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Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver 
disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from 
simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead 
to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing  
indication for liver transplantation in western countries and therefore represents a  
global health issue. The pathophysiology of NASH is complex and includes multiple 
parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte 
injury and inflammation, with or without fibrosis. NASH is frequently associated with 
type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may 
also be found in many other endocrine diseases such as polycystic ovary syndrome, 
hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid 
excess, for example. In this review, we will discuss the pathophysiology of NASH 
associated with different endocrinopathies.

Introduction

Nonalcoholic steatohepatitis (NASH) is part of a disease 
spectrum, nonalcoholic fatty liver disease (NAFLD), 
which ranges from simple steatosis to fibrosis and 
ultimately cirrhosis (1, 2, 3, 4). NASH is, therefore, 
a progressive subtype of NAFLD that can result in 
cirrhosis, hepatocellular carcinoma and liver-related 
mortality. Importantly, hepatic fibrosis is the only 
histologic feature of NASH independently associated 
with long-term overall mortality, liver transplantation 
and liver-related mortality (5). Validated drugs to treat 
NASH are still lacking, although numerous studies 
are underway (6). Interestingly, numerous endocrine 
diseases other than type 2 diabetes are also associated 
with NAFLD and NASH (7, 8, 9). The aim of this review is 
to present different endocrine diseases that may result in 
the development of NASH and discuss their underlying 
pathophysiology.

Epidemiology

NAFLD is now the most common cause of chronic liver 
disease in western countries, affecting approximately 30% 
of the general population, and its worldwide prevalence 
continues to increase concurrently due to the growing 
obesity epidemic (10). As such, NAFLD is projected 
to become the most common indication leading to 
liver transplantation in the United States soon (11). 
The prevalence of NAFLD can reach 90–95% in obese 
individuals and affects up to 70% of patients with type 2 
(12, 13, 14).

The estimation of NASH prevalence at the population 
level is difficult because the diagnosis requires a liver 
biopsy, which is infrequently performed. Indirect 
estimates suggest that NASH affects 3–6% of the US 
population, with an increased prevalence in patients with 
metabolic diseases and obesity. Although often clinically 
silent, NASH progresses to cirrhosis in approximately 20% 
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of cases and is associated with increased rates of liver-
specific and overall mortality (15).

Diagnosis

Liver biopsy is the gold standard for the diagnosis of 
NAFLD (10). NAFLD is defined by the accumulation of fat 
in the liver with ≥ 5% of hepatocytes containing visible 
intracellular triglycerides or steatosis, affecting at least 5% 
of the liver volume or weight. NAFLD is a diagnosis of 
exclusion. Indeed, alcohol consumption should be below 
30 g (=3 units) per day for men and 20 g (=2 units) per 
day for women. As a remainder, one unit of alcohol (=10 
g) is defined as 1 glass of beer (25 cL), 1 glass of wine 
(20 cL) or 1 glass of spirit (3 cL). Other diseases have 
to be considered before the diagnosis of NAFLD/NASH 
can be made, such as autoimmune liver disease, viral 
hepatitis infection, hemochromatosis, Wilson’s disease, 
or drug consumption (16). Simple hepatic steatosis can 
progress to NASH if the causative factors persist. NASH 
is characterized morphologically by steatosis, ballooning 
hepatocytes, inflammation, with or without fibrosis. 
NASH itself can continue to progress to cirrhosis and 
hepatocellular carcinoma (17, 18).

NAFLD can be considered as the hepatic manifestation 
of the metabolic syndrome (3). The Metabolic Syndrome 
is defined by the presence of any three of the five 
following risk factors: elevated waist circumference, 
elevated triglycerides (≥1.7 mmol/L), reduced HDL-
cholesterol (<1.0 mmol/L in males and <1.3 mmol/L 
in females), elevated blood pressure (systolic ≥ 130 
and/or diastolic ≥ 85 mmHg) and elevated fasting glucose 
(≥100 mg/dL) (3, 19, 20). 

