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Abstract

Phytoplasmas are cell wall-less plant pathogenic bacteria responsible for major crop losses

throughout the world. In grapevine they cause grapevine yellows, a detrimental disease

associated with a variety of symptoms. The high economic impact of this disease has

sparked considerable interest among researchers to understand molecular mechanisms

related to pathogenesis. Increasing evidence exist that a class of small non-coding endoge-

nous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional

gene regulation during plant development and responses to biotic and abiotic stresses.

Thus, we aimed to dissect complex high-throughput small RNA sequencing data for the

genome-wide identification of known and novel differentially expressed miRNAs, using read

libraries constructed from healthy and phytoplasma-infected Chardonnay leaf material.

Furthermore, we utilised computational resources to predict putative miRNA targets to

explore the involvement of possible pathogen response pathways. We identified multiple

known miRNA sequence variants (isomiRs), likely generated through post-transcriptional

modifications. Sequences of 13 known, canonical miRNAs were shown to be differentially

expressed. A total of 175 novel miRNA precursor sequences, each derived from a unique

genomic location, were predicted, of which 23 were differentially expressed. A homology

search revealed that some of these novel miRNAs shared high sequence similarity with con-

served miRNAs from other plant species, as well as known grapevine miRNAs. The relative

expression of randomly selected known and novel miRNAs was determined with real-time

RT-qPCR analysis, thereby validating the trend of expression seen in the normalised small

RNA sequencing read count data. Among the putative miRNA targets, we identified genes

involved in plant morphology, hormone signalling, nutrient homeostasis, as well as plant

stress. Our results may assist in understanding the role that miRNA pathways play during

plant pathogenesis, and may be crucial in understanding disease symptom development in

aster yellows phytoplasma-infected grapevines.
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Introduction

Phytoplasmas are known to infect hundreds of plant species worldwide and are responsible for

devastating yield losses of many economically important crops, fruit trees, and ornamental

plants [1]. They are obligate cell wall-less bacterial pathogens (class Mollicutes), and rely on

plants and homopterous phloem-sucking insects for biological dispersal. In plants, they are

mainly restricted to the phloem tissue where they can move and multiply through the sieve

tube elements [2].

The aster yellows (AY) phytoplasma group (16SrI, subgroup A and B) represents the most

diverse and widespread phytoplasma group and is also known as ‘Candidatus Phytoplasma

asteris’ [3]. AY phytoplasma-infection can cause a severe disease in grapevine (Vitis vinifera
L.), known as grapevine yellows (GY). Phytoplasma-like symptoms have been observed in

South African vineyards since 2006, and were later shown to be caused by AY phytoplasma

(16SrI-B) [4]. Transmission experiments conducted on vineyards in the vicinity of Vredendal

(Western Cape) suggested that Mgenia fuscovaria (Hemiptera: Cicadellidae) is a vector of AY

phytoplasma in South Africa [5]. GY disease incidence in the same region was monitored for

different cultivars (Chenin blanc, Shiraz, Chardonnay, Cabernet Franc, Sauvignon blanc,

Pinotage and Colombar), and revealed that Chardonnay is especially susceptible, based on a

GY increase from 0.5% to 7.5% in two years in a single vineyard [6]. Typical symptoms caused

by GY disease include discolouration and necrosis of leaf veins and laminae, downward curl-

ing of leaves, abnormal leaf shape and size, incomplete lignification, stunting and necrosis of

shoots, flower abortion and berry withering. These symptoms eventually lead to reduced plant

vitality and fruit yield that may hold devastating consequences for the wine and table grape

industries [1,7]. Currently, the only available control strategies include early eradication of

infected crops, early eradication of infected source plants (weed control), and chemical control

of vectors through regular insecticide treatments [8].

V. vinifera is one of the most important fruit and/or beverage crops in the world and, like

all land plants, grapevines have to develop various mechanisms at a physiological and molecu-

lar level in order to cope with their ever-changing environment. Significant progress has been

made to understand plant-pathogen interactions and the multiple gene regulatory mechanisms

they invoke during plant defence responses. The recent successful, axenic cultivation of phyto-

plasmas [9] will allow direct in planta investigation of molecular interactions postulated to

exist between phytoplasmas and their plant and insect vectors. In addition, high-throughput

transcriptome analysis of next-generation sequencing (NGS) and microarray data, as well as

proteomics, have served as valuable approaches for gaining new insights into physiological,

biochemical and molecular mechanisms underlying phytoplasma disease symptom develop-

ment in grapevine and other plant species [10–16].

Increasing evidence has shown that a class of small non-coding endogenous RNAs known

as microRNAs (miRNAs), play a major role in post-transcriptional gene regulation during

plant development and plant responses to biotic and abiotic stresses [17,18]. Mature miRNAs

are typically 19 to 24 nt in length and originate from miRNA (MIR) genes that are transcribed

by RNA Polymerase II. These transcripts, known as primary miRNAs (pri-miRNA), form

imperfect fold-back hairpins that are cleaved by RNase III-like Dicer 1 (DCL1) to produce

miRNA precursors (pre-miRNA). Each pre-miRNA contains one or more short intermediate

complementary miRNA/miRNA� duplexes. These duplexes are then cleaved by DCL1 from

the stem region and processed inside the nucleus to be exported to the cytoplasm where the

leading miRNA is incorporated into the RNA-induced silencing complex (RISC). When asso-

ciated with the RISC, guided binding of the miRNA to its complementary target mRNA(s) or

non-coding trans-acting siRNA (TAS) transcript(s) occurs. This facilitates either translational
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inhibition or degradation of target mRNA(s), or slicing of TAS transcripts that lead to genera-

tion of trans-acting siRNAs (tasiRNAs). Target degradation occurs through endonucleolytic

cleavage by the RISC core protein ARGONAUTE 1 (AGO1) [19–21].

It has been suggested that the miRNA pathway contributes to pathogen-associated mol-

ecular pattern (PAMP)-triggered immunity (PTI), which refers to a basal defence response

upon recognition of certain pathogenic elements, such as flagellin [22]. The bacterial PAMP

peptide flg22 causes induced expression of the Arabidopsis miR393, which was the first

miRNA identified to play a role in plant PTI. Overexpression of miR393 caused down-regula-

tion of auxin receptor mRNAs, including transport inhibitor response 1 (TIR1), through degra-

dation, which caused increased resistance to virulent Pseudomonas syringae pv. tomato (Pst)
DC3000 [23].

The availability of two draft V. vinifera cv. ‘Pinot noir’ genome sequences obtained from

NGS projects [24,25] has enabled rapid discovery of miRNAs that further supports efforts to

explore small RNA (sRNA)-based regulatory networks in grapevine. The use of computational

analyses of high-throughput sequencing and microarray data, followed by experimental valida-

tion, have been used to identify highly conserved miRNAs, some of which play important roles

in grapevine development [26,27]. To date, 186 mature grapevine miRNA sequences from 47

different miRNA families have been deposited in miRBase v21 [28].

This study is the first to utilise a bioinformatics pipeline to dissect complex high-through-

put sRNA sequencing (sRNA-seq) data in order to identify miRNAs that are differentially

expressed in V. vinifera cv. ‘Chardonnay’ in response to AY phytoplasma-infection. Further-

more, we used computational resources for the in silico prediction and annotation of putative

miRNA targets to explore the involvement of possible pathogen response pathways. Under-

standing sRNA-mediated gene regulation is crucial to expanding our knowledge of gene regu-

latory pathways involved in different stress-regulated physiological processes. Our results

provide insight into miRNA-mediated pathogenesis in V. vinifera and may shed light on dis-

ease control strategies for molecular breeding in the future.

Materials and methods

Plant material

We visually selected and tagged 50 symptomatic and 50 asymptomatic V. vinifera cv. ‘Char-

donnay’ plants in a 7-year-old vineyard in the Olifants River Valley (Western Cape) (Fig 1).

The vineyard was part of a high disease incidence area mapped by the Agricultural Product

Inspection Services (APIS) of the Department of Agriculture, Forestry and Fisheries (DAFF).

