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Eugenia aurata and Eugenia punicifolia HBK
inhibit inflammatory response by reducing
neutrophil adhesion, degranulation and
NET release
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Abstract

Background: Eugenia spp. are used in popular medicine in the treatment of pain, diabetes, intestinal disorders and
cough. The aim of the work is to evaluate, ex vivo and in vivo, the anti-inflammatory activity of the hydroethanolic
extracts of the leaves of Eugenia aurata (EA) and Eugenia punicifolia HBK (EP) upon neutrophils.

Methods: Ex vivo, isolated human neutrophils were sensitized by Eugenia extracts (0.1–1000 μg/mL) and stimulated
by PMA. In these conditions, different neutrophil activities related to inflammatory process were measured:
adhesion, degranulation and NET release. Neutrophil viability and tumor line cells were monitored. In vivo,
neutrophil influx was evaluated by peritonitis model performed in mice pretreated with different concentrations of
Eugenia extracts. Phytochemical profile was assessed by mass spectrometry.

Results: Ex vivo, EA and EP (1000 μg/mL) reduced cell adhesion and degranulation, respectively. NET release was
inhibited by EA and EP. Anti-inflammatory activities occurred in the absence of cytotoxicity. In vivo, both EA as EP
inhibited neutrophil migration. The phytochemical profile revealed that EA contains myricitrin, rutin, quinic acid and
quercetin derivatives. EP presents gallic acid, quercetin derivatives, syringic acid, ellagic acid, monogalloyl-glucose,
glycosyringic acid, mudanoside B, HHDP glucose isomer and digalloylglucose isomer. EA and EP inhibit neutrophil
migration by different pathways.

Conclusion: Different chemical compositions may explain the anti-inflammatory effects described herein for EA and
EP. Both extracts inhibit NET release but only EA reduces cell adhesion whereas EP decreases elastase secretion. This
work contributes to the elucidation of cellular mechanisms related to the anti-inflammatory activity for leaves of E.
aurata and E. punicifolia HBK.
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Background
Inflammation is a process that includes a complex im-
mune response, which occurs in several steps and may
be caused by chemical, physical, microbiological and
immunological stimuli. It involves leukocyte recruitment
where the first leukocytes to be recruited and act on the
inflamed tissue are neutrophils. Neutrophils have been
considered a target for pharmacological intervention
given their abilities to kill microorganisms, to begin and
amplify the inflammatory process. Neutrophil recruit-
ment and inflammatory activities require a complex
sequence of events, including cell adhesion, degranula-
tion, and more recently, neutrophil extracellular traps
(NET) release [1]. The control of the inflammatory
process is critical because of the associated risks: tissue
damage, loss of organ performance and failure.
Eugenia genus with over 500 species, of which about

400 are in Brazil, assumes prominence in popular
medicine, mainly for their anti-inflammatory activities in
the treatment of wounds and infections [2, 3]. Flavo-
noids, tannins, terpenoids and essentials oils were
isolated from this genus [4, 5]. Different crude extracts
of Eugenia show several medicinal effects, such as anti--
inflammatory [6], antifungal [7], neurological [8], anti-
microbial [9], among others. Leaves of Eugenia
punicifolia are popularly used to treat inflammation [10],
diabetes [6, 10], fever and flu [11, 12]. E. aurata is an
endangered species [13] with low studies in the literature
and, by analogy, there is a need of registering its effects
on inflammatory processes.
Although leaves of Eugenia species are widely used in

popular medicine for inflammatory diseases, efficacy of
cellular and molecular mechanisms remains elusive. Our
aim was to evaluate the cellular mechanisms involved in
the anti-inflammatory activity of Eugenia aurata and
Eugenia punicifolia. For this purpose, ex vivo assays
were performed and the anti-inflammatory activity was
confirmed using in vivo assays.

Methods
Collection and preparation of extract
Leaves of E. punicifolia and E. aurata were collected in
December (2009) in Assis (Instituto Florestal e Estações
Experimentais – Floresta Estadual de Assis) at the point
(UTM 0561750 L/O 7500935 (+/- 3 m) - 0559055 L/O
7499970 (+/- 4 m)), São Paulo State, Brazil. Dr. Antônio
C.G. Melo identified the specimen and voucher specimen
(n° 43.522 and 43520, respectively) were deposited in
Herbarium D. Bento Pickel for future reference. The
extract has been prepared with 10 g of plant material
(dried and triturated leaves) and 100 ml of solvent (Etha-
nol:H2O 70:30 v/v). The extract solution was obtained by
2 h dynamic maceration at room temperature (25 ± 2 °C),
followed by filtration. Remaining extract residue filtration

was carried twice by the same procedure. Subsequently,
the solution was dried at 40 °C temperature with a rotary
evaporator, obtaining 45 % and 7 % hydroethanolic extract
solutions from E. punicifolia (HEEP) and E. aurata
(HEEA), respectively. The hydroethanolic extract fraction
soluble in Phosphate Buffer Solution (PBS; 137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) was
evaluated in all bioassays (Eugenia aurata = EA; Eugenia
punicifolia = EP).