Whereas liver biopsy is required for the diagnosis 
of NASH, NAFLD can also be evaluated non-invasively 
by imaging techniques such as ultrasound, CT or MRI. 
Transient elastography (e.g. FibroScan) is being widely 
used combined with different scores, such as NAFLD 
fibrosis score (NFS) or Fibrosis-4 (FIB4) index, to better 
predict the severity of hepatic injury. FibroScan has a 
sensitivity of 85% for detecting advanced fibrosis and 
92% for detecting cirrhosis (21). Current standard of care 
regarding NAFLD/NASH diagnosis is reviewed elsewhere 
(4, 10, 15, 16, 22).

Etiology

As mentioned earlier, NAFLD is a diagnosis of exclusion, 
so its workup must exclude other causes such as alcohol 
consumption, hepatitis B and C infection, drug abuse, 
autoimmune liver disease, hemochromatosis and 
Wilson’s disease.

The principal risk factors to develop NAFLD and 
NASH are the presence of insulin resistance and obesity. 
However, NAFLD and NASH are associated with other 
extrahepatic manifestations, adding to the burden 
of disease. These manifestations notably include 
obstructive sleep apnea, hypertension, dyslipidemia, 
gut microbiota alterations, genetic predisposition 
(notably polymorphisms in PNPLA3 and TM6SF2 genes), 
sedentary lifestyle, and consumption of certain foods 
(e.g. fructose, saturated fatty acids, overconsumption 
of carbohydrates leading to de novo lipogenesis) (2, 13, 
23, 24, 25, 26). Nevertheless, some endocrine diseases 
are also associated with NAFLD and NASH (Table 1), and 
their pathophysiology will be discussed.

Table 1 Endocrine causes of NAFLD.

Hormone Gland of origin Example of disease

Cortisol - Pituitary gland (ACTH)
- Adrenal gland 

(cortisol)

- Cushing’s disease
- Cushing’s syndrome
- Exogenous corticoid administration

Thyroxine (T4) - Pituitary gland (TSH)
- Thyroid gland (free T4)

- Primary hypothyroidism (thyroid disease)
- Secondary hypothyroidism (pituitary (TSH) or hypothalamic disease (TRH))

Growth hormone (GH) - Pituitary gland (GH)
- Ectopic secretion

- Acromegaly (pituitary adenoma (GH) or hypothalamic mass (GHRH))
- Ectopic secretion of GHRH or GH (Bronchial carcinoid, pancreatic islet-cell 

tumor, small cell lung cancer, adrenal adenoma, medullary thyroid carcinoma, 
pheochromocytoma)

- Growth hormone deficiency
Testosterone - Testicles - Primary hypogonadism (congenital abnormalities, acquired diseases)

- Secondary hypogonadism (pituitary disease (LH) or hypothalamic disease 
(GnRH))

Prolactin - Pituitary gland - Micro or macroprolactinoma
- Stalk effect
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General pathophysiology of NASH

The pathophysiology of NAFLD is complex and 
multifactorial with multiple systemic alterations 
involved (27). The traditional ‘two hits’ theory consists 
of a first ‘hit’ with intrahepatic accumulation of fatty 
acids, followed by a second ‘hit’ including other factors 
such as oxidative stress or mitochondrial dysfunction. 
However, this theory has been considered too simplistic 
to adequately represent the pathogenesis of NAFLD. 
Therefore, it has been replaced by the ‘multiple-parallel 
hits’ model that seems more accurate to represent the 
process of NAFLD development and progression, where 
various factors act in parallel and in a synergic manner 
in subjects with genetic predisposition (27, 28, 29). This 
multiple hits hypothesis is based on the concept that 
genetic and environmental factors associated with dietary 
habits lead to obesity, insulin resistance development, 
and alteration of intestinal microbiome (29). Insulin 
resistance promotes hepatic de novo lipogenesis and 
adipose tissue lipolysis, leading to an increased flux of 
fatty acids to the liver (30). Insulin resistance will also 
lead to adipose tissue dysfunction inducing secretion of 
inflammatory cytokines (31). 