Permission was granted by the owner to conduct the study on his farm, Daltana. During the

peak summer season, whole leaf material, including the blade and petiole, were collected from

each plant, immediately flash frozen in liquid nitrogen, transported on dry ice and stored at

-80˚C until use. RNA was extracted using a modified CTAB method [29], while genomic DNA

was extracted using a NucleoSpin1 Plant II kit (Macherey-Nagel; Düren, Germany). Phyto-

plasma infection was confirmed by a nested-PCR procedure, specifically amplifying a region

of the phytoplasma 16S rDNA. The first PCR round was performed using a universal primer

pair R16mF2/mR1, followed by a second PCR with the R16F2n/R2 primer pair [30]. After-

wards samples were screened for the most prevalent grapevine viruses, including Grapevine

leafroll-associated virus 3 (GLRaV-3), Grapevine virus A (GVA), Grapevine virus E (GVE),

and Grapevine rupestris stempitting-associated virus (GRSPaV), using two-step RT-PCR

assays. Primer sequences for virus screening were obtained from previous publications (S1

File). Results from these diagnostics were used to select material, free from these viruses, from

three AY phytoplasma-infected, and three healthy plants for further experiments.
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Total RNA extraction and sRNA-seq

Large-scale RNA extractions were carried out on one gram of plant material for each of the six

experimental plants using PureLink1 Plant RNA Reagent (Thermo Fisher Scientific, Wal-

tham, Massachusetts, United States), according to the manufacturer’s protocol, with an addi-

tional phenol-chloroform extraction step when further purification was necessary. Total RNA

was quantified on a NanoDrop ND-1000, while RNA integrity was assessed using a Plant RNA

Nano Assay using an Agilent 2100 Bioanalyzer. Ten micrograms of total RNA from each plant

were sent to Fasteris SA (Plan-les-Ouates, Switzerland) for sRNA-seq. The six sRNA libraries

were constructed using the TruSeq1 Small RNA Library Prep Kit protocol (Illumina, San

Diego, California, USA), followed by sRNA-seq on an Illumina HiSeq2000 platform (https://

support.illumina.com).

sRNA bioinformatic analysis

After sRNA-seq, high-quality, adapter-trimmed sequence data was received from the service

provider in Illumina-fastq format. FastQC (www.bioinformatics.babraham.ac.uk/projects/

fastqc/) was used as a tool to visualise different quality control measurements. In order to con-

firm RT-PCR results of the virus screening, we produced de novo assemblies with the 18 to 26

Fig 1. Vitis vinifera cv. ‘Chardonnay’ with asymptomatic leaves (A), and leaves showing typical aster yellows (AY) disease

symptoms (B).

https://doi.org/10.1371/journal.pone.0182629.g001
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nt sRNA reads of each sample, using Velvet v1.1 [31]. The resulting contigs were compared

against the NCBI database using nucleotide BLAST [32].

The unique (non-redundant) 18 to 26 nt sequences with accompanying copy numbers,

across all six libraries (representing the six biological samples), were submitted to miRanalyzer

[33] (http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php) for known miRNA analysis, allow-

ing one mismatch. All reads that mapped to other non-coding RNAs (ncRNAs) in RFam

(http://www.sanger.ac.uk/science/tools/rfam) and RepBase (http://www.girinst.org/repbase/)

were removed, and the remaining reads were mapped against the canonical grapevine miRNA

(vvi-miRNA) sequences deposited in miRBase v21. Mapped read counts for libraries obtained

from the phytoplasma-infected group were compared to those from the healthy (control)

group using the DESeq v2 package for differential expression analysis [34] (http://

bioconductor.org/packages/release/bioc/html/DESeq.html).

For novel miRNA predictions, sRNA library files of the 18 to 26 nt reads, from all six librar-

ies, were grouped into a single file that served as input for sRNAbench v0.9 [35] (http://

bioinfo5.ugr.es/srnatoolbox/srnabench), and Shortstack v0.4.1 [36], using the default parame-

ters of the respective packages. sRNAbench was also used for the discovery of sequence vari-

ants of known miRNAs, also known as miRNA isoforms (isomiRs). The V. vinifera (cv. ‘Pinot

noir’; PN40024) 12x coverage genome assembly (http://www.genoscope.cns.fr/externe/

GenomeBrowser/Vitis/) served as the reference sequence to which the sRNA reads were

mapped [24]. Importantly, primary criteria described by Meyers et al. [37] for duplex-forming

precursors (pre-miRNAs) are used by both programs. These include that (1) the miRNA and

miRNA� are derived from opposite arms within the stem region to form a duplex with two 3’-

nucleotide overhangs; (2) extensive base-pairing exist between the miRNA and the other arm

of the hairpin, which includes the miRNA�; and (3) asymmetric bulges are minimal in size and

frequency, especially within the miRNA/miRNA� duplex.

The Unified Nucleic Acid Folding (UNAFold) software was used to calculate the minimum

folding free energy (MFE; ΔG) of novel pre-miRNA sequences [38] (http://mfold.rna.albany.

edu/). In an effort to find more comprehensive evidence that miRNAs differ from other RNAs,

Zhang et al. [39] described a statistical method incorporating pre-miRNA folding free ener-

gies, base pairing, nucleotide composition, and other characteristics. This method was defined

by two criteria known as the adjusted minimum folding free energy (AMFE) and the minimal

folding free energy index (MFEI). The AMFE and MFEI were calculated using the following

equations:

AMFE ¼
MFE

Precursor length ðntÞ
� 100

MFEI ¼
AMFE

%GC content of precursor

Precursor sequences were analysed in RNAfold to view their stem-loop secondary struc-

tures [40]. Novel mature miRNA sequences were compared against the miRBase v21 database

using BLASTn v2.2.29+ [32,41] (http://www.ncbi.nlm.nih.gov/books/NBK1763/) for the iden-

tification of miRNA homologs. Only the top BLAST results, with an identity of�90%, zero

gaps and not more than two mismatches (over a seed region of 18 nt), were regarded as homo-

logs. For each resulting BLAST hit, we compared the associated precursor sequence against

miRBase with the miRBase BLASTn tool, using less stringent parameters, to identify homolo-

gous pre-miRNA sequences.
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The number of sRNA reads that aligned to novel mature miRNA sequences present in all

six libraries were obtained with Bowtie v1.0.1 [42] and a customised shell script. The resulting

count data were analysed in DESeq v2 to obtain differentially expressed novel miRNAs. Only

log2-fold changes with an adjusted p-value of� 0.05 were considered significant.

Validation of miRNA expression by real-time RT-qPCR

Stem-loop reverse transcription quantitative PCR (RT-qPCR) assays were performed accord-

ing to the methods of Chen et al. [43] to validate the DESeq differential expression results.

High-quality total RNA was prepared as described above. For each miRNA a 20 μl reverse

transcription reaction was prepared containing 100 U of Superscript III reverse transcriptase

(Invitrogen, Carlsbad, CA, USA), 20 U of RiboLock RNase inhibitor (Thermo Scientific, Wal-

tham, Massachusetts, United States), 4 μl first-strand buffer (5x), 5 mM DTT, 500 nM dNTPs

and 1 μl miRNA-specific stem-loop RT primer (10 μM) and 1.2 μg total RNA. Cycling condi-

tions were as follows: 30 min at 16˚C, 60 cycles at 30˚C for 30 s, 42˚C for 30 s, and 50˚C for 1 s,

heat inactivation for 5 min at 85˚C, and cooling at 4˚C. qPCR was performed using the Uni-

versal ProbeLibrary (UPL) probe assay with UPL probe #21 (Roche Diagnostics, Basel, Swit-

zerland). Each 10 μl reaction mixture was prepared in triplicate and contained 1 μl cDNA, 5 μl

FastStart TaqMan1 Probe Master (2x) (Roche Diagnostics, Basel, Switzerland), 0.5 μl miRNA-

specific forward primer (10 μM), 0.5 μl universal reverse primer (10 μM), 0.1 μl UPL probe

(10 μM), and nuclease-free water. A control reaction, without cDNA template, was included

for each miRNA. Based on previous results from geNorm analysis (qBasePLUS v2.0, Biogazelle,

Ghent, Belgium) [44], miR167a was chosen as internal control to normalise miRNA expres-

sion levels (data not shown). PCR amplification was performed in an Applied Biosystems

7900HT Fast Real-Time PCR System, in which the baseline and threshold cycles (Ct) were

automatically determined with SDS v2.3 software. Cycling conditions were as follows: 95˚C

for 5 min, 45 cycles at 95˚C for 10 s and 60˚C for 1 min. Relative miRNA expression analysis

was performed using qBasePLUS v2.0 software (Biogazelle, Ghent, Belgium).

miRNA target prediction and functional annotation

Potential targets of differentially expressed miRNAs were predicted using the psRNAtarget

analysis server [45] (http://plantgrn.noble.org/psRNATarget/), with default parameters which

included a threshold cut-off of 3.0 for low false-positive prediction, a complementarity scoring

length of 20 bp, and the energy required for target accessibility equal to 25 kcal/mole. The col-

lection of annotated transcript sequences of the V. vinifera (PN40024) 12x assembly was used

for the miRNA target search (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/).