Animals
Swiss male mice, weighing on average 40 grams, were
kept in controlled temperature rooms (23–25 °C) with
access to food and water. All animal care and experi-
mental procedures were performed in accordance with
the internationally accepted principles for laboratory
animal use [14].

Human neutrophils isolation
Human neutrophils were isolated and prepared accord-
ing to previous methods described [15, 16]. Cells were
suspended in Hank´s balanced salt solution (HANKS)
(Sigma, St. Louis, MO, USA) containing 0.1 % gelatin
(w/v) (HANKS-gel) with over 90 % viability as deter-
mined by the Trypan blue (Sigma) exclusion test, and
90–95 % of cells were found to be neutrophils.

Cell viability (MTT assay)
Cytotoxicity was evaluated by the colorimetric method of
MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-Diphenyl Tetrazo-
lium bromide) (Sigma), which consists of indirectly meas-
uring of cell viability by mitochondrial enzyme activity of
living cells. Human neutrophils (2 x 105 / well) seeded into
96 well culture plates were incubated with different
concentrations of Eugenia spp. during 1 h at 37 °C.
Subsequently, MTT (1 mg/mL) was added to each well
and incubated at 37 °C for 4 h. After incubation, formazan
crystals were diluted by addition of Dimethyl Sulfoxide
(DMSO, Sigma) and the optical density (O.D.) of samples
measured in a spectrophotometer at 570 nm. Neutrophils
incubated either with RPMI-1640 (Sigma) or 50 μM H2O2

[17] were used as negative and positive control (100 %
viable) to cell death, respectively.

Cell adhesion
Cell adhesion assays were performed in 96 well micro
plates. Human neutrophils (4 x 105) suspended in RPMI
medium (Sigma) plus 5 % Fetal Bovine Serum (FBS)
(Vitrocell, Campinas, SP, Brazil) were added to wells of a
micro plate containing different concentrations of
Eugenia spp. After 15 min, cells were then stimulated by
Phorbol Myristate Acetate (PMA 25nM) (Sigma) for 1 h
at 37 °C. Non-adherent cells were removed and adherent
cells were made evident via a colorimetric test with

Costa et al. BMC Complementary and Alternative Medicine  (2016) 16:403 Page 2 of 10



Bicinchoninic Acid (BCA; Pierce). Sample absorbance
was measured in a Multiskan FC (Thermo Scientific,
Waltham, MA, USA) reader at 560 nm.

Elastase activity
Elastase enzyme activity upon degranulation was assessed
as follows: Neutrophils (2 x 105) suspended in Hank's solu-
tion were incubated for 30 min in the presence of different
Eugenia spp. concentrations then stimulated with PMA
(25nM) for 3 h at 37 °C. Succeeding incubation, neutrophils
were centrifuged (437 x g, 5 min) and the resulting
supernatants incubated in 1 mM elastase substrate (N-
Methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide) (Sigma)
for 30 min. After incubation, color reaction was measured
at 405 nm on microplate reader Multiskan FC (Thermo
Scientific). Several concentrations of purified elastase
enzyme from human neutrophils (EMD Chemicals Inc.,
Billerica, MA, USA) were used as standards.

Neutrophil Extracellular Traps (NETs) release
Human neutrophils (2 x 105) were incubated with differ-
ent concentrations of Eugenia spp. during 30 min and then
stimulated with PMA (50 nM) for 4 h at 37 °C. NETs gen-
erated by activated neutrophils were digested with
500 mU/mL micrococcal nuclease (MNase, Worthington
Biochemical Corp.) [18]. The nuclease activity was ceased
by 5 mM Ethylene Diamine Tetra Acetic Acid (EDTA)
and the culture supernatant collected and stored at 4 °C
until the moment of quantification. NETs were quantified
using the PicoGreen dsDNA kit (Invitrogen) according to
the manufacturer's recommendations.