Intrahepatic accumulation of fatty acids will induce 
the development of several deleterious phenomena such as 
mitochondrial dysfunction, endoplasmic reticulum stress, 
oxidative stress and production of reactive oxygen species 
(32). In addition, the alteration of intestinal microbiome 
induces an increased production of intestinal fatty acids 

and increased intestinal permeability, altogether leading 
to the activation of cytokines production such as TNF-α  
and IL-6 (33). These elements will subsequently lead 
to a chronic hepatic inflammatory state promoting the 
development and progression of NAFLD and NASH, as 
summarized in Fig. 1.

Endocrine causes of NASH

Type 2 diabetes/insulin resistance

NAFLD is a major risk factor for the development of type 
2 diabetes, most likely because of its strong association 
with hepatic insulin resistance (34). This is notably 
due to the fact that some lipid intermediates are more 
likely to cause hepatic insulin resistance. Indeed, while 
triglycerides are usually considered inert, other lipids 
such as diacylglycerols and ceramides have been clearly 
involved in the development of insulin resistance (1, 
3, 20, 34). Both diacyglycerols and ceramides interact 
with insulin signaling. Whereas ceramides inhibit Akt2 
phosphorylation and downstream insulin signaling (2), 
diacylglycerols activate protein kinase Cε (PKCε) as key 
pathway responsible for causing NAFLD-associated hepatic 
insulin resistance (34). Confirmation of this interaction 
between diacylglycerols, PKCε activation and hepatic 
insulin resistance has been demonstrated in numerous 
human and rodent models of NAFLD-associated hepatic 
insulin resistance (20, 35, 36, 37, 38, 39, 40, 41, 42, 43, 

Figure 1
Multiple parallel hits hypothesis for the 
progression of NAFLD Genetic, dietary and 
environmental factors lead to the development of 
insulin resistance, adipocytes proliferation and 
dysfunction, and alteration of intestinal 
microbiota. Subsequently, insulin resistance leads 
to lipolysis, release of adipokines such as TNF-α or 
IL-6, and stimulates hepatic DNL. As a 
consequence, the increased flux of hepatic FFAs 
induces the accumulation of TG, which cause 
mitochondrial dysfunction and ER stress. 
Intestinal permeability participates in the 
activation of hepatic inflammation and ER stress. 
Altogether these multiple parallel hits lead to the 
development of NAFLD and its progression to 
fibrosis and cirrhosis. ER, endoplasmic reticulum; 
FFA, free fatty acids; IL-6, interleukin 6; NAFLD, 
non-alcoholic fatty liver disease; TG, triglycerides; 
TNF-α, tumor necrosis factor α.
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44, 45, 46, 47, 48, 49). There are multiple causes for the 
accumulation of diacylglyerols in the liver and PKCε 
activation resulting in hepatic insulin resistance. Notably, 
diacylglycerols can accumulate following an increased 
delivery of chylomicrons remnants observed secondary 
to increased dietary intake, or depending on diet 
composition, such as a high-fat or high-fructose diet, or in 
the case of lipodystrophy or genetic predisposition. Also, 
increased fatty acids release from adipocytes can result 
in hepatic accumulation of diacylglycerols, for example 
in the case of certain gene variants or in cases of insulin 
resistance. Moreover, skeletal muscle insulin resistance, 
which can be seen in predisposed or sedentary individuals, 
can result in de novo lipogenesis, leading to increased 
hepatic diacylglycerol content. Finally, mitochondrial 
dysfunction, as discussed earlier, can also result in hepatic 
accumulation of diacylglycerols. Interestingly, studies in 
both humans (48) and rodents (38, 50, 51, 52, 53, 54, 
53) have clearly demonstrated that compartmentation 
of diacylglycerols within the hepatocyte is a major factor 
in determining PKCε activation and hepatic insulin 
resistance.

