, M. ventii, Y. praecocissima and Y. soulangeana. New
insights into the intergeneric relationships in the Magnoliidae family are provided by
combining our findings with previous studies. We recommend that the genus Yulania
should be separated from the genus Michelia, and the systematic position of Yulania should
be restored; the genera Paramichelia and Tsoongiodendron should be merged into the genera
Michelia; and the genera Pachylarnax and Parakmeria should be combined into one genus.
These results provide a theoretical foundation for the phylogenetic position of Magnoliaceae
at the molecular level.
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