Peritonitis model (in vivo)
Mice received 1 mL of 3 % Thioglycolate injected intra-
peritoneally one hour after plant extract subcutaneous
administration (3-300 mg/kg) [19, 20]. Six hours later,
mice were euthanized by cervical dislocation. The cells
were immediately harvested with 5 mL PBS containing
heparin (5 IU/mL). Total counts of harvested cells were
performed in a Neubauer chamber. Differential counts
were made on smears stained using Panoptic Fast Stain
(LaborClin, Siqueira Campos, PR, Brazil). The results
were reported as the number of neutrophils per mL of
cavity wash. The control groups animals received: (1)
subcutaneous and intraperitoneal PBS injection; (2)
subcutaneous PBS and intraperitoneal Thioglycolate
injection; (3) subcutaneous Dexamethasone (0.5 mg/kg)
and intraperitoneal Thioglycolate injection.

Evaluation of antiproliferative activity in vitro
Antiproliferative activity was tested against cell lines:
UACC-62 (melanoma); MCF-7 (mammary); NCI-ADR/
RES (drug resistant ovary); 786-0 (kidney); NCI-H460
(lung); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon),

K562 (leukemia) and VERO (African green monkey
kidney cell line). Stock cultures were grown in a medium
containing 5 mL RPMI 1640 (Sigma) supplemented with
5 % fetal bovine serum. Gentamicin (50 mg/mL) was
added to experimental cultures. Cells in 96 well plates
(100 μL cells/well) were exposed to sample concentrations
of DMSO/RPMI (0.25, 2.5, 25, and 250 μg/mL) at 37 °C,
5 % CO2 in air for 48 h. Next, cells were fixed with 50 %
trichloroacetic acid and cell proliferation was determined
employing sulforhodamine B assay at 540 nm [21]. Using
the concentration–response curve for each cell line, TGI
(concentration that produces total growth inhibition or
cytostatic effect) was determined through non-linear
regression analysis, utilizing software ORIGIN 8.5 (Origi-
nLab Corporation) [22].

Phenolic content
Phenolic content was performed as previously described
[23] with minor adaptations. Briefly, 2.5 mL Folin-
Ciocalteau 10 % (v/v) and 2.0 mL 4 % (m/v) sodium car-
bonate were added to a 0.5 mL extract in ethanol
solution (1 mg/mL). After a 2 h incubation in the dark,
at room temperature, absorbance was measured at
750 nm and results were expressed as equivalent milli-
grams of gallic acid per gram of sample. All tests were
performed in triplicate.

Flavonoid content
Flavonoid content was performed as previously de-
scribed [23] with minor adaptations. Briefly, 1.5 mL
ethanol, 0.1 mL potassium acetate (1 M) and 2.8 mL
distilled water were added to a 0.5 mL extract in ethanol
solution (1 mg/mL). After 30 min incubating in the dark
at room temperature, absorbance was measured at
425 nm and results were expressed as equivalent milli-
grams of quercetin acid per gram of sample. All tests
were performed in triplicate.

ESI-MSn analysis
The mass spectrometry experiments were performed on
a 6550 iFunnel Q-TOF (Agilent Technologies). The
studied matrix was analyzed by Dual Agilent Jet Stream
ESI (Dual-AJS-ESI) (ESI) and fragmented in the MS/MS
collision cell. The negative mode was selected for the
generation and analysis of first order mass spectra (MS)
and the remaining multistage experiments under the
following conditions: Gas Temp at 290 °C, Drying Gas
flow at 11 Lmin−1, Nebulizer at 45 psi, Sheath gas temp
at 350 °C, Sheath gas flow 12 Lmin−1, VCap 3000,
Nozzle voltage 320 V, Fragmentor 100 V, OCT 1 RFVpp
750 V, and collision energy 35 V Agilent MassHunter
Qualitative Analysis software version B.06.00 used for
data acquisition and processing.
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Statistical analysis
Experimental data was evaluated by variance analysis
(one-way ANOVA) followed by Bonferroni test. A sig-
nificance level of 5 % was adopted. All assays were per-
formed in triplicate at least in three independent assays.