The liver is essentially an exocrine gland, secreting 
bile into the intestine, but can also be considered as 
an endocrine gland. Indeed, the liver produces some 
important hormones or hormone precursors, such as 
insulin-like growth factor 1 (IGF-1), angiotensinogen, 
thrombopoetin and hepcidin. More recently, numerous 
hepatokines have been described (54). Among them, 
the liver produces Fibroblast Growth Factor 21 (FGF21), 
a hormone also produced by the white adipose tissue. 
FGF21 has recently emerged as a key regulator in the 
metabolism of glucose and lipids (55, 56, 57). FGF21 
levels are increased in NAFLD and correlate with hepatic 
triglyceride content (58), thus FGF21 is considered an 
emergent biomarker of NAFLD (59, 60). In diet-induced 
obese mice, which already display increased levels of 
FGF21, suggesting a state of FGF21 resistance, chronic 
administration of FGF21 not only reverses hepatic 
steatosis, but also improves insulin sensitivity by notably 
decreasing hepatic diacylglycerol hepatic content 
and subsequent PKCε activation (61). Mice lacking 
Fgf21 (FGF21 KO) have hepatic insulin resistance and 
increased hepatic glucose production associated with an 
increase in plasma glucagon levels. FGF21 KO mice are 
also hypometabolic and display increased fat mass (47). 
FGF21 may have a potential role as a therapeutic agent 
for conditions associated with insulin resistance as it has 
been shown that administration of a recombinant form 
of this hormone in obese mice and diabetic monkeys 

improves insulin sensitivity, body weight, lipid profile 
and even hepatic insulin resistance (61, 62, 63, 64, 65, 
66). Moreover, FGF21 administration could have the 
potential to modulate inflammation (67). As NASH is 
associated with inflammation, FGF21 administration, for 
example by using FGF21 analogs, could be of interest in 
this context (68, 69).

Altogether, these data suggest that the accumulation 
of ectopic fat in the liver, leading to NAFLD, plays an 
important pathophysiological role in the development 
of insulin resistance and type 2 diabetes. Modulation of 
hepatokines released by the liver, such as FGF21, could 
represent a therapeutic role in the treatment of NAFLD 
and NASH.

Polycystic ovary syndrome

Polycystic ovary syndrome (PCOS) is an endocrine 
syndrome frequently encountered in young women 
of childbearing age, with a prevalence of 8–15% (70). 
PCOS is best defined by the Rotterdam criteria, that is, 
oligo/anovulation, clinical and/or biological signs of 
hyperandrogenism, and polycystic ovaries (by ultrasound) 
(70). Genome-wide association studies have shown a 
relationship between PCOS and several genes involved in 
type 2 diabetes, such as THADA, INSR and HMGA2 (71), 
and insulin resistance occurs in about half of women with 
PCOS (72). A meta-analysis of 17 studies revealed that 
there is a significantly higher risk of NAFLD in women 
with PCOS than in a control group (OR = 2.25, 95% CI 
1.95–2.60). Moreover, this association was independent 
of obesity and geographic region, but might be correlated 
with hyperandrogenism (73). A retrospective longitudinal 
cohort study using a large primary care database in the 
United Kingdom, evaluating NAFLD rates in 63’120 women 
with PCOS and 121’064 control women, found that women 
with PCOS had an increased rate of NAFLD (HR = 2.23, 
95% CI 1.86–2.66, P < 0.001), also after adjusting for BMI 
or dysglycemia (74). The prevalence of NAFLD in women 
with PCOS varies between 35 and 70%, depending on the 
diagnostic method used (75). Regarding the association 
between PCOS and the histological severity of NAFLD, a 
study reported that among 200 women with PCOS, 6 of 
them had biopsy-proven fibrosing NASH. Compared with 
the 194 of 200 PCOS women who did not undergo biopsy, 
women with biopsy-documented NASH had lower HDL-
cholesterol, higher triglycerides, higher fasting insulin, 
higher aspartate aminotransferase, and higher alanine 
aminotransferase (76). Conversely, the prevalence of PCOS 
in women with NAFLD has been shown to reach 71% in 
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one cohort (77). However, it is not clear whether PCOS is 
an independent risk factor for NAFLD.