Predicted targets for both the known and novel differentially expressed miRNAs were func-

tionally annotated using Blast2GO v2.2.7 [46]. This was done by using NCBI BLASTx to find

homologous sequences, a mapping step to retrieve gene ontology (GO) terms associated with

BLAST hits (http://geneontology.org/page/go-database), and assigning functional attributes to

each query sequence in terms of biological processes, cellular components and molecular func-

tions, in a species-independent manner. Afterwards a combined graph was generated using a

GO sequence similarity level of 3 and an annotation cut-off value of 7.

Results and discussion

Plant material

According to the diagnostic PCR screening results (data not shown), 19 out of the 50 plants

that were visually tagged as ‘healthy’ were AY phytoplasma-positive, while 32 out of the 50
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plants that were visually tagged as phytoplasma-infected were confirmed positive for AY phy-

toplasma. The remaining 31 ‘healthy’ (no phytoplasma-infection) and 32 phytoplasma-

infected candidate plants were subjected to further virus screening. All plants that tested posi-

tive, following the virus-screening, were eliminated from the study. BLAST results for the de
novo assembled contigs also confirmed the absence of any prevalent grapevine viruses (data

not shown). Our final test groups consisted of three phytoplasma and virus-free Chardonnay

plants for the control group (h55, h85, h89), and three AY phytoplasma-infected, but virus-

free, Chardonnay plants for our experimental group (p73, p93, p99).

sRNA-seq

To investigate miRNA expression profiles in response to GY disease, individual sRNA libraries

were constructed from RNA extracted from pooled leaf material of the six plants. High-quality,

adapter-trimmed reads were generated from the respective sRNA-seq libraries and the number

of reads are displayed in Table 1.

Analysis of the size distribution of sRNA sequences in the 18 to 26 nt range showed the

most abundant sequences to be between 21 and 24 nt in length, with sizes 21 nt and 24 nt as the

major classes (Fig 2). These results were consistent with those of other grapevine cultivars, as

well as Arabidopsis, Citrus trifoliate, Oryza sativa, Eugenia uniflora, and Glycine max [26, 47–

51]. The library generated from the phytoplasma-infected samples indicated that 21 nt sRNAs

were more abundant (34.2%) than those in the library obtained from the healthy plant samples

(29.7%). A similar profile was observed for Mexican lime infected with ‘Candidatus Phyto-

plasma aurantifolia’ [52]. The 24 nt sRNAs, however, were more abundant in the library from

the healthy plant samples (33.2%) compared to the library from the phytoplasma-infected sam-

ples (30.7%). This observation points to differences in complexity between the two pools of

sRNAs that may infer an underlying miRNA-mediated regulatory response triggered by biotic

stress. The unique (non-redundant) 21 nt reads were also more abundant in the phytoplasma-

infected samples. Their length is characteristic of canonical miRNAs, and they possessed a high

reads/unique reads ratio (Fig 2), reflecting their regulatory impact and abundance in plants.

The 24 nt reads, which are predominantly repeat-associated siRNAs (rasiRNAs), exhibited the

highest sequence diversity, consistent with the origin of this size class (Fig 2B) [53].

Table 1. Summary of total small RNA reads.

Small RNA library type

Total high-quality reads Healthy AY

p73 N/A 10,893,265

p93 N/A 10,476,093

p99 N/A 10,511,436

h55 10,878,402 N/A

h85 12,424,487 N/A

h89 11,510,533 N/A

All 34,813,422 31,880,794

18–26 nt 26,474,279 24,314,330

18–26 nt: unique 6,388,422 5,726,632

18–26 nt: mapped 22,515,584 20,782,176

H: Health (control) sample group

AY: AY phytoplasma-infected sample group

N/A: Not applicable

https://doi.org/10.1371/journal.pone.0182629.t001
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Identification of known miRNAs and their sequence variants

We used sRNAbench v0.9 to detect both the canonical vvi-miRNA sequences (from miRBase),

and all isomiRs present in the pooled phytoplasma-infected and healthy (control) read data,

respectively. The different sequences were classified and are presented in a simple table output

(S2 File). IsomiRs are defined as different sequence variants of known miRNAs that may arise

from post-transcriptional modifications and alternative processing [54]. IsomiR types included

those reads having non-template additional nucleotides (where the read sequence starts and

ends at the same position as the canonical sequence in the pre-microRNA, but shows sequence

variation), “flush fitting” length variants (where the read sequence always starts or ends at the

same position as the canonical sequence but a terminal trimming or extension is evident), and

multiple length variants (where the read sequence does not coincide with either the 3’ or 5’ ter-

minal nucleotides of the canonical sequence). Those reads that contained the same 5’ terminal

nucleotides as the canonical vvi-miR166b sequence, but showed divergence of length in their

3’ terminal extension, as a result of alternative DCL1 cleavage, were the dominantly expressed

isomiRs in the ‘healthy libraries’ (S2 File). In the case of the ‘AY phytoplasma-infected librar-

ies’, those reads that contained the same 3’ terminal nucleotides as the canonical vvi-miR166e-

5p sequence, but showed divergence of length in their 5’ terminal extension, as a result of alter-

native DCL1 cleavage, were the most dominantly expressed isomiRs (S2 File).The mechanism

by which miRNA heterogeneity arises has been extensively reviewed. Different findings have

suggested that multiple isomiRs that arose from a single miRNA locus are not randomly gener-

ated artefacts, but rather generated in vivo through biological relevant processes. Conse-

quently, such sequence variations may drastically alter miRNA association with their targets,

and also influence miRNA stability during Argonaut (AGO)-RISC loading [55–57].

The vvi-miR166 family showed the highest levels of expression, but had no significant dif-

ference in terms of the total normalised read counts between the two different library types (S2

File). Vvi-miR166b and its isomiRs constituted ~40% of the total normalised read counts in

both library types. This high level of vvi-miR166 expression was also seen in a previous study

Fig 2. (A) The size distribution of the total 18 to 26 nt sRNA reads in the healthy (H) and AY phytoplasma-infected (AY) libraries. (B) The size distribution of

the total 18 to 26 nt unique sRNA reads in the healthy (H) and AY phytoplasma-infected (AY) libraries.

https://doi.org/10.1371/journal.pone.0182629.g002
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where it was the most dominantly expressed miRNA family in all assayed grapevine tissues

[26]. A degradome sequencing approach revealed that vvi-miR166b regulates a Class III home-

odomain leucine zipper (HDZIP-III) transcription factor which is involved in secondary cell

wall biosynthesis [25,58,59]. Direct evidence from the identification and analysis of corre-

sponding activation tagged mutants has implicated the regulatory involvement of miR165/166

in leaf and vascular morphogenesis [60,61].

Differential expression analysis of known miRNAs

Comparative profiling, with DESeq v2, between the healthy (control) and AY phytoplasma-

infected samples was used to determine the differential expression of known miRNAs in the

AY phytoplasma-infected material. Based on false discovery rate (FDR) for multiple testing,

we encountered seven significantly differentially expressed known vvi-miRNA families that

had log2-fold changes with adjusted p-values (q)� 0.05. (Fig 3, Table 2).

