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Petit-spot as definitive evidence for partial melting
in the asthenosphere caused by CO2

Shiki Machida1,2, Tetsu Kogiso3 & Naoto Hirano4

The deep carbon cycle plays an important role on the chemical differentiation and physical

properties of the Earth’s mantle. Especially in the asthenosphere, seismic low-velocity and

high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected

but not directly observed. Here we discuss the experimental results relevant to the genesis of

primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the

outer rise of the northwestern Pacific plate. The results suggest that primitive melt last

equilibrated with depleted peridotite at 1.8–2.1 GPa and 1,280–1,290 �C. Although the equi-

libration pressure corresponds to the pressure of the lower lithosphere, by considering an

equilibration temperature higher than the solidus in the volatile–peridotite system along with

the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always

produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the

lower lithosphere before eruption.

DOI: 10.1038/ncomms14302 OPEN

1 Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho 2-15, Yokosuka,
Kanagawa 237-0061, Japan. 2 School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan. 3 Graduate School of Human and
Environmental Studies, Kyoto University, Yoshida-nihonmatsu, Sakyo, Kyoto 606-8501, Japan. 4 Center for Northeast Asian Studies, Tohoku University,
Kawauchi 41, Aoba-ku, Sendai 980–8576, Japan. Correspondence and requests for materials should be addressed to S.M. (email: m-shikit@jamstec.go.jp).

NATURE COMMUNICATIONS | 8:14302 | DOI: 10.1038/ncomms14302 | www.nature.com/naturecommunications 1

mailto:m-shikit@jamstec.go.jp
http://www.nature.com/naturecommunications


T
he nature of the seismic low-velocity zone in the upper
mantle, the asthenosphere, is a matter of debate.
Hirschmann1 showed that the peridotite–CO2–H2O

system melts and produces carbonatite or CO2-rich silicate melt
at the asthenosphere under normal thermal gradient.
Subsequently, the existence of CO2- and H2O-rich melt in the
asthenosphere was suggested by experimental determination of
electrical conductivity of such melt2; however, we have no direct
observations or evidence of melt yet. Petit-spot volcanism3, which
is plate deformation-induced eruption of alkali magma forming
diminutive volcanoes on the oceanic plate, is expected as the
evidence for melt in the asthenosphere because of the following
observations. No upwelling of hot, deep mantle was observed by
seismic tomography4, indicating that petit-spot did not originated
from an active mantle plume3. Okumura and Hirano5 determined
10% of CO2 and 1% of H2O in the primary petit-spot magma
on the basis of measurement of CO2 and H2O content in the
glassy rinds of lavas using infrared spectroscopy and back
calculations of primary content considering magma degassing
along the path of ascending magma and the vesicularity of lava.
In addition, several petit-spot volcanic fields have been reported
in the northwestern Pacific3,6,7, the ocean-ward slope of the
Tonga Trench8, the Chile Trench9 and the Sunda Trench10,
the Basin and Range Province of North America11, offshore
southern Greenland12 and the Santa Rosa accretionary complex
in Costa Rica13. These observations suggest that petit-spot
volcanism is ubiquitous phenomenon in the regions of
plate flexure owing to oceanic plate subduction3,6–10 and glacial
melting12. Therefore, if magma originates in the asthenosphere,
as originally proposed by Hirano et al.3, petit-spot volcanism
should provide critical insight into melt production in the
asthenosphere based on the high amount of CO2 in the melt
and the ubiquitous distribution of volcanic fields. Obviously,
a comprehensive model for petit-spot volcanism from magma
genesis to eruption is desirable.