Insulin resistance is a major player in PCOS, promoting 
hyperandrogenism through an increased release of 
androstenedione and testosterone (78). Indeed, insulin 
acts as a co-gonadotropin to increase luteinizing hormone 
(LH), therefore, stimulating androgens production. 
A concomitant decrease in sex hormone binding 
globulin (SHBG) mediated both by insulin resistance 
and hyperandrogenism further increases the levels of 
androgens, which leads to a vicious circle increasing insulin 
resistance. The potential mechanisms leading to insulin 
resistance in PCOS need to be further defined, but a post 
receptor defect in the insulin receptor signal transduction 
has been suggested as there is no structural abnormality 
in the insulin receptor (79). Hyperandrogenism in PCOS 
is, therefore, a potential culprit in the development of 
NAFLD. Indeed, a recent meta-analysis showed that 
among women with PCOS, those with NAFLD had higher 
serum total testosterone as well as free androgen index 
(80). The mechanism behind the association of androgen 
excess and NAFLD in PCOS has been shown to come from 
intra-adipose tissue androgen generation, which drives 
lipotoxicity, notably by increasing adipocyte hypertrophy 
and fatty acid overspill (81). Among women with PCOS 
and androgen excess, circulating glycerophospholipids 
and lysoglycerophospholipids have been identified, and 
are known as potential biomarkers of NASH (26, 82). 
Interestingly, systemic lipotoxicity is increased after an 
acute androgen challenge in women with PCOS, but 
not in BMI-matched controls (81). Finally, women with 
PCOS, obesity and NAFLD display an increased excretion 
of 5α-reduced steroids (83). The role of 5α-reductase is 
further discussed in the glucocorticoid excess section.

Overall, women with PCOS show a high prevalence of 
NAFLD, even independently of obesity and dysglycemia. 
Hyperandrogenism and insulin resistance play a key 
role in the pathophysiology of PCOS-associated NAFLD, 
although the exact mechanisms remain elusive. Further 
studies are needed to better understand the complex 
endocrine regulations in the interconnections linking 
PCOS with NAFLD, in order to notably establish whether 
treatment with anti-androgenic drugs may reduce the risk 
of NAFLD in women with PCOS.

Hypothyroidism

Hypothyroidism is a frequent endocrine disorder 
defined by thyroid hormone insufficiency (84). Primary 
overt hypothyroidism is defined by an elevated level of 

thyroid-stimulating hormone (TSH) in association with 
low serum free thyroxine (T4) levels, while subclinical 
hypothyroidism is characterized by elevated TSH levels in 
association with normal levels of T4. Thyroid hormones 
are involved in various metabolic processes, including 
body fat distribution, lipid utilization, energy expenditure, 
and glucose homeostasis. Altered thyroid hormone 
levels may, therefore, participate in the development of 
NAFLD (85). Indeed, individuals with hypothyroidism are 
more at risk of developing components of the metabolic 
syndrome such as impaired fasting glucose levels, 
obesity, and hyperlipidemia that are clearly associated 
with the occurrence of NAFLD, thus suggesting a close 
link between hypothyroidism and NAFLD (86). A meta-
analysis including nearly 13,000 individuals revealed a 
prevalence of 15–36% of hypothyroidism among NAFLD 
patients (87). This association has been confirmed in a 
single large study including more than 2000 subjects with 
subclinical or overt hypothyroidism (88).

The potential pathophysiological mechanisms 
supporting this epidemiological relationship comprise 
the frequent occurrence of insulin resistance in 
hypothyroidism, possibly mediated by an increase 
in the levels of several adipocytokines such as TNF-α, 
IL-1, or leptin; elevated oxidative stress; and increased 
lipid peroxidation that are often encountered in 
hypothyroidism and that may lead to the development 
of insulin resistance (89, 90). Interestingly, TSH per se may 
promote liver de novo lipogenesis. Indeed, the receptor for 
thyrotropin is expressed on the surface of hepatocytes, 
where it can be activated by TSH, thereby resulting in 
stimulation of the peroxisome proliferator-activated 
receptor-α (PPARα) pathway that leads to the activation 
of sterol regulatory element-binding transcription factor 
1 (SREBP-1c), which promotes hepatic lipogenesis (90, 
91). This mechanism may, in part, explain the observed 
association of NAFLD and subclinical hypothyroidism 
(92). Due to shared features between hypothyroidism 
and the metabolic syndrome, and the tight relationship 
between NAFLD and the metabolic syndrome, screening 
for the presence of NAFLD should be considered for 
individuals with hypothyroidism, in particular when they 
are also overweight or obese.