An additional nine known miRNAs from seven families, had log2-fold changes with signifi-

cant p-values (p� 0.05), which indicate they may be of biological importance (S3 File). A total

of eight miRNA families, viz. vvi-miR159c, vvi-miR160c-e, vvi-miR171acdij, vvi-miR172d,

vvi-miR2950-5p, vvi-miR319bcef, vvi-miR3627-5p, and vvi-miR395a-m, were up-regulated,

and five, viz. vvi-miR156bcd, vvi-miR3629(a-3p, b-3p, c-5p), vvi-miR3638-5p, vvi-miR399a-

heg, vvi-miR479, were down-regulated (Table 2, S3 File). The differential expression of con-

served miRNA families (vvi-miR156, miR159, vvi-miR160, vvi-miR171, vvi-miR172, vvi-

miR319), known to be involved in different aspects of plant development [18], make these

potential candidates that play a role in the interactions leading to symptoms associated with

GY.

Fig 3. Bar charts displaying profiles of differentially expressed vvi-miRNAs (q� 0.05) in healthy (H) and AY phytoplasma-infected (AY) samples

that were further validated. Vertical bars indicate the standard error (SE) of the mean. (A) Average normalised read counts of vvi-miRNAs. Group

averages were given in terms of the average of reads per million mapped reads (RPM) for three biological replicates. (B) Relative expression analysis with

real-time RT-qPCR, confirming expression profiles of vvi-miRNAs. Each bar represents the average of three biological replicates with three technical

replicates.

https://doi.org/10.1371/journal.pone.0182629.g003
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Novel miRNA prediction and differential expression analysis

The pooled sRNA reads from all six libraries served as input for sRNAbench v0.9 and Short-

stack v0.4.1 for predicting novel miRNAs. These sRNA sequences were aligned to the V. vinif-
era (PN40024) 12x assembled genome sequence to identify loci that may harbour potential

pre-miRNA sequences, based on secondary structure and read distribution. Known V. vinifera
pre-miRNA chromosomal locations found in miRBase v21 were flagged during each analysis

to obtain unique precursor sequences that did not match these loci. Secondary fold structures

were viewed using RNAfold and all miRNA precursors displayed appropriate stem-loop hair-

pin secondary structures (data not shown). Based on structural criteria described by Meyers

et al. [37], these miRNAs can be regarded as authentic candidates that adhere to biogenesis

and expression criteria for confident miRNA annotation.

In total, 175 novel pre-miRNA sequences were predicted, each derived from a unique

genome location (S4 File). Three of the pre-miRNAs were predicted with both prediction pipe-

lines. We also identified multiple pre-miRNAs that produce mature miRNAs with similar

sequences, e.g. vvi-miRn024a to vvi-miRn024c.These miRNAs can be considered members of

the same miRNA family (S4 File). Likewise, vvi-miRn019a to vvi-miRn019g represent a larger

family of duplicated miRNA paralogs with identical precursor and mature miRNA sequences

(S4 File).

Pre-vvi-miRn027, predicted with Shortstack, may serve as an example of a large precursor

that could give rise to two different miRNA duplexes since the sRNAbench-predicted pre-vvi-

miRn136 falls within its location (Fig 4; S4 File). Precursor sequences ranged from 54 nt to 742

nt while mature miRNA sequences ranged from 20 nt to 25 nt in length, the majority being 21

nt. Most mature miRNA sequences started with an uracil at the first position, corroborating

Table 2. List of significantly differentially expressed known vvi-miRNAs.

Kown miRNA Sequence (5’-3’) Length (nt) Avg of normalised

read counts†
DESeq results (H vs AY)

H AY log2FC p-value Adj. p-value (q-value)

vvi-miR156b,c,d¶ UGACAGAAGAGAGUGAGCAC 20 29.29 11.06 -1.18 0.0011 0.0102

vvi-miR159c UUUGGAUUGAAGGGAGCUCUA 21 3869.83 8860.93 1.15 3.89E-05 0.0007

vvi-miR399g UGCCAAAGGAGAUUUGCCCCU 21 463.24 103.94 -2.02 3.89E-05 0.0007

vvi-miR171a,c,d,I,j UGAUUGAGCCGUGCCAAUAUC 21 20.56 37.71 0.87 0.0006 0.0071

vvi-miR172d UGAGAAUCUUGAUGAUGCUGCAU 23 243.48 736.45 1.42 0.0007 0.0075

vvi-miR160c,d,e¶ UGCCUGGCUCCCUGUAUGCCA 21 14.23 30.9 1.00 0.0060 0.0477

vvi-miR2950-5p¶ UUCCAUCUCUUGCACACUGGA 21 22.15 69.15 1.59 3.26E-10 2.35E-08

H: Healthy sample group

AY: AY phytoplasma-infected sample group
¶Validated using real-time RT-qPCR
†Average of reads per million mapped reads (RPM) between three biological replicates

https://doi.org/10.1371/journal.pone.0182629.t002

Fig 4. An example of a novel pre-miRNA hairpin structure that may give rise to two different miRNA

duplexes (See S4 File). The sequences highlighted in green and magenta represents the 5’ and 3’ mature

miRNA sequences, respectively.

https://doi.org/10.1371/journal.pone.0182629.g004
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data described by Baumberger and Baulcombe [62] that showed a preferential association of

the AGO1 protein with sRNAs containing a 5’-terminal uracil. This may indicate an important

characteristic for miRNA biogenesis through recognition of miRNA duplexes by RISC.

Zhang et al. [39], implemented a criterion to better distinguish miRNAs from other sRNAs,

known as MFEI which incorporates MFE, sequence length and GC content. The Unified

Nucleic Acid Folding (UNAFold) software was used to calculate the MFE. MFE for predicted

novel pre-miRNAs ranged from -13.2 kcal/mol to -428.9 kcal/mol and the MFEI ranged from

-0.47 to -2.51. The majority (>94%) of the novel Shortstack-predicted pre-miRNAs possessed

MFEI-values in accordance with the expected value (�-0.85), while only 39% of sRNAbench-

predicted pre-miRNAs had strong negative MFEI-values of more than -0.85 (S4 File).

Each novel pre-miRNA sequence, as well as its most abundant mature miRNA sequence,

was subjected to a homology-based search against miRBase using BLASTn. Results indicated

that some of the newly identified pre-miRNAs have either precursor and/or mature sequences

homologous to conserved miRNAs from other plant species, including grapevine miRNAs.

Vvi-miRn025a and vvi-miRn025b, for example, share high homology with vvi-miR171 (S4

File). We identified 17 novel vvi-miRNAs belonging to 13 miRNA families that can be classi-

fied as newly-identified members of known miRNAs, based on homology to known plant

miRNAs for both precursor and mature sequences (S4 File).

Differential expression analysis revealed that 10 novel miRNAs were significantly up-regu-

lated, while 13 novel miRNAs were significantly down-regulated in sRNA libraries prepared

from AY phytoplasma-infected leafmaterial (Table 3). We used a Perl script provided by Shen

et al. [63] to generate hairpin structures of these differentially expressed novel miRNAs (S1

Fig). These images demonstrated complementary 5’ and 3’ mature miRNA sequences, each

within a duplex that was possibly DCL1-derived.

Validation of miRNA expression profiles by real-time RT-qPCR

A stem-loop RT-qPCR assay was applied to verify the results for the miRNA differential ex-

pression analysis. Primers sequences are listed in the S5 File. The relative expression of seven

significantly differentially expressed miRNAs, three known (viz. miR156bcd, miR160cde, and

miR2950-5p) and four novel (viz. miRn011.2-5p, miRn040-3p, miRn117-5p, and miRn027-

3p), was measured in healthy and phytoplasma-infected leaves using real-time RT-qPCR anal-

ysis (Fig 3B). We were also able to validate the expression of less significant known miRNAs

(q� 0.15) (viz. miR319e, miR399e, and miR479) (S3 File). This suggests that modulation of

these miRNAs may hold biological importance. Although the non-conserved miRNAs (viz.
vvi-miR479 and vvi-miR2950), and certain novel miRNAs were present at low levels, they

were detected using real-time RT-qPCR. The trend of expression obtained from the RT-qPCR

analysis was consistent with the average normalised read abundance observed in the sRNA-

seq data (Fig 5; S3 File). Since the expression of the novel miRNA candidates were confirmed

using real-time RT-qPCR they can be tentatively classified as authentic miRNAs. The use of

stable and robust degradome data, however, will provide us with more concrete evidence to

confirm these results [64].