A model for the eruption of petit-spot volcanoes was first
proposed by Hirano et al.3 The authors proposed that a petit-spot
volcano forms by exuding magma that originates in the upper
asthenosphere and passes through the lithosphere in response to
plate flexure during the formation of the outer rise.
In addition to this basic model, Yamamoto et al.14, based on
peridotite xenoliths, suggested that the formation of melt ponds
before eruption at the lithosphere–asthenosphere boundary
(LAB) is needed to explain the localized hot geotherm of the
petit-spot volcanoes. The ponding is caused by the horizontal
melt migration against the plate motion beneath the LAB owing
to the pressure gradient that is induced by the excess topography
of the outer rise, which is the difference in depth between
the shallow seafloor at the top of the outer rise and deep
normal seafloor14. Machida et al.7 further ascertained that
the position of the eruption of magma in a petit-spot volcanic
field temporally migrates opposite to the direction of the
movement of the Pacific plate, accompanying gradual change of
the erupted lava geochemistry. These observations were explained
by a new eruption model7 that considered a petit-spot volcanic
field to correspond to an isolated melt pond at the LAB defined
by Yamamoto et al.14 The melt pond is dragged by the plate
motion, while it is being constantly supplied with new magma
(magma mixing) and moves slightly slower than the plate and
repeatedly induces melt eruption owing to plate flexure7.

Nevertheless, three critical problems need to be understood in
petit-spot genesis. First, the ‘plate-flexure model’3,7,14 explains the
eruption mechanism reasonably well. However, the model
requires the existence of melt in the asthenosphere. On the
viewpoint, second, if petit-spot genesis is attributed to the
formation of the outer rise based on the ‘plate-flexure model’,

volcanoes should be commonly distributed along the outer
rise. However, they are not. For example, Hirano et al.3 and
Machida et al.7 showed that the three petit-spot volcanic fields in
the northwestern Pacific are not continuous along the outer rise.
This observation suggests that the melting processes, not only
plate-flexure, constrain the locus of petit-spot magmatism. Third,
to understand the melting processes, our previous geochemical
studies have shown that alkali lava from petit-spot volcanoes have
high concentrations of incompatible trace elements indicating
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Figure 1 | Bathymetric maps for northwestern Pacific showing the

position of the petit-spot volcanoes investigated in this study.

Bathymetric data are from ETOPO1 (NOAA National Geophysical Data

Center, http://www.ngdc.noaa.gov/) for a and collected by multi narrow

beam survey for b (ref. 7). Open red star for a nearly corresponds to the

region shown in b. Yellow thick lines for b mark the position of the survey

lines around the sampling sites7.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14302

2 NATURE COMMUNICATIONS | 8:14302 | DOI: 10.1038/ncomms14302 | www.nature.com/naturecommunications

http://www.ngdc.noaa.gov/
http://www.nature.com/naturecommunications


extreme enrichment in highly incompatible elements, (for
example, Rb, Ba, U, Th and Nb) and light rare earth
elements3,7, and have extreme enriched mantle 1-like
Sr–Nd–Pb isotopic compositions7,15. Machida et al.15 thus
proposed that melting of small blobs of recycled ancient plate
materials (small-scale heterogeneity) in the upper mantle
produces petit-spot magmas. This model is critical but the
melting conditions and lithology of the source material are
debated. Because all of the previous models that demonstrate the
origin of petit-spot volcanism3,7,14,15 do not constrain the melting
processes in the asthenosphere, we clarify whether or not the
petit-spot melt is generated in the asthenosphere in this study.

To define the magma genesis of petit-spot volcanoes, the
independent determination of temperature and pressure condi-
tions for magma production is required. We thus performed
melting experiments to define the melting phase relations of petit-
spot primary magmas. We report the results of high-pressure
melting experiments for basalts from the two youngest knolls
(erupted between 0.05 and 1 Ma3) situated in the flexed region of
the northwestern Pacific plate, while considering the phase
relations of the CO2–H2O–melt system. Our experiments aim to
constrain the temperature and pressure conditions of melt
segregation and the source lithology. Thus, we map the liquidus
mineralogy to locate the melt saturation with two or three phases
(the multiple saturation points) to constrain the last equilibration
pressures and temperatures of primary magmas before ascending
to the seafloor.

Results
Accuracy evaluation of experiments. We conducted high pres-
sure and temperature experiments for primary basalts from the
two youngest knolls of petit-spot in the northwestern Pacific plate
(Fig. 1). The H2O content of the starting materials (3.0–4.2 wt%;
Table 1) is higher than the estimated initial H2O content of petit-
spot melt5 (H2O content of melt at the saturation point at
0.16–0.19 GPa before bubble formation; B1.0 wt%). This is
probably owing to moisture absorption by alkali carbonates and
magnesium oxide in the starting mixtures during mixing of
the reagent powders (see Methods). However, we expect that
H2O release from the melt occurs during high-pressure magma
ascend relative to the H2O-saturated pressure. Hence, we
think that the starting materials reasonably represent the
primary H2O content of the melt before the H2O release.