Results and discussion
Inflammatory process involves cellular and molecular
events that begin with neutrophil recruitment. This
process is commonly separated in four steps: rolling, ad-
hesion, transmigration and degranulation. The rolling is
mediated by the interaction between neutrophil selectins
(selectin- L) and endothelium selectin (selectins P and
E). Sequentially, the adhesion happens by the interaction
between endothelium and neutrophil integrins as well as
by mobilization of neutrophil secretory vesicles. After
that, the transmigration - or diapedesis – also occurs
under effect of integrins interactions and counting on
the help of release of neutrophil tertiary granules to di-
gest endothelium basal membrane. Finally, the proteins
released from neutrophil secondary/primary granules
can be associated with DNA and oxidative enzymes, also
called NETs. The release of NETs improves microbe cap-
ture, as well as increases phagocytosis efficiency [1, 24].
The cellular mechanisms related to the anti-inflammatory

activity of E. punicifolia (EP) and E. aurata (EA) were
evaluated. Therefore, some neutrophil functions were
analysed ex vivo and others in vivo because neutrophils are
the first inflammatory cells to be recruited to the damaged
tissue. Both Eugenia extracts were able to inhibit neutrophils
responses, by different pathways, under clear evidence of no
toxicity for the cells.
Ex vivo assays aimed the evaluation of the role of EA

and EP in adhesion, elastase secretion and NET release.
In the first step, adhesion, neutrophils incubated with 25
nM PMA and adhered to the culture plate were consid-
ered as 100 % adhesion (Fig. 1). Neutrophils incubated
only with culture medium RPMI-1640 showed basal
adhesion rate (~50 %). Pretreatment of neutrophils with
several EP concentrations did not alter their ability to
adhere under PMA stimulus. On the other hand,
pretreatment with EA 1000 μg/mL significantly reduced
cell adhesion. EP (1000 μg/mL) was the only concentra-
tion able to induce a weak neutrophil adhesion when
neutrophils were incubated with extracts alone (data not
shown), although this effect has not been statistically
significant.
The second step was to evaluate elastase secretion,

indirectly assessed through elastase enzyme activity.
Supernatants of cultures of neutrophils stimulated by
PMA (25nM) and previously sensitized by plant extracts
were analyzed. The release of elastase induced by PMA
was considered as100%. Neutrophils incubated with
medium alone showed significant reduction (Fig. 2). The

presence of EA did not alter elastase secretion at any
tested concentration . However, EP 1000 μg/mL signifi-
cantly reduced PMA induced elastase secretion. None of
the extract concentrations in test was able to induce
elastase secretion (data not shown).
Next inflammatory event evaluated was the release of

NETs. The presence of both plant extracts studied here
inhibited significantly the release of NETs induced by
PMA (50nM) for all tested concentrations (0.1–1000 μg/
mL) (Fig. 3). The positive control (50nM PMA) induced
DNA release of 230 ng/ml while negative control
(Medium) showed ~50 ng/mL. The inhibition of this
event may have a suppressive effect on inflammation,
activation of neutrophils and capture/elimination of
pathogens by decreasing the inflammatory stimulus that
comes from genetic material released. Furthermore, the

Fig. 1 Eugenia aurata (EA) inhibits human neutrophil adhesion.
Human neutrophils (4x105) were pretreated with different concentrations
of EA or EP (15 min) and stimulated (1 h) to adhesion by PMA (25nM).
Neutrophils incubated with RPMI alone were used as negative control.
Data are shown as cell adhesion (%) ± S.D. where PMA is 100 %. p <0.05
when compared to PMA (*) or medium (#) control

Fig. 2 Eugenia punicifolia (EP) inhibits human neutrophil elastase
secretion. Human neutrophils (4x105) were pretreated with different
concentrations of EA or EP (30 min) and stimulated to degranulation
by PMA (25nM) for 3 h. Neutrophils incubated with only Hank´s (medium)
were used as negative control. Data shown Elastase activity (%) ± S.D.
where PMA is 100 %. p <0.01 when compared to PMA (**) or medium
(##) control
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presence of extracellular DNA (NETs) has been
appointed as a direct source of stimulus to inflammatory
and autoimmune diseases [1].
Neutrophil viability was monitored during all ex vivo

assays. This is an important factor once some inhibitory
effects could be related to cytotoxicity. The viability was
assessed by MTT assay. The data revealed that the
extracts, evaluated in different concentrations (0.1–1000
ug/mL), did not reduce neutrophil viability when these
cells were sensitized either with EP or with EA (Fig. 4). As
positive and negative controls, H2O2 and RPMI medium
were used. H2O2 (50 μM) reduced 70 % of cell viability.
Since no cytotoxic effects were observed in leukocytes,