Identification of putative targets for differentially expressed known

miRNAs

Over the past decade, increasing evidence have demonstrated how miRNAs can play an

important role in modulating gene expression during plant-microorganism interactions [65].

It is important to consider miRNA target identification and validation in order to elucidate the

biological functions of miRNAs. Multiple ‘Pinot noir’ target mRNAs have been identified for
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known miRNAs using a high-throughput degradome sequencing approach [26]. To gain fur-

ther insight into the function of the differentially expressed miRNAs found in this study, we

performed a complementary-based search with psRNAtarget to search for putative target-

binding sites found in grapevine mRNAs. We adopted strict parameters, which provided per-

fect or near-perfect complementarity between a miRNA and its target, suggesting DCL1-clea-

vage or translational inhibition of miRNA-targeted mRNAs [66,67] (S6 File).

In order to obtain a holistic view of biological pathways possibly influenced by miRNA-

mediated regulation, in silico predicted targets for both the differentially expressed known and

novel miRNAs were functionally annotated using Blast2GO v2.2.7. After GO analysis we

found 71 functionally annotated putative targets for 15 of the known miRNAs and 54 func-

tionally annotated putative targets for 17 of the novel miRNAs. For some of the targets, how-

ever, functional attributes could not be assigned, using default parameters within Blast2GO.

Detailed annotation results are provided in the S6 File. A combined graph was generated and

depicted different categories in which the targets grouped in terms of biological processes

(Fig 6).

Table 3. List of significantly differentially expressed novel vvi-miRNAs.

Novel miRNA Sequence (5’-3’) Length (nt) Avg of

normalised

read counts†

DESeq results (H vs AY)

H AY log2FC p-value Adj. p-value (q-value)

vvi-miRn010.2-3p (miR529_new) GCUGUACCCUCUCUCUUCCCC 21 8.71 2.20 -1.58 3.88E-07 5.39E-05

vvi-miRn025b/n025a-3p (miR171_new) UGAUUGAGCCGUGCCAAUAUC 21 20.56 37.71 0.93 4.40E-07 5.39E-05

vvi-miRn011.2-5p¶ (miR391_new) AGGAGAGAUGACGCCGUCGCC 21 75.28 27.16 -1.23 9.60E-07 7.84E-05

vvi-miRn133-5p AGACUGGUAGAAAGAUUUAUA 21 19.36 2.73 -1.78 7.27E-06 4.45E-04

vvi-miRn140-3p UCACCUUGUUGAGUGCCCGGU 21 6.48 1.59 -1.50 1.29E-05 6.31E-04

vvi-miRn040-3p¶ UGGGUUCAAAGUAGACAAUAUUUA 24 70.10 14.94 -1.57 2.09E-05 8.53E-04

vvi-miRn131-3p (miR399_new) UGCCAAAGGAGAUUUGCCCCG 21 2.73 0.53 -1.56 4.22E-05 1.48E-03

vvi-miRn117-5p¶ UGGACCCUCAUGACUUUAAAAUGC 24 47.07 15.09 -1.29 6.07E-05 1.86E-03

vvi-miRn139-3p GGGGGCUGACCUGUUGAAGAG 21 21.50 8.60 -1.04 0.0002 0.0045

vvi-miRn150-5p UUUUUCAUGGUCUGAUUGAGC 21 15.97 36.25 1.11 0.0002 0.0045

vvi-miRn022b-5p (miR1446_new) UCUGAACUCUCUCCCUCAUUGGC 23 0.76 2.45 1.35 0.0002 0.0045

vvi-miRn008.1-3p (miR169_new) AGGCAGUCACCUUGGCUAACU 21 3.72 1.17 -1.22 0.0004 0.0081

vvi-miRn147-5p UGGUGAACCAAAUAACUCUGG 21 33.29 63.81 0.93 0.0009 0.0174

vvi-miRn027-3p¶ UCUUGUGAUCUUGUUGUUUCA 21 420.78 867.56 0.99 0.0010 0.0174

vvi-miRn115-3p AGGAAUGUGCUUCUUGGCAUA 21 6.45 1.84 -1.19 0.0016 0.0261

vvi-miRn070-3p UAAGGACUAAAUUGGUAGACC 21 1.92 4.03 0.97 0.0022 0.0334

vvi-miRn089-5p UACACAUGUAGUGCCAUCAUAUGA 24 53.03 16.67 -1.13 0.0025 0.0365

vvi-miRn007.1-3p UGAUAUUAGCAGCUGAGAACA 21 7.19 3.71 -0.76 0.0032 0.0386

vvi-miRn003-5p UUACACAGAGAGAUGACGGUGG 22 24.78 53.83 0.98 0.0031 0.0386

vvi-miRn051-5p AGAGACCACCUAGUCCUGUUAAGA 24 31.20 19.81 -0.52 0.0029 0.0386

vvi-miRn129-5p UUUUGGAACUAGAGUGCUUGC 21 1.34 2.89 0.98 0.0035 0.0410

vvi-miRn137 -5p CAACAAUCUAAAUGAAACAUAGA 23 3.40 6.61 0.90 0.0043 0.0478

vvi-miRn022a-5p (miR1446_new) UCUGAACUCUCUCCCUCAUGGC 22 8.36 15.35 0.85 0.0047 0.0497

H: Healthy sample group

AY: AY phytoplasma-infected sample group
¶Validated using real-time RT-qPCR
†Average of reads per million mapped reads (RPM) between three biological replicates

Known miRNA homologs are given in brackets

https://doi.org/10.1371/journal.pone.0182629.t003
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There were 14 categories of which the four major processes included transcriptional re-

gulation, developmental processes, response to stress, and metabolic processes that included

phosphoregulation and oxidoreductase activity. This suggested that the differentially expressed

miRNAs are involved in a broad range of physiological functions. Putative targets of conserved

miRNA families, such as miR156, miR159, miR171 and miR399, identified in this study,

correspond to targets found in numerous plant species, including several grapevine cultivars,

while the predicted functions of these targets were also similar with previous findings [26,27,

58,60,68–70] (S6 File). Recent studies have revealed that several of these miRNA targets share

common roles in the crosstalk between signalling pathways modulated by both biotic and

abiotic stresses [71]. Our results revealed that some of these target genes encode transcription

factors, including squamosa-promoter binding protein (SPB)-box, MYB, NAC-domain,

Scarecrow-like/GRAS-domain, AP2, HDZIP-III and bHLH transcription factors, previously

reported for grapevine and other plant species [72–75].

Phytoplasma-infection may cause miRNA-mediated changes in plant morphology and

architecture. Plant morphological changes can be attributed to changes in the expression of

certain transcription factors, as well as regulatory changes at a post-transcriptional and epige-

netic level. The miR156/157 family, which is highly conserved in plants, can target numerous

members of the SBP-box genes in V. vinifera. Evidence has shown that changes in the expres-

sion levels of these genes play a role in phase transition and reproductive development [76,77].

Studies on Arabidopsis and rice showed that cleavage of squamosa-promoter binding-like

(SPL) proteins, due to miR156 overexpression, give rise to plants that are smaller, show de-

layed flowering and loss of apical dominance, initiate growth of more leaves with shorter

Fig 5. Correlation graph comparing average normalised read counts with real-time RT-qPCR results,

thereby confirming vvi-miRNA expression patterns.

https://doi.org/10.1371/journal.pone.0182629.g005
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plastochrons (in Arabidopsis) and causes reduced panicle size (in rice) [78,79]. Likewise,

miR156-overexpression in poplar (Populus spp.) caused an increase in leaf size and leaf initia-

tion rate, and reduced apical dominance [80]. The modification of leaf morphology due to reg-

ulation of SBP-box transcripts by miR156 overexpression was demonstrated in phytoplasma-

infected Mexican lime trees, mulberry, and red date [52,81,82]. Expression analysis in this

study, however, revealed a significant decrease in abundance of certain vvi-miR156 members

in the phytoplasma-infected samples, which cannot be explained at this point.