All of run products comprise glass and the zone of quenched
crystals. In the case of below the liquidus, solid phases were
observed (Fig. 2). Solid phases are commonly 450mm in
diameter except for just below the liquidus. The quenched
crystals are grown at the contact with the graphite capsule and
each solid phase and then surround glass. Therefore, it is clear

that the melt phase was solidified as glass and the quenched
crystals. The

P
R2 range from 0.210 to 1.580 (Supplementary

Data 1), indicating reasonable mass balances between the
analysed solid and melt phases and starting bulk composition,
along with the other criteria suggests approach to equilibrium
(see Methods; Supplementary Data 1). The determined composi-
tions of the phases are given in the Supplementary Data 2. The
magnesium (Mg)-numbers (Mg#) (Mg/(Mgþ Fe) in mole
percent) of near-liquidus olivine and orthopyroxene (0.86) are
slightly lower than mantle values (0.90) (Supplementary Data 1).
In our experiments, we used Pt–graphite capsules. Médard et al.16

showed that the fO2 in the Pt–graphite capsule is 0.8 log units
below the CCO (graphite–carbon dioxide) buffer or 1.4 log units
above the IW (iron–wüstite) buffer, which is lower than the actual
melting conditions in the mantle (þ 2 DIW log units)17. In the
reduced conditions of the Pt–graphite capsules, the Mg# likely
decreases because Fe3þ in the starting materials (Fe2O3) reduced
to Fe2þ (FeO). Therefore, the lower fO2 is likely the cause of the
lower olivine Mg# than that of peridotite. However, the phase
relations depend more on the SiO2 activity in the melt than the
Fe–Mg exchange18. We thus consider that the differences in the
olivine Mg# to minimally affect our results.

The P–T phase relations for primitive magma. D08-002 has
olivine (ol) on the liquidus at pressures lower than 2.1 GPa,
whereas orthopyroxene (opx) is the liquidus phase at higher
pressures (Fig. 3). Liquidus temperatures of approximately
1,270, 1,280 and 1,290 �C were respectively estimated on the basis
of the change in the proportions of ol and opx with increasing
temperature on experiments at 1.8 GPa, 2.0 GPa and 2.3 GPa.
The melt is cosaturated with ol and opx at 2.1 GPa and 1,250 and
1,220 �C. Olivine disappears at lower than approximately 1,210 �C
at 2.1 GPa. Clinopyroxene (cpx) is found only at 2.0 GPa
and 1,200 �C with melt and ol. We thus conclude that D08-002
liquid is multiply saturated with ol and opx at 2.1 GPa and
1,280 �C, and cpx joins in at approximately 80 �C below
the liquidus.

Ol or opx is respectively the liquidus phase at pressures
r1.8 GPa or Z1.9 GPa for 6K#879-R3A (Fig. 3). The melt
is cosaturated with ol, cpx, and opx at between 1.7 GPa and
1.8 GPa and 1,260 �C or lower. In the case of the experiment at
2.5 GPa and 1,320 �C, mass balance calculations using the
compositions of the observed melt phases (glass and the
quenched crystals on polished section of the run product)
shows high

P
R2. However, recalculation adding opx

(composition same as the opx observed in the experiment at
2.5 GPa and 1,300 �C) to the solid phases decreased the

P
R2 to

less than 1 (Supplementary Data 1). Therefore, we consider
that opx was present at 2.5 GPa and 1,320 �C even though it was

Table 1 | Compositions of starting materials.

SiO2

(wt.%)
TiO2

(wt.%)
Al2O3

(wt.%)
FeO*

(wt.%)
MnO

(wt.%)
MgO

(wt.%)
CaO

(wt.%)
Na2O

(wt.%)
K2O

(wt.%)
P2O5

(wt.%)
H2O

(wt.%)
CO2

(wt.%)
FeO*/
MgO

Cr
(p.p.m.)