other cytotoxicity assays were performed with E. punicifolia

hydroethanolic extract solutions (HEEP) as well as with E.
aurata hydroethanolic extract solutions (HEEA), using
tumor and not tumor cell lines. As others [25], HEEP and
HEEA (mean TGI > 141 μg/mL and 198 μg/mL, respect-
ively) did not exhibit a cytotoxicity against all tested cell
lines. HEEP presented a moderate selective activity effect
against cell line K562 (leukemia, 12.9 ± 7.19 μg/mL) and
weak for MCF-7 (mammary, 39.0 ± 5.80 μg/mL). For all the
analyzed lineages, including normal cell VERO (Green
monkey kidney), HEEP was inactive (Table 1). HEEA was
inactive for the tested lineages, including normal cell VERO
(Green monkey kidney).
According to ex vivo assays, E.aurata and E.punicifolia

inhibit neutrophil functions in the absence of cell death.
Based on these results, in vivo tests were performed.
The in vivo experiment comprises a greater complexity
of events when compared to in vitro and ex vivo experi-
ments, in which experimental conditions are better
monitored. Therefore, the results obtained using in vivo
analyses are closer to the real scenario.
Acute peritonitis model induced by Thioglycolate in mice

was assessed in order to evaluate Eugenia anti-inflammatory
activity. Both extracts showed anti-inflammatory effect by
inhibiting neutrophil influx. No animal showed symptoms
of toxicity or even death. Mice received a subcutaneous
injection of extract, and 1 h later were administered with
3 % Thioglycolate (TG) intraperitoneally. When mice are
assayed in a peritonitis model, a 6 h period is necessary to
reach maximum acute neutrophil recruitment. In vivo cell
migration analysis showed that subcutaneous injection of
different extracts concentrations significantly reduced cell

Fig. 3 Eugenia spp. extracts inhibit NET release induced by PMA. Human neutrophils (4x105) were pretreated with different concentrations of E.
aurata (EA) or E.punicifolia (EP) (0.1-1000 μg/mL) and stimulated to NET release for 4 h by 50nM PMA. Neutrophils incubated with PMA or Hank´s
(medium) alone were used as positive and negative control, respectively. Data shown as released DNA (ng/mL) ± S.D. p <0.01 when compared to
PMA (*) or medium (#) control

Fig. 4 Neutrophils viability is not affected by Eugenia aurata (EA) or
E. punicifolia (EP). Human neutrophils (4x105) were incubated with
different concentrations of EA or EP. At the end of incubation, cell
viability was measured by MTT assay. Neutrophils incubated with
RPMI (medium) alone or 50 μM H2O2 (Hydrogen Peroxide) were
used as negative and positive control, respectively. Data shown as
Neutrophil viability (%) ± S.D. p <0.01 when compared to Medium (*)
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influx into the peritoneal cavity (Fig. 5). EP showed anti-
inflammatory activity at concentrations of 30 and 300 mg/
mL (Fig. 5a). As for EA, the anti-inflammatory activity was
observed for all the tested concentrations (Fig. 5b). As
negative control, extracts were s.c. injected and PBS was i.p.
injected. As a result, neutrophil migration did not occur.
Either for EA as for EP, the anti-inflammatory activity was
comparable to the effect of dexamethasone (DEX), a potent
anti-inflammatory drug in clinical use.
Differences in chemical composition between E.

aurata and E. punicifolia HBK may explain the anti-

inflammatory effects described herein. Both extracts in-
hibit NET release but only EA reduces cell adhesion
whereas EP decreases elastase secretion.
The control of accute/chronic inflammatory processes

as rheumatoid arthrite, ashtma, vaculitis among others
like diabetes is relevant, once such processes may be
related to the damage caused by the release of free radi-
cals [26]. Moreover, neutrophil activation is largely
dependent on the generation of reactive oxygen species
(ROS) that are known to be inhibited by antioxidant
compounds, as catechin and rutin, found abundantly in
plant extracts [27]. Selected phenolic compounds, as
diosmin and hesperidin, decrease the adhesion of
inflammatory cells to the endothelium [28], whereas
others can inhibit degranulation of neutrophils without
affecting superoxide production [29].
E. punicifolia showed phenolic compounds concentra-

tions of 74.86 ± 0.02 mg gallic acid/g extract and E.
aurata 57.93 ± 0.05 mg gallic acid/g extract. Flavonoid
content found was 32.00 ± 0.02 mg quercetin/g extract
and 15.78 ± 0.01 mg quercetin/g extract, respectively.
Magina et al. [30] described, respectively, for Eugenia