It has been shown that down-regulation of miR156 results in an increase in SPLs that pro-

mote juvenile to adult phase transition and flowering through activation of miR172 and

MADS box genes in Arabidopsis [83,84]. The Arabidopsis AtSPL9, can positively regulate the

expression of miR172, demonstrating the presence of a miR156-AtSPL9-miR172 regulatory

cascade [85]. It was proposed that the miR156-SPL-miR172 regulatory pathway was activated

in mulberry in response to phytoplasma infection [81]. Higher levels of miR172 associated

with viral pathogenesis in tomato leaf curl disease and grapevine leafroll disease have also been

reported [86,87]. The APETALA2/Ethylene-responsive transcription factor (AP2/ERF)-like

mRNA was identified as a possible target of vvi-miR172 in our study. The interaction between

miR172 and AP2/ERF-like targets is well conserved and are known to be involved in transi-

tions between developmental stages, regulating flowering time and specifying floral organ

identity [88,89]. Differential expression of vvi-miR156 and vvi-miR172, leading to restricted

phase transition, may lead to symptoms associated with GY such as abnormal leaf shape and

Fig 6. A combined graph depicting the main categories of putative vvi-miRNA targets grouped in terms of biological processes (GO level 3;

annotation cut-off = 7.0).

https://doi.org/10.1371/journal.pone.0182629.g006
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size, as well as downward curling of leaves and flower abortion. It was suggested that expres-

sion changes of miR156 and miR172 may lead to development of green leaf-like structures

instead of flowers, also referred to as phyllody, as well as flower sterility in phytoplasma-

infected red date and mulberry [81,82].

Levels of vvi-miR159 and vvi-miR319 were also significantly higher in the AY phyto-

plasma-infected leaves, and in silico analysis predicted that they may target a GAMYB-like

mRNA and a R2R3-MYBmRNA. Recent studies identified their association with plant disease

during fungal and bacterial infection in Arabidopsis and Populus trichocarpa, respectively

[90,91], and have experimentally validated their targets as being mRNAs encoding MYB tran-

scription factors [92]. MYB genes constitutes a large and widespread gene family in plants

(estimated at 279 members in grapevine, of which 108 belong to the R2R3 family), and are

involved in a variety of plant-specific functions including primary and secondary metabolism,

cell fate and differentiation, developmental processes and responses to biotic and abiotic

stresses [93,94]. Consequently, altered expression of miR159 and miR319 may also contribute

to deformation of grapevine leaves [82,86].

Differential miRNA expression may lead to modulated auxin signalling. Disease symp-

toms caused by certain pathogens have also been described as a result of interference with

plant hormone signalling that lead to the disturbance of plant defence responses. Phytoplasma

diseases have been classified as ‘auxonic diseases’ which refers to possible interactions with the

auxin balance of the host [95]. Auxin, an important phytohormone, regulates many plant

developmental processes, and its influence during pathogen resistance responses has been

described [96]. A substantial increase of indole-3-acetic acid (IAA) was observed in phyto-

plasma-infected Mexican lime trees, possibly indicating susceptibility to the pathogen [52].

Certain proteins, known as virulence effectors, are secreted by pathogens during infection and

are known to modulate hormone and signalling pathways by altering gene transcription levels.

AY-WB effectors, SAP11 and TENGU, are known to be unloaded from the phloem sieve cells

to the target cell nuclei where they interact and destabilise certain transcription factors, result-

ing in severe changes in leaf morphology and increased susceptibility to phytoplasma insect

vectors [97–99]. Microarray analysis of transgenic Arabidopsis lines overexpressing TENGU

demonstrated regulation of several auxin responsive genes and auxin efflux carrier genes.

SAP11 destabilises CINCINNATA (CIN)-TEOSINTE BRANCHED1, CYCLOIDEA, PROLIF-

ERATING CELL FACTOR (TCP) transcription factors 1 and 2, known to be regulated by

miR319 in Arabidopsis, resulting in the suppression of Jasmonate (JA) production that create

favourable conditions for insect vector proliferation [97–99].

A group of miRNAs can promote plant defence responses by coordinate regulation of hor-

mone signalling pathways in response to pathogen attack. Among them, miR160, miR167,

miR390 and miR393 contribute to PTI by regulating the expression of genes encoding differ-

ent auxin response factors (ARFs) and auxin receptors involved in auxin signalling, thereby

promoting inhibition of pathogen growth [90]. miR393 expression, induced by bacterial elici-

tor flg22, was the first shown to be implicated in the repression of auxin receptor genes in Ara-
bidopsis [23]. Our results showed that vvi-miR160, which may target ARF mRNAs, was

significantly up-regulated in the AY phytoplasma-infected leaves. ARF transcription factors

are known to regulate auxin-inducible genes by binding to elements in their auxin-responsive

promoters to either activate or repress transcription [100]. Other instances where miR160

accumulated during biotic stress response were demonstrated in clubroot-infected Brassica
napus root [101], powdery mildew infection in wheat [102], and phytoplasma-infected mul-

berry [81].

Phytoplasma-responsive miRNA expression may play a role in nutrient homeostasis.

The AY phytoplasma chromosome is extremely reduced and lacks many essential genes
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related to amino acid and fatty acid biosynthesis, the tricarboxylic acid cycle and oxidative

phosphorylation. This suggested that phytoplasmas have evolved as intracellular parasites in

nutrient-rich host environments and therefore possess multiple transporter genes in order to

assimilate important mineral nutrients for their survival [103]. Several plant miRNAs have

been reported for their role in nutrient homeostasis in response to deficiencies of phosphate,

nitrogen, sulphur, and copper [104]. A few of these, including vvi-miR395 and vvi-miR399,

were differentially expressed in the present study, possibly in response to AY phytoplasma-

infection. miR395 is known to target members of the ATP-sulphurylase (ATPS) gene family

and a low-affinity sulphate transporter gene SULTR2;1, both crucial for regulating sulphate

homeostasis in Arabidopsis [105] (S6 File). The induction of miR395 levels leads to sulphate

accumulation in the leaves due to increased translocation from the roots [106,107]. In this

study miR395 was up-regulated in the AY phytoplasma-infected leaves, and may contribute to

favourable conditions for pathogen growth. Alternatively, sulphur starvation can cause physio-

logical imbalances, impaired plant growth, and reduced plasticity against environmental

changes and pathogen attack [108]. The role of miR399 in the maintenance of phosphate

homeostasis has been well characterised. It is involved in the regulation and allocation of inor-

ganic phosphate (Pi) from the roots to the shoots as well as remobilisation from old to young

leaves [109,110]. miR399 positively regulates Pi uptake and translocation by down-regulating

PHO2, which encodes a ubiquitin-conjugating E2 enzyme, UBC24 [109,111]. PHO2, on the

other hand, acts as a negative regulator by suppressing these activities when external Pi is

ample, thereby preventing phosphate toxicity. Our results revealed significant down-regula-

tion of vvi-miR399 in AY phytoplasma-infected leaves. Interestingly, lower levels of miR399

was also found in phytoplasma-infected material of Mexican lime trees, mulberry, and red

date [52,81,82]. An adequate supply of Pi is required for optimal growth and reproduction due

to its involvement in essential plant functions, including energy transfer, photosynthesis,

enzyme regulation, metabolite transport and nucleic acid synthesis. Therefore, the down-regu-

lation of miR399 may cause suppression of Pi uptake, further contributing to disease symptom

development.

Identification of putative targets for differentially expressed novel

miRNAs

In addition to the targets of known miRNA, we also predicted possible targets for the in silico
predicted novel miRNAs that were significantly differentially expressed in the AY phyto-

plasma-infected leaves (S6 File). Some of these target mRNAs encode certain transcription fac-

tors, such as Scarecrow-like/GRAS-domain protein, TPR-like protein, MADS-box protein,

bHLH-like protein, and a NAC-domain protein. We also identified targets that encode pro-

teins involved in hydrolase activity, e.g. ARM repeat superfamily isoform 2-like protein, beta-

fructofuranosidase, glucan endo-1,3-beta-glucosidase, and a calcineurin-like metallo-phos-

phoesterase. Receptor-like kinase (RLK) proteins that are involved in signal transduction, such

as a G-type lectin S-receptor-like serine/threonine-protein kinase, a leucine-rich repeat (LRR)

receptor EXS-like kinase, a disease resistance At3g14460-like protein, a RLK HSL1-like pro-

tein, and a LRR receptor-like serine/threonine At4g08850-like kinase were also identified.