Ni
(p.p.m.)

KR04-08 D08-002
Original* 45.41 2.80 11.54 12.33 0.35 10.61 9.54 2.60 2.90 0.89 1.05 371 352
Primaryw 41.26 2.24 9.39 10.91 0.23 13.55 8.13 2.42 2.55 0.22 4.22 10.88 0.81

YK05-06 6K#879-R3A
Original* 47.61 2.65 13.62 11.23 0.29 6.60 11.33 3.05 2.84 0.72 1.53 165 93
Primaryw 41.39 1.94 9.97 10.01 0.22 12.35 8.29 2.24 2.08 0.52 2.96 7.33 0.81

FeO*, total iron as FeO.
*Original composition data are from Machida et al.7.
wPrimary indicates compositions of primary melt equilibrated with Fo¼ 90 olivine. Data are estimated from original composition (see Methods in detail).
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not observed in the polished section. Although ol was
not observed in the experiments at 1.5 GPa and 1,280 �C,
1.6 GPa and 1,270 �C and 1.8 GPa and 1,280 �C, the calculation
after adding ol (same composition as the ol observed in the
experiment at 1.6 GPa and 1,250 �C for the first two experiments
and ol observed in the experiment at 1.8 GPa and 1,260 �C for the
latter) to solid phase decreased the

P
R2 to o1 (Supplementary

Data 1). Thus, 6K#879-R3A liquid is multiply saturated with ol
and opx at 1.8 GPa and 1,290 �C, and cpx joins in at
approximately 20 �C below the liquidus. Two phase stability
fields, ol–cpx at low pressure and two pyroxenes at high pressure,
were also observed.

Discussion
On the basis of our experiments, the multiple saturation point of
the primary petit-spot melt is at 1.8–2.1 GPa and 1,280–1,290 �C
(Fig. 4), indicating that the petit-spot magma last equilibrated
with harzburgite B60 km deep under slightly lower temperature
than the adiabat of the mantle potential temperature (MPT)
of 1,250 �C (ref. 19). This is shallower than the depth of the
LAB for the northwest Pacific (82 km depth at WP2 (ref. 20)),
suggesting that the last equilibrium depth of the petit-spot
magma is within the lower lithosphere. If the estimated
last equilibration pressure suggests segregation depth of the
primary petit-spot melt from the solid phases at the lower
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lithosphere, it is reasonable to argue that the primary petit-spot
magma with a high amount of CO2 originated in the
asthenosphere, as shown in the following.

Assuming the plate model21,22, we calculated the thermal
structure of the 135 Ma lithosphere beneath the petit-spot
volcanoes considered in our experiments (Fig. 4). Figure 4
shows that the estimated temperature below the lithosphere at
3.0 GPa corresponds to the adiabat of the low-temperature side of
the global variation in the MPT along the mid-ocean ridge
(1,320 �C)19, and is significantly higher than the solidus
temperature of fertile peridotite with CO2 and H2O (refs 23,24).
Thus, if CO2 or carbonate exists in the asthenosphere, melt
production is anticipated. This line of discussion was simulated
previously in the peridotite–CO2–H2O system1. Based on the
calculations by Hirschmann1, the CO2-rich silicate melt is likely
stable in the asthenosphere at the MPT between 1,300 to 1,400 �C.
Sakamaki et al.25 experimentally observed the low melt viscosity
and the large difference between the densities of melt and
ambient olivine, that is, high melt mobility, in the range of
120–150 km; thus, they proposed that ascending melt in the
asthenosphere should accumulate at the LAB. As mentioned in
the introduction, the accumulated melt at the LAB further
migrates horizontally owing to the pressure gradient induced by
the formation of the outer rise14, forming isolated melt ponds7.
Therefore, we propose the following model for the processes of

petit-spot volcanism to explain the estimated last equilibration
pressure and temperature of the primary melt on the basis of
our experiments. CO2-rich silicate melt is commonly produced
in the asthenosphere26 along the adiabat of the low-temperature
side of the global variation of the MPT along the mid-ocean
ridge (B1,320 �C) and accumulates to form melt ponds at
LAB, followed by equilibration with harzburgite at the lower
lithosphere before eruption.