brasiliensis, E.umbelliflora and E.beaurepaireana hydro-
ethanolic leaves extracts (70 %): 162.6 ± 3.3, 138.0 ± 2.7 to
128.1 ± 2.9 mg gallic acid/g. E. aurata and E. punicifolia
showed lower phenol levels when compared to species
studied by Magina et al. [30]. Although phenolic content
found is lower than expected for E. punicifolia, flavonoid
content approached similar levels to previous studies from
Magina and collaborators [30]: E. brasiliensis, E. umbelli-
flora and E.beaurepaireana showed, respectively, 14.4 ±
1.1, 31.2 ± 1.7 and 10.4 ± 1.1 mg quercetin/g extract.
In addition, after assessing the phenolic and flavonoid

contents, an ESI-MS was performed, in order to correlate
the main secondary metabolites found in HEEP and in
HEEA with their biological activity without further chroma-
tographic separations, since a preliminary HPLC HEEP
analysis was already published by our group [31]. Gallic
acid derivatives, flavonols, glycosides and procyanidins were
the most common phenolic compounds in fruits and leaves
of the Myrtaceae family [32]. Database search showed no
prior HEEA research published to the moment.
The most characteristic corresponding molecular

formulas of HEEP and HEEA, their fractions, MS/MS
fragments are shown in Table 2. All peaks found were

Table 1 TGI values (Total Growth Inhibition, μg/mL) of Eugenia punicifolia and E. aurata hydroethanolic leaf extracts

Tested material Cell linesa

u M a 7 4 p o h k V

Doxorubicinb 3.30 6.60 2.67 0.90 5.85 2.95 3.90 8.43 8.43

HEEPc >250 39.0 ± 5.80 120.0 ± 0.97 >250 209.7 ± 3.26 47.6 ± 13,3 105 ± 53,7 124.7 ± 0.99 12.9 ± 7.19 >250

HEEAc * >250 >250 240 ± 0.14 78.5 ± 21.7 229 ± 64 * >250 34.2 ± 9.7 >250
au = UACC (melanoma); m =MCF-7 (mammary); a = NCI-ADR/RES (drug resistant ovary); 7 = 786-0 (kidney); 4 = NCI-H460 (lung); p = PC-3 (prostate); o = OVCAR-3
(ovary); h = HT-29 (colon) V = VERO (Green monkey kidney). bPositive Control.cHEEP and HEEA – Ethanol:water 70:30 v/v extract. *not tested

Fig. 5 Eugenia extracts inhibit in vivo neutrophil migration. Swiss
male mice previously injected (s.c.) with Eugenia aurata (EA; panel a)
or E. punicifolia (EP; panel b), received i.p. injection of 3 %
Thioglycolate (TG). Cellular migration was allowed for six hours
when the peritoneal lavage fluid was collected and subjected to
total and differential cell count. PBS group received = PBS (s.c. and
i.p.); TG group received = PBS (s.c.) and TG (i.p.); TG/DEX group
received = DEX (s.c.) and TG (i.p.). Data shown as in vivo migration (%)
± SD. (n = 5). # p <0.01 when compared to PBS; ** p <0.01 and *** p
<0.001 when compared to TG
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tentatively assigned based on their accurate masses and
MS/MS patterns. The peak at m/z 169 was assigned to
gallic acid and confirmed by fragmentation of m/z 125
[M-44-H]− because of CO2

− loss [33]. The ion of m/z 191
represents quinic acid, frequently found in higher plant
as major compounds in the leaves [34] showed
fragments of m/z 173 after H2O loss [35]. The peak at
m/z 359 was characterized as glycosyringic acid [36].
3-Feruloylquinic acid (peak of m/z 367) was character-
ized according Fang et al. [37] and with fragment m/z
173 and diagnostic peak m/z 193 (hydroxymethoxycin-
namoyl moiety). The peak at m/z 463 was characterized
as mudanoside with fragments m/z 301 ([M-H-162]−)
lost glucose group [38].
Monogalloylglucose with its m/z 331 [M - H]− ion dis-

sociating to yield an m/z 169 ion after a glucosyl group
loss ([M-H-162]−) [39]. Digalloylglucose with its m/z 483
[M - H]− ion dissociating to yield an m/z 169 ion after
sequential removal of a galloyl group ([M-H-152]−) and
a glucosyl group ([M-H-162]) [40].
HEEP and HEEA diagnostic mass fragments m/z 301

and m/z 317 were characterized as quercetin and
myricetin, respectively. The neutral losses of 132, 146
and 162 mass units allowed the identification of pento-
sides (xylose or arabinose), hexosides (glucose or galact-
ose) and deoxyhexoside. Gallic acid was diagnosed by a