Levothyroxine administration has been shown to be 
associated with reduction of the BMI and the level of serum 
lipids, thus suggesting a potential beneficial impact on 
NAFLD (84). In addition, several randomized controlled 
trials have shown a reduction in liver enzyme levels and 
hepatic fat content after levothyroxine administration 
in NAFLD patients who had euthyroidism or subclinical 
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hypothyroidism (93, 94, 95). Notably, thyroid hormones 
increase β-oxidation of fatty acids, which leads to a 
decrease in hepatic lipid content, at least in rodents (96). 
Moreover, thyroid hormones analogs decrease hepatic 
steatosis in different rodent models of NAFLD (93, 97). 
Also, TSH has been shown to increase hepatic triglyceride 
content through upregulation of SREBP-1c activity (91). 
Therefore, treating hypothyroidism would in theory 
reduce TSH and help improving NAFLD. Further studies 
are required to assess whether levothyroxine replacement 
in patients with concomitant hypothyroidism and NAFLD 
can have a positive impact on liver disease progression 
and outcomes. 

Male hypogonadism

Male hypogonadism is a clinical syndrome defined by 
reduced testosterone secretion and/or spermatogenesis. 
Male hypogonadism can be caused by diseases of the 
testes (primary hypogonadism) or dysfunction of the 
hypothalamic–pituitary axis (secondary hypogonadism) 
(98). The clinical features of male hypogonadism depend 
on the time of onset and the severity of the androgen 
deficiency, as well as whether it involves an insufficiency 
of spermatogenesis and/or testosterone secretion. The 
diagnosis of hypogonadism is based on the presence 
of signs and symptoms compatible with testosterone 
deficiency and several reduced morning testosterone 
serum level measurements. 

Studies in males have reported an association 
between low testosterone and increased visceral adipose 
tissue, insulin resistance, and dyslipidemia (99, 100). 
Accordingly, higher levels of testosterone are associated 
with reduced visceral abdominal adipose tissue (101). The 
association between low testosterone levels and NAFLD 
has been observed in several epidemiological studies, and 
a meta-analysis including 16 studies has confirmed this 
association between lower testosterone levels and NAFLD 
in men (102, 103, 104).

Several mechanisms may play a role in the association 
between reduced testosterone levels and NAFLD, but 
they remain poorly described. An increase in abdominal 
adipose tissue with low testosterone levels may lead to 
hepatic steatosis and insulin resistance. Furthermore, 
low testosterone levels are associated with low-grade 
inflammation (99). Preclinical studies have shown that 
low levels or the absence of testosterone may cause 
hepatic steatosis through increased de novo lipogenesis 
via upregulation of hepatic SREBP-1. This upregulation 
of SREBP-2 and ACC-1 appears to be due to reduced 

AMPKα-1 activity (105). Additionally, testosterone may 
activate SR-B1 scavenger receptor and stimulate hepatic 
lipase by hydrolysis of phospholipids and by hydrolysis 
of triglycerides, thereby leading to an enhancement of 
specific cholesterol uptake of HDL-C lipids by the liver 
as well as cholesterol efflux from peripheral cells (106). 
Therefore, low testosterone may favor uncontrolled 
hepatic lipid accumulation, thereby leading to the 
development of NAFLD. 

In the preclinical setting, testosterone replacement 
has been associated with a beneficial impact on hepatic fat 
content in animal models such as castrated rats (107, 108). 
In humans, the benefit of testosterone administration in 
NAFLD is still a matter of debate, with conflicting results 
between randomized controlled trials. For example, one 
study found a significant reduction in hepatic fat content, 
while another study reported the absence of a reduction 
in hepatic fat (109, 110). In light of the limitations of 
the available studies, testosterone replacement cannot 
currently be considered as a treatment for NAFLD in 
men with low testosterone levels. Further studies are 
needed to obtain a better understanding of the impact 
of testosterone administration on the development and 
outcomes of NAFLD, and these studies should take into 
account several long-term safety aspects of testosterone 
replacement therapy, such as cardiovascular outcomes, as 
these remain a matter of debate (111).