A rebuttal case for the genesis of the primary petit-spot magma
is the in situ melting of carbonaceous peridotite or of a normal
(non-metasomatized) peridotite with flux of CO2 (and H2O)
fluid in the lower lithosphere. The thermal structure model for
the 135 Ma lithosphere, such as GDH1 (ref. 22; Fig. 4), shows that
the geotherm intersects the solidi for the peridotite–CO2–H2O
system23,24 (melting of the peridotite–CO2–H2O system is
possible) at B2 GPa and 1,000–1,100 �C. However, this
temperature is significantly lower than that of the primary
petit-spot melt in our experiments. Although a heat source is
necessary to cause in-situ melting at the temperature of the
last equilibration of the primary petit-spot melt, the upwelling
of hot deep mantle is not observed by seismic tomography
beneath the petit-spot volcanoes4. Therefore, in-situ melting of
the lower lithosphere is not probable.

To explain our results, especially of the last equilibration
temperature of the petit-spot primary magma, CO2-rich silicate
melt has to be produced in the asthenosphere because of the
existence of CO2-rich fluid or carbonate. However, our experi-
ments also suggest that the melt segregation from solid phases
may occur at the lower lithosphere. Therefore, we have to connect
the melt pond at the LAB7,14 and the melt that equilibrated in the
lower lithosphere. At the deformation front of the outer rise
(examined in this study), the lower lithosphere experiences
extensional stress owing to the concave bending of the plate11.
Then, it is reasonable to argue that ascending occurs faster than
the cooling of melt by the ambient lithologies. Moreover, the
stress field changes from extensional to compressional at
midlithospheric depths11, probably corresponding to the slightly
shallower than the last equilibration depth (approximately 60 km,
equivalent to 2 GPa) of the primary petit-spot magma obtained in
this study. Therefore, we interpret the last equilibration depth as
the depth where melt ascending stops or slows owing to the stress
rotation in the lithosphere11. We thus conclude that the original
eruption model for petit-spot3,7, considering direct exuding of the
melt through the lithosphere, needs to be slightly modified; that
is, (a) CO2–and H2O–rich melt ponding at the LAB ascends the
overlying lithosphere owing to plate flexure, (b) the ascending
melt equilibrates with harzburgite at approximately 1,280 �C and
60 km depth that corresponds to the base of the elastic lithosphere
and finally (c) melt erupts on the seafloor. As the support for b,
melt entrapment at the lower lithosphere can explain the localized
anomalies of high electrical conductivity at B60 km in the
lithosphere27 and the extremely high geotherm14 just beneath the
petit-spot volcanoes. To constrain c, rapid lava eruption is
suggested from the presence of xenocrysts and xenoliths, which
represent lithospheric lithologies in petit-spot lavas3. The deepest
peridotitic xenolith (from B45 km depth (1.3 GPa)28) suggests
that melt ascends from the lower lithosphere before eruption on
the seafloor. Detailed melt ascending processes through the
lithosphere will be investigated in the future.

The principal constraint on the petit-spot origin revealed in
this report and our previous studies7,14 is the role of CO2-fluid or
carbonate in partial melting in the asthenosphere. Melting of
small blobs of recycled ancient plate materials (small-scale
heterogeneities) in the upper mantle produces petit-spot
magmas15, thus, recycled plate materials could be the source of
the CO2-fluid or carbonate in the asthenosphere. Hence, blobs of
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Figure 4 | Diagram for the last equilibration temperature and pressure of