neutral loss of 152 mass units. Peaks at m/z 433, 447, 463,
593, 609, and 615 were assigned as flavonols and their
derivatives. The quercetin pentoside isomer at m/z 433
[M – H]− produced the MS/MS fragmentation of m/z 300
[M - H-132]−, due the loss of arabinopyranoside. The ion
at m/z 447 was tentatively assigned to quercetin-3-O-β-
rhamnose. The MS/MS fragmentation produced a
deprotonated aglycone ion at m/z 301 [M-146-H]− due
loss a sugar moiety of 146 Da and m/z 271 typical of
flavon-3-O-monoglycoside [41] and 179 from RDA of ring
A. Two isomeric compounds ions observed with [M–H]−

at m/z 463, whose MS/MS main fragmentation produced
a deprotonated aglycone form myricetin ion at m/z 317
[M-146-H]− (loss of a sugar moiety of 146 units), indicates
that the compound is a myricetin monohexoside (myrice-
tin 3-O-galactoside or myricetin 3-O-rhamnoside) and
another isomer peak ion at m/z 301 with its [M-162-H]−

(loss of a sugar moiety of 162 units), an indicative of
quercetin monohexoside, and the hexose could be gluco-
side or galactoside [42]. Dissociation of fragment m/z 593
showed a loss of 308 units (corresponding to a rhamnose
plus glucose group) and yielded directly a fragment ion at
m/z 285 (assigned as kaempferol).
Compared to flavonoid glycosides found in gingko

biloba [43], we tentatively characterized the compound
as kaempferol-3-O- glucose- rhamnoside. Fragmentation

Table 2 Phenolic compounds tentatively identified of Eugenia sp. leaf extracts

Formula [M-H]− Theoretical mass Experimental mass
[M – H]−m/z

Δm (ppm) MS/MS fragments m/z Compound identification HEEP
HEEA

EA
EP

C7H5O5 169,0142 169,0148 −1,49 151,125 gallic acid HEEP Ep

C7H10O6 191,0561 191,0561 0,06 173,134 quinic acid HEEA Ea

C7H11O6 197,0458 197,0461 −1,28 169, 140, 124 syringic acid HEEP Ep

C14H5O8 300,9990 300,9996 −1,69 284, 257, 229, 185 ellagic acid HEEP HEEA Ep

C13H15O10 331,0671 331,0670 −0,39 271, 211, 169 monogalloyl-glucose HEEP HEEA Ep

C15H20O10 359,0984 359,0979 1,31 271,169 Glycosyringic acid HEEP Ep

C17H19O9 367,1035 367,1050 0,29 326,193,173,134 3-Feruloylquinic acid HEEA

C19H13O12 433,0412 433,0423 −2,11 300,169, 125 Ellagic acid xyloside HEEP

C20H17O11 433,0776 433,0768 2,52 300,271,169 Quercetin-3-O-α −
arabinopyranoside

HEEP Ep

C21H19O11 447,0933 447,0936 −0,7 301, 271,151 Quercetin-3-O-β −
rhamnose

HEEP HEEA Ep Ea

C21H19O12 463,0880 463,0882 0,43 317, 271, 179 myricitrin HEEA HEEP Ea

C18 H23O14 463,1166 463,1086 1,19 301, 169 Mudanoside B HEEP Ep

C20H17O14 481,0624 481,0642 −3,78 447, 301, 275, 211,169 HHDP glucose isomer HEEP Ep

C23H31O11 483,1872 483,1858 2,16 447, 331,169 Digalloylglucose isomer HEEP Ep

C27H30O15 593,1502 593,1547 1,67 415, 341, 284,103 rutinosylkaempferol HEEA

C27H19O14 609,1480 609,1461 −3,1 511, 300, 151 Rutin HEEA Ea

C39H19O8 615,1087 615,1086 −0,1 463, 301, 241, 169 Quercetin galloylhexoside
isomer

HEEP Ea Ep

C34H24O22 783,0686 783,0681 0,7 481, 381, 275 bis HHDP-glucose isomer HEEP

Ep = E. punicifolia; Ea = E. aurata (HEEP and HEEA fraction soluble in ethanolic solution)
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of the compound at m/z 609 produced an ion at m/z
301, attributed to [M-H-146–162]– through loss of 308
units from a rhamnose (146 u) plus a glucose (162 u),
indicating the compound is a rutin.
At m/z 615, the MS/MS peak fragmentation produced

an ion at m/z 463 [M-152-H] (loss of the galloyl moiety)
and a deprotonated quercetin at m/z 301 [M-162-H]−