Growth hormone dysregulation

Growth hormone deficiency

Liver is thought to be one of the key organ targets of 
growth hormone (GH). GH exerts various physiological 
actions on glucose and lipid metabolism. GH stimulates 
glycogenolysis and gluconeogenesis, thereby inducing 
insulin resistance and promoting preferential release of 
free fatty acids from visceral adipose tissue, which in turn 
induces competition between fatty acids and glucose as 
a substrate, thereby reducing glucose metabolism (112). 
Due to its pronounced impact on lipid and glucose 
metabolism, the level of GH appears to be related to 
lipid accumulation in the liver. Deficiency or excess of 
GH appears to be associated with the risk of developing 
NAFLD. 

Adult growth hormone deficiency (GHD) is clinically 
characterized by decreased muscle strength, increased 
visceral adipose tissue, dyslipidemia, and an increased 
risk of cardiovascular disease (113, 114). GHD in adults 
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is usually caused by a pituitary adenoma or its treatment 
such as surgery. An association between GHD in adults 
and the development and severity of NAFLD has been 
reported in several observational studies. Thus, several 
studies have reported that IGF-1 and GH levels are 
reduced in patients with NAFLD (115, 116, 117, 118). 
There are several mechanisms that link GH deficiency 
and NAFLD, although the precise pathogenesis remains 
to be elucidated. Mice with liver-specific deletion of 
GH receptor exhibit severe hepatic steatosis, increased 
hepatic de novo lipogenesis, and insulin resistance (119, 
120). Furthermore, the same mouse model exhibits 
other features of the metabolic syndrome such as low-
grade inflammation, increased reactive oxygen species 
production, and mitochondrial dysfunction.

Several clinical studies have reported potential 
beneficial effects of GH administration on liver enzyme 
levels and hepatic steatosis (121). GH replacement 
treatment in adults should only be provided in case of 
symptomatic and severe growth deficiency in order to 
decrease visceral adipose tissue, to improve lipid profile, 
and to reduce cardiovascular morbidity and mortality 
(122). Due to limited data to date in this regard, GH 
supplementation therapy should not be considered as a 
specific treatment for NAFLD patients with or without GH 
deficiency (123).

Growth hormone excess

Acromegaly is caused by the overproduction of GH and, 
consequently, IGF-1, and it is most often the result of 
somatotroph adenomas. Excess GH secretion results in 
deleterious effects on glucose metabolism and insulin 
signaling at hepatic and extra-hepatic sites by stimulation 
of gluconeogenesis and glycogenolysis. Excess GH causes 
an increase in lipolysis that leads to a high levels of free 
fatty acids, thereby further promoting the development of 
insulin resistance (124, 125).

Few studies to date have shown an association between 
acromegaly and NAFLD prevalence, and in particular the 
hepatic steatosis index (HSI). Interestingly, a reduction 
of GH and IGF-1 levels after treatment induction in 
acromegaly has been associated with a reduction of 
the HSI (126, 127). However, due to the relatively low 
prevalence of acromegaly, there is still limited data 
regarding its association with NAFLD and the impact of 
control of the disease with conventional treatments such 
as octreotide long-acting release on NAFLD progression 
or regression.

Glucocorticoid excess

Excessive levels of glucocorticoids (GCs) have been linked 
to the risk of developing NAFLD, as GCs may modulate 
several key pathways involved in lipid and carbohydrate 
metabolism (128). Excessive levels of endogenous GCs, 
as occurs in Cushing’s syndrome, have been associated 
with a prevalence of 20% of NAFLD in a study assessing 
hepatic fat content with CT in individuals with active 
Cushing’s syndrome (129). In accordance with this, 
the exogenous GC hydrocortisone has been shown to 
be associated, in a dose-dependent manner, with an 
increased risk of NAFLD independently of the BMI or 
waist circumference (130). Currently available data are 
still not in agreement regarding the presence or not of 
hypercortisolism in patients with metabolic syndrome 
and NAFLD and the potential increased risk of the 
occurrence of a metabolic disturbance such as type 2 
diabetes or insulin resistance in the presence of elevated 
levels of cortisol (131, 132, 133).