the primary petit-spot magma. Our results are compared with the solidus

distribution determined by melting experiments in the volatile–peridotite

system. Black solid lines mark the solidus for volatile-free peridotite17,40,41

and H2O–peridotite42–45 system. Grey solid lines mark the solidus in the

CO2–peridotite46,47 system. Red lines denote the solidus in the peridotite–

CO2–H2O (refs 23,24) system. The green thick line and dashed line

respectively denote the thermal structure of the 130 Ma plate estimated on

the basis of plate model assuming the variables proposed by Schmerr21

(Schmerr 12) and Stein and Stein22 (GDH1). The black thick horizontal line

marks the depth of the lithosphere–asthenosphere boundary (LAB) for the

northwest Pacific (82 km depth at WP2 (ref. 20)). The blue, light blue, light

green and orange lines are adiabats corresponding to the given mantle

potential temperature (TP) for 1,200 �C, 1,300 �C, 1,400 �C and 1,500 �C,

respectively, proposed by Dalton et al.19 The grey zone shows the global

variation of the mantle potential temperature beneath the mid-ocean

ridge19.
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CO2-fluid- or carbonate-rich material in the asthenosphere is
expected to constrain the loci of petit-spot magmatism (the
second critical problem in petit-spot genesis, as pointed out in the
introduction). Future detailed geochemical and petrological
investigations of petit-spot lavas will provide insights of the
linkage between the lithology of the seismic low-velocity layer and
global carbon recycling.

Methods
Sample selection. Samples D08-002 and 6K#879-R3A were selected as repre-
sentative of petit-spot basalts. They were collected from two isolated knolls during
cruises KR04-08 of R/V Kairei (by dredge) and YK06-05 of R/V Yokosuka
(by dive of the Shinkai 6500 submersible) (Fig. 1). These knolls are situated in a
petit-spot volcanic field B600 km ESE of the Japan Trench and correspond to the
deformation front of the outer rise formation (Fig. 1). These volcanoes on the
Cretaceous Pacific plate formed approximately 136 Ma7,29,30. Samples
D08-002 and 6K#879-R3A are classified as basanite or trachybasalt3,7 and into
Group 3 basalt (defined by Machida et al.7) with negative Zr and Hf anomalies on
the spidergram for trace elements normalized to primitive mantle. They are likely
to be closer in composition to the primary melt because their FeO*/MgO ratios are
close to unity (1.05 and 1.53) and have high Cr and Ni contents (490 p.p.m.)
(Table 1).

Preparation of starting materials. The original bulk-rock compositions
of samples D08-002 and 6K#879-R3A (Table 1) equilibrates with Fo (that is,
100Mg/(Mgþ Fe) in mole per cent)¼ 86 and 81 olivine. This observation indicates
that composition of petit-spot magma was changed from primary Mg-rich magma,
which equilibrates with mantle, owing to crystal fractionation before eruption.
Therefore, for the precise experiment, the primary composition of starting material
has to be reconstructed from the original composition by taking into account
olivine fractionation. We consider that olivine-bearing lithology should exist in the
source, even if contributions of recycled materials are expected31. Furthermore,
involvement of recycled materials into the magma source would not significantly
affect the Fo content of olivine in the source31–33. Thus, the major element
compositions of primary melt equilibrated with Fo¼ 90 olivine (Table 1) have
been reconstructed from the original compositions of samples D08-002 and
6K#879-R3A using the olivine maximum-fractionation model32,34,35. We also
consider that a primary magma includes approximately 10% CO2 and more than
1% H2O. Then, starting materials were prepared at Kyoto University by mixing
pre-dried reagents of oxides, hydroxides, phosphate and carbonates to represent
the major elements, CO2 and H2O composition of the primary magma for each
petit-spot volcano (Table 1). Powders of MgCO3, Mg(OH)2 and MnO were dried at
110 �C for more than 1 day. Powders of SiO2, TiO2, Al2O3, Fe2O3 and Ca3(PO4)2

were dried in a muffle furnace at 500 �C overnight. Powders of CaCO3, K2CO3 and
Na2CO3 were dried in a muffle furnace at 300 �C overnight. MgO powder was
dried in a muffle furnace at 1,000 �C for 44 h. The reagent mixture was then
carefully ground in an agate mortar under ethanol for 41 h.

The bulk H2O content was measured by an ADP-512 Karl Fisher moisture
titrator at the Earthquake Research Institute, University of Tokyo. After heating at
120 �C to remove any moisture absorbed from air, each powdered sample
(B100 mg) was heated at 1,000 �C for 15–20 min until no further release of
moisture could be observed. The bulk CO2 content was determined on the basis of
the total carbon in the starting materials, which was analysed using a CHNS
(carbon, hydrogen, nitrogen and sulphur) analyzer (Vario EL III; Elementar
Co. Ltd.) at the Japan Coast Guard Academy. Starting materials weighing
B20 mg were used in the CHNS analysis at 1,150 �C and 90 s.