Some signal transduction proteins are surface-located, transmembrane receptor molecules

that are activated by external stimuli, such as plant hormones and pathogens. These, in turn,

are sequentially transmitted to initiate complex downstream signalling pathways that induce

PAMP -and effector-triggered immunity (PTI and ETI) and/or hypersensitive cell death resis-

tance responses. The majority of these innate immune receptors are proteins that contain a

nucleotide-binding site (NBS) and leucine-rich repeats (LRR) that are encoded by resistance
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(R) genes [112]. Another versatile function of certain miRNAs is targeting diverse members of

NBS-LRRs which are then processed by RNA-dependent RNA polymerase 6 (RDR6) to dsRNA

and then cleaved by DCL4 to produce phased, secondary siRNAs (phasiRNAs) [113]. This was

demonstrated in resistant Solanum lycopersicum (tomato) and Gossypium raimondii (cotton)

where the miR482-mediated silencing cascade was suppressed in pathogen-infected plants so

that certain NBS-LRRs were up-regulated to confer resistance [114,115]. Interestingly, vvi-

miRn027, which may target a disease resistance mRNA (GSVIVG01027229001),was severely

increased in AY phytoplasma-infected leaves in comparison to the other novel miRNAs that

might target RLK mRNAs. This miRNA and its putative target may serve as potential candidates

in transient expression studies to investigate an underlying defence response to AY phytoplasma.

Furthermore, most of the other novel miRNAs were expressed at a lower abundance than that

of conserved miRNAs and are likely to be grapevine-specific miRNAs, which may be classified

into non-conserved miRNAs. It can be suspected that they are likely candidates involved in devel-

opmental, metabolic and transmembrane transport processes as proposed by the gene ontology

results, but it would require additional experimental approaches to address these hypotheses.

Conclusions

In summary, our study employed different computational tools to provide the first report on

the identification of differentially expressed miRNAs in grapevine leaves infected with AY phy-

toplasma. In addition to known vvi-miRNAs, we detected a large group of putative novel miR-

NAs by utilizing two different analysis pipelines. Some of the novel miRNAs shared a high

degree of homology with other known plant miRNAs, and were therefore classified as newly-

identified members of existing miRNA families. Further experimentation concerning the regu-

lation of their target mRNA(s), however, would be required to confirm this.

Differential expression analysis was done via comparative miRNA profiling between sRNA

libraries constructed from healthy control plants and plants diagnosed with AY phytoplasma,

respectively. Changes in the expression of various miRNAs were clearly observed in the dis-

eased group, possibly modulated in response to biotic stress. The relative expression of certain

known and novel miRNAs was determined with real-time RT-qPCR analysis, thereby demon-

strating a similar trend in expression regarding the normalised sRNA read data. There is

increasing evidence for the involvement of miRNAs in plant-microorganism interaction and

how they mediate gene expression related to pathogenesis.

In order to identify potential miRNA targets, we applied a simple complementary-based, in
silico approach with psRNAtarget. This method relies on perfect or near-perfect complemen-

tarity of plant miRNAs with their target(s), known to facilitate gene regulation through mRNA

cleavage or translational inhibition. To further validate grapevine-specific miRNAs and the

mRNAs they target would require the use of stable and robust degradome sequencing data

that would assist in the elucidation of different modes of regulation in a tissue-specific and

developmental stage-specific manner. Target mRNAs regulated by translational inhibition,

however, would be undetectable in degradome data. Furthermore, high-throughput gene

expression profiling techniques such as microarray-hybridisation analysis and RNAseq/tran-

scriptome analysis would allow us to observe expression levels of miRNAs and their anti-cor-

related target mRNAs.

The miRNA expression patterns observed in AY phytoplasma-infected grapevine leaves,

followed by putative miRNA target description and annotation, led us to believe that our

results were compatible with evidence of perturbations found in other pathogen-infected

plants. Putative miRNA target predictions indicated the involvement of miRNA pathways that

may influence plant development and morphology either directly or by auxin imbalance. We
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also identified targets involved in nutrient homeostasis, as well as a few important novel

miRNA targets involved in signal transduction, which may hold the key to activating patho-

gen-resistance pathways in grapevine. Taken together, our findings suggest some hypothetical

associations between miRNAs and certain physiological changes that may be crucial in under-

standing disease symptom development in AY phytoplasma-infected grapevines. Further

investigations of these miRNA-mediated pathways may shed new light on the roles and mech-

anisms of miRNAs in plant pathogenesis.
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5. Krüger K, De Klerk A, Douglas-Smit N, Joubert J, Pietersen G, Stiller M. Aster yellows phytoplasma in

grapevines: identification of vectors in South Africa. Bulletin of Insectology 2011; 64: S137–S1387.

6. Carstens R, Petersen Y, Stephan D, Burger JT. Current status of Aster yellows disease in infected

vineyards in the Vredendal grape producing area of South Africa. Phytopathogenic Mollicutes 2011; 1

(2): 83–85. https://doi.org/10.5958/j.2249-4669.1.2.014

7. Belli G, Bianco PA, Conti M. Grapevine yellows in Italy: past, present and future. J. Plant Pathol. 2010;

92: 303–326.

8. Maixner M. Grapevine yellows—current developments and unsolved questions. In: Proceedings of the

15th meeting of the international council for the study of virus and virus-like diseases of the grapevine

(ICVG), Stellenbosch, South Africa; 2006. pp.86-88.

9. Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor GD. Axenic culture of plant pathogenic

phytoplasmas. Phytopathol Mediterr. 2012; 51: 607–617. https://doi.org/http://doi.org/10.14601/

Phytopathol_Mediterr-11773

10. Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, et al. ’Bois noir’ phytoplasma induces sig-

nificant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics. 2009;

10: 460. https://doi.org/10.1186/1471-2164-10-460 PMID: 19799775

11. Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, et al. Gene expression in grapevine

cultivars in response to Bois Noir phytoplasma infection. Plant Sci. 2009; 176: 792–804. https://doi.

org/10.1016/j.plantsci.2009.03.001

12. Margaria P, Palmano S. Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence

dorée phytoplasma infection. Proteomics. 2010; 11: 212–224. https://doi.org/10.1002/pmic.

201000409 PMID: 21204249

13. Mou H-Q, Lu J, Zhu S-F, Lin C-L, Tian G-Z, Xu X, et al. Transcriptomic analysis of Paulownia infected

by Paulownia ‘Witches’-Broom phytoplasma. PLoS ONE. 2013; 8: e77217. https://doi.org/10.1371/

journal.pone.0077217 PMID: 24130859

14. Margaria P, Abbà S, Palmano S. Novel aspects of grapevine response to phytoplasma infection inves-

tigated by a proteomic and phospho-proteomic approach with data integration into functional networks.