Excess GCs can mediate hepatic fat accumulation 
through several mechanisms, including the stimulation 
of de novo hepatic lipogenesis, increased gluconeogenesis, 
the stimulation of food intake, inhibition of hepatic 
β-oxidation, and enhancement of lipolysis of adipose 
tissue and free fatty acids uptake by the liver (128). 
The enzyme 11β-hydroxysteroid dehydrogenase type 1 
(11β-HSD1), which converts inactive cortisone to active 
cortisol, appears to play a potentially important role in 
excess GC-mediated development of NAFLD and insulin 
resistance. This enzyme is upregulated in the visceral 
adipose tissue of obese individuals, thereby leading to 
increased hepatic exposure of cortisol by the splanchnic 
venous system (134). In keeping with this, mice with 
adipose tissue-specific KO of 11β-HSD1 are protected 
against the development of the metabolic syndrome 
and, conversely, mice that overexpress 11β-HSD1 in 
adipose tissue are prone to developing NAFLD and insulin 
resistance (135). 11β-HSD1 inhibitors have been shown to 
have a beneficial effect on metabolic syndrome, and their 
use can, therefore, be considered as a potential future 
therapy for NAFLD (136, 137).

5α-reductase is another enzyme involved in GC 
metabolism. Notably, it has been suggested that 
5α-reductase activation might act as a protective 
mechanism preventing progression of metabolic 
disturbances in the liver through increased local GC 
clearance (138). Also, mice knock-out for 5α-reductase are 
predisposed to insulin resistance and NAFLD (83). Finally, 
5α-reductase inhibition through the use of dutasteride 
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has been shown to promote hepatic fat accumulation in 
humans (139).

Altogether, excess GCs levels appear to play an 
important role in the development of insulin resistance 
and NAFLD, although clinical applications to potentially 
counteract GCs action remain to be elucidated.

Miscellaneous

Vitamin D deficiency has been associated in various 
observational data with the development and severity of 
NAFLD in subjects with normal aminotransferases (AST/
ALT) levels (140, 141). In addition, NAFLD patients have 
an additional risk of low vitamin D of approximately 25% 
compared with subjects without NAFLD (142). However, 
the association between the risk of future new-onset 
insulin resistance and low vitamin D remains unclear 
(143, 144).

Mechanistically, vitamin D acts through the vitamin 
D receptor (VDR) present in hepatocytes. Vitamin D has 
been shown to enhance insulin sensitivity in vitro through 
upregulation of GLUT4 and modification of free fatty acids 
metabolism (145). Preclinical studies suggest potential 
anti-inflammatory, antiproliferative, and antifibrotic 
effects of vitamin D administration on the liver in vivo 
(146, 147). Small-scale randomized controlled trials have 
shown that vitamin D supplementation improves the 
metabolic syndrome (148, 149, 150).

Several observational case‐control or cross‐sectional 
studies have assessed the association between NAFLD 
and bone mineral density (BMD). The findings to date of 
studies in this regard remain conflicting, with some studies 
showing a significant association between NAFLD and 
low BMD, while other studies have reported a significant 
association between NAFLD and increased BMD, and, 
lastly, some studies have observed no association (151, 
152, 153, 154). Larger-scale prospective and mechanistic 
studies are warranted to better elucidate the potential 
link between bone demineralization and NAFLD, with 
investigation of gender differences and any specific 
segment of the skeleton that can be affected.

Primary aldosteronism (PA) is the most frequent cause 
of secondary hypertension, accounting for approximately 
10% of all cases (155). PA can not only cause 
hypertension but also insulin resistance and dyslipidemia 
(156). Activation of the mineralocorticoid receptor by 
aldosterone leads to impaired insulin sensitivity in skeletal 
muscle and adipocytes by stimulation of inflammatory 
and oxidative stress metabolic pathways (157, 158). 
PA has been reported to increase the risk of metabolic 

syndrome and NAFLD (159, 160, 161). Thus, there may 
be merit in screening patients with PA for NAFLD. The 
impact of therapeutic or surgical treatments of PA on 
the development and outcome of NAFLD remain to be 
determined.

Prolactin is a pituitary-derived hormone with potent 
enhancing effects on reproduction and