Melting experiments. Melting experiments were conducted using a Boyd–
England-type 1/2-in-diameter piston–cylinder apparatus (PG-100; C & T Factory)
at Kyoto University. Starting material of B1 mm diameter and height was packed
into graphite capsule, which was subsequently sealed in platinum (Pt) capsule. The
Pt capsule was crimped and welded shut using a carbon arc welder. The sealed
capsule was positioned on the centre of the 31-mm furnace assembly of MgO inner
pieces, graphite heater, and Pyrex glass and talc sleeves from inside to the outside.
A steel plug with a pyrophyllite sleeve was placed on top of the furnace assembly.
The pressure was calibrated at 900 �C using the quartz to coesite transformation at
3.0 GPa (ref. 36), and at 1,400 �C using the protoenstatie to high-temperature
orthoenstatite transition at 0.85 GPa (ref. 37). The temperature was monitored with
a Pt–Pt87Rh13 thermocouple and controlled using a digital program controller
(KP100c; CHINO). The thermal gradient in the assembly was investigated at
2.0 GPa and at 1,250 �C using an enstatite–diopside mixed powder and the
two-pyroxene geothermometer38. The average temperature in the sample position
(n¼ 25) was 1,258 �C (s.d.¼ 43 �C), which indicates the limited thermal gradient.
The difference between the average temperature and the temperature reading
of the thermocouple is within the error of geothermometer. The experiments were
conducted at 1.5–2.5 GPa and 1,200–1,320 �C (Supplementary Data 1). The starting
material was melted under the target pressure at 1,400 �C for 2 h and then the melt

and solid phases were equilibrated at the target temperature at constant pressure
for 2 h.

Analysis of the run products. The recovered Pt capsules were mounted in epoxy
and polished for microanalysis. The phase assemblages of the run products
were identified with an optical microscope and high-resolution elemental maps
(Fig. 2) using an electron probe microanalyzer (EPMA) (JXA-8900 Superprobe;
JEOL) at the Atmosphere and Ocean Research Institute, the University of Tokyo.
The intensities of Si, Mg, Fe, Ca and Al were routinely determined by five wave-
length-dispersive spectrometers (TAP, TAP, PETH, PETJ and LIFH, respectively)
at an accelerating voltage of 15 kV, a probe current of 50 nA, and a focused beam.
The intensity determination was conducted for 50 ms at intervals of 2 mm for the
area of the entire of run product. A compositional image in backscattered electron
mode was also compiled (Fig. 2). The major elements of the observed crystalline
phases, quenched crystals and glass were analysed using EPMA with wavelength-
dispersive spectrometers, an accelerating voltage of 15 kV, a probe current of
12 nA, a focused beam for crystals, 20 mm beam for the zone of quenched crystals
and 50 mm beam for glasses. The ZAF correction was used.

Confirmation of the attainment of equilibrium. Approach to equilibrium was
verified using the following criteria. Phase proportions were calculated by mass
balance calculations using linear least squares. The compositions of the zone of
quenched crystals were included in the mass balance calculations because its
thickness is commonly 410 mm (Fig. 2). Residual sums of squares (

P
R2) less than

2.000 and the rough match between the calculated mass proportions and observed
volume proportions on the polished surface of the run products is the primary
evidence for the attainment of equilibrium. Olivine–melt, orthopyroxene-melt,
clinopyroxene-melt and clinopyroxene-orthopyroxene Fe/Mg partition coefficients
(KD) within the range 0.33±0.03 (ref. 39), 0.29±0.06 (ref. 38), 0.28±0.08
(ref. 38) and 1.09±0.14 (ref. 38; Supplementary Data 1), matching of the
temperature reading of the thermocouple and the temperature at the sample
position (1,258 �C), which was experimentally determined at 2.0 GPa and 1,250 �C
using an enstatite–diopside mixed powder and the two-pyroxene geothermometer
(within the error of geothermometer), the absence of chemical zoning in solid
phases and the chemical homogeneity of glass and the zone of quenched crystals
further confirm the attainment of equilibrium.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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