(loss of a sugar moiety of 162 units), indicative of
quercetin-3-O-β-(6”galloyl) hexose. These flavonols de-
rivatives have been previously reported in other Eugenia
species and they are usually associated to antioxidant
and antiproliferative activities [34, 39].
Some phenolic compounds found in HEEP/HEEA

extracts belong to the family of ellagitannins. They are
hydrolyzable tannins, a class of polyphenols whose struc-
ture consists of ellagic acid units linked to a polyol, usu-
ally glucose or quinic acid. These compounds are also
characterized by their hexahydroxydiphenoyl (HHDP)
group which is released on acid hydrolysis and spontan-
eously lactonizes to ellagic acid. Ellagic acid was charac-
terized by diagnostic mass ion of m/z 301 and ma ss
fragments at m/z 257 and 229 [40]. Ellagic acid xyloside
was characterized by ion of m/z 301[M-162-H] (loss of
glucose plus H2O, 162 units).
HHDP-glucose isomers were assigned as a signal at m/

z 481[M-162–18-H] (loss of glucose plus H2O, 180
units) [33]. However, ellagitannins had lower efficacy in
the inhibition of cell proliferation compared to ellagic
acid, the breakdown product [44].
At m/z 783, the MS2 peak fragmentation produced an

ion at m/z 481 [M-H-302]−, loss of HHDP), and after
losing a HHDP-glucose [M–H-481]−, an ion at m/z 301
which corresponds to ellagic acid. This fragmentation
pattern was assigned to a bis-HHDP-glucose isomer.
Additionally there were peaks at m/z 481 [M-H-469]−,

loss of a trisgalloyl group) and m/z 301, corresponding
to ellagic acid. These results suggest a HDDP-glucose
and a trigalloyl group. All those results are consistent
with data reported for other Eugenia [42, 45].
Table 2 shows that EA contains the phenolic com-

pounds myricitrin, rutin, quinic acid and quercetin deriva-
tives. Among those compounds, some present a role on
neutrophil activity. Aqueous extract containing quinic acid
or its molecule derivate are described to inhibit neutrophil
migration [46] and elastase secretion [47]. Despite
inhibitory roles demonstrated for myricetin in elastase
secretion [48], its derivate myricitrin does not present any
inhibitory effect [49]. The suppressor character of rutin on
neutrophil functions were better studied than the
compounds cited above. Isolated rutin or the one found in
plant extracts decreases in vitro and in vivo neutrophil
migration [50], adhesion [51], elastase secretion [52] and
NET release [27]. Quercetin derivatives were commonly
found in E.aurata and E.punicifolia extract fractions.
There are no evidences that quercetin-3-O-β-rhamanose
or quercetin-galloyl-hexoside promotes effects on neutro-
phil activities. In contrast, quercetin suppresses elastase
secretion [48] and in vivo and in vitro neutrophil migra-
tion [20]. The role of quercetin in the adhesion events is
still unclear [53].
ESI-MSn analyses also revealed the presence of gallic

acid, quercetin-3-O-α-arabinopyranoside, syringic acid,
ellagic acid, monogalloyl-glucose, glycosyringic acid,
mudanoside B, HHDP glucose isomer and digalloylglucose
isomer. The participation of these compounds in the
neutrophil biology is poorly studied. There were reported
downregulation of elastase secretion, NET release and
neutrophil migration for gallic and ellagic acids present in
plant extracts or in isolated form [53]. Evidences were not
found for neutrophil adhesion.

Fig. 6 Schematic summary of Eugenia aurata and E. punicifolia effects on neutrophil recruitment. EA affects mainly adhesion whereas EP, degranulation.
Both extracts cease NETs release
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Conclusions
Based in our results, we are able to propose a model for
the anti-inflammatory properties exhibited by both
hydroethanolic extracts of E. aurata and E. punicifolia
(Fig. 6). The extracts in this model have a different
chemical composition in terms of phenolic compounds,
but both present in vivo and ex vivo anti-inflammatory
activity, besides not being toxic to neutrophils. E. aurata
reduces neutrophil adhesion and E. punicifolia decreases
elastase degranulation. NET release is inhibited by both
extracts ex-vivo. Together, these effects result on a
reduced inflammatory response and provide support to
their use in popular medicine. Furthermore, these results
show a potential of these extracts for the development
of phytomedicines with anti-inflammatory properties, in-
cluding the treatment of rheumatology, neoplastic, self-
inflammatory, autoimmune or infectious disorders.
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