BMC Genomics. 2013; 14: 38. https://doi.org/10.1186/1471-2164-14-38 PMID: 23327683

MiRNA expression profiling in aster yellows phytoplasma-infected Chardonnay

PLOS ONE | https://doi.org/10.1371/journal.pone.0182629 August 16, 2017 19 / 24

https://doi.org/10.1146/annurev.micro.54.1.221
http://www.ncbi.nlm.nih.gov/pubmed/11018129
https://doi.org/10.1111/j.1364-3703.2008.00472.x
https://doi.org/10.1111/j.1364-3703.2008.00472.x
https://doi.org/10.1099/ijs.0.02843-0
https://doi.org/10.1099/ijs.0.02843-0
http://www.ncbi.nlm.nih.gov/pubmed/15280267
https://doi.org/10.1094/pdis-94-3-0373a
https://doi.org/10.5958/j.2249-4669.1.2.014
https://doi.org/10.14601/Phytopathol_Mediterr-11773
https://doi.org/10.14601/Phytopathol_Mediterr-11773
https://doi.org/10.1186/1471-2164-10-460
http://www.ncbi.nlm.nih.gov/pubmed/19799775
https://doi.org/10.1016/j.plantsci.2009.03.001
https://doi.org/10.1016/j.plantsci.2009.03.001
https://doi.org/10.1002/pmic.201000409
https://doi.org/10.1002/pmic.201000409
http://www.ncbi.nlm.nih.gov/pubmed/21204249
https://doi.org/10.1371/journal.pone.0077217
https://doi.org/10.1371/journal.pone.0077217
http://www.ncbi.nlm.nih.gov/pubmed/24130859
https://doi.org/10.1186/1471-2164-14-38
http://www.ncbi.nlm.nih.gov/pubmed/23327683
https://doi.org/10.1371/journal.pone.0182629


15. Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, et al. Shotgun

proteomic analysis of the Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”. J

Proteome Res. 2013; 12: 785–795. https://doi.org/10.1021/pr300865t PMID: 23244174

16. Liu LYD, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK, et al. High-Throughput transcriptome analy-

sis of the leafy flower transition of Catharanthus roseus induced by Peanut Witches’-Broom phyto-

plasma infection. Plant Cell Physiol. 2014; 55: 942–957. https://doi.org/10.1093/pcp/pcu029 PMID:

24492256

17. Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol.

2009; 60: 485–510. https://doi.org/10.1146/annurev.arplant.043008.092111 PMID: 19519217

18. Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant

Sci. 2012; 17: 196–203. https://doi.org/10.1016/j.tplants.2012.01.010 PMID: 22365280

19. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes

Dev. 2006; 20: 759–771. https://doi.org/10.1101/gad.1410506 PMID: 16600909

20. Budak H, Akpinar BA. Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics.

2015; 15: 523–31. https://doi.org/10.1007/s10142-015-0451-2 PMID: 26113396

21. Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA

biogenesis in plants. Cell. 2005; 121: 207–221. https://doi.org/10.1016/j.cell.2005.04.004 PMID:

15851028

22. Padmanabhan C, Zhang X, Jin H. Host small RNAs are big contributors to plant innate immunity. Curr

Opin Plant Biol. 2009; 12: 465–472. https://doi.org/10.1016/j.pbi.2009.06.005 PMID: 19608454

23. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to

antibacterial resistance by repressing auxin signaling. Science. 2006; 312: 436–439. https://doi.org/

10.1126/science.aae0382 PMID: 16627744

24. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome

sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007; 449: 463–

467. https://doi.org/10.1038/nature06148 PMID: 17721507

25. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft con-

sensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE. 2007; 2: e1326.

https://doi.org/10.1371/journal.pone.0001326 PMID: 18094749

26. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, et al. Identification of grapevine micro-

RNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;

62:960–76. https://doi.org/10.1111/j.0960-7412.2010.04208.x PMID: 20230504

27. Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, et al. Correction: High throughput

approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature

microRNAs in Vitis vinifera. BMC Genomics. 2010; 11: 109. https://doi.org/10.1186/1471-2164-11-

109 PMID: 20152027

28. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing

data. Nucleic Acids Res. 2011; 39: D152–D157. https://doi.org/10.1093/nar/gkq1027 PMID:

21037258

29. White EJ, Venter M, Hiten NF, Burger JT. Modified Cetyltrimethylammonium bromide method

improves robustness and versatility: The benchmark for plant RNA extraction. Biotechnol J. 2008; 3:

1424–1428. https://doi.org/10.1002/biot.200800207 PMID: 19016512

30. Gundersen DE, Lee IM. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two

universal primer pairs. Phytopathol Mediterr. 1996; 35: 144–151.

31. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.

Genome Res. 2008; 18:821–9. https://doi.org/10.1101/gr.074492.107 PMID: 18349386

32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.

1990; 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

33. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and

analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011; 39:

W132–W138. https://doi.org/10.1093/nar/gkr247 PMID: 21515631

34. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:

R106. https://doi.org/10.1186/gb-2010-11-10-r106 PMID: 20979621

35. Barturen G, Rueda A, Hamberg M, Alganza A, Lebron R, Kotsyfakis M, et al. sRNAbench: profiling of

small RNAs and its sequence variants in single or multi-species high-throughput experiments. Meth-

ods in Next Generation Sequencing. 2014; 1. https://doi.org/10.2478/mngs-2014-0001

36. Axtell MJ. ShortStack: Comprehensive annotation and quantification of small RNA genes. RNA. 2013;

19: 740–751. https://doi.org/10.1261/rna.035279.112 PMID: 23610128

MiRNA expression profiling in aster yellows phytoplasma-infected Chardonnay

PLOS ONE | https://doi.org/10.1371/journal.pone.0182629 August 16, 2017 20 / 24

https://doi.org/10.1021/pr300865t
http://www.ncbi.nlm.nih.gov/pubmed/23244174
https://doi.org/10.1093/pcp/pcu029
http://www.ncbi.nlm.nih.gov/pubmed/24492256
https://doi.org/10.1146/annurev.arplant.043008.092111
http://www.ncbi.nlm.nih.gov/pubmed/19519217
https://doi.org/10.1016/j.tplants.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22365280
https://doi.org/10.1101/gad.1410506
http://www.ncbi.nlm.nih.gov/pubmed/16600909
https://doi.org/10.1007/s10142-015-0451-2
http://www.ncbi.nlm.nih.gov/pubmed/26113396
https://doi.org/10.1016/j.cell.2005.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15851028
https://doi.org/10.1016/j.pbi.2009.06.005
http://www.ncbi.nlm.nih.gov/pubmed/19608454
https://doi.org/10.1126/science.aae0382
https://doi.org/10.1126/science.aae0382
http://www.ncbi.nlm.nih.gov/pubmed/16627744
https://doi.org/10.1038/nature06148
http://www.ncbi.nlm.nih.gov/pubmed/17721507
https://doi.org/10.1371/journal.pone.0001326
http://www.ncbi.nlm.nih.gov/pubmed/18094749
https://doi.org/10.1111/j.0960-7412.2010.04208.x
http://www.ncbi.nlm.nih.gov/pubmed/20230504
https://doi.org/10.1186/1471-2164-11-109
https://doi.org/10.1186/1471-2164-11-109
http://www.ncbi.nlm.nih.gov/pubmed/20152027
https://doi.org/10.1093/nar/gkq1027
http://www.ncbi.nlm.nih.gov/pubmed/21037258
https://doi.org/10.1002/biot.200800207
http://www.ncbi.nlm.nih.gov/pubmed/19016512
https://doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
https://doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1093/nar/gkr247
http://www.ncbi.nlm.nih.gov/pubmed/21515631
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.2478/mngs-2014-0001
https://doi.org/10.1261/rna.035279.112
http://www.ncbi.nlm.nih.gov/pubmed/23610128
https://doi.org/10.1371/journal.pone.0182629


37. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of

plant microRNAs. Plant Cell. 2008; 20: 3186–3190. https://doi.org/10.1105/tpc.108.064311 PMID:

19074682

38. Markham NR, Zuker M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol

Biol. 2008; 453: 3–31. https://doi.org/10.1007/978-1-60327-429-6_1 PMID: 18712296

39. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other

RNAs. Cell Mol Life Sci. 2006; 63: 246–254. https://doi.org/10.1007/s00018-005-5467-7 PMID:

16395542

40. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA Websuite. Nucleic

Acids Res. 2008; 36: W70–W74. https://doi.org/10.1093/nar/gkn188 PMID: 18424795

41. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture

and applications. BMC Bioinformatics. 2009; 10: 421. https://doi.org/10.1186/1471-2105-10-421

PMID: 20003500

42. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol. 2009; 10: R25. https://doi.org/10.1186/gb-2009-10-

3-r25 PMID: 19261174

43. Chen C. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33:

e179–e179. https://doi.org/10.1093/nar/gni178 PMID: 16314309

44. Hellemans J MG, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework

and software for management and automated analysis of real-time quantitative PCR data. Genome

Biol. 2007; 8: R19. https://doi.org/10.1186/gb-2007-8-2-r19 PMID: 17291332

45. Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;

39: W155–W159. https://doi.org/10.1093/nar/gkr319 PMID: 21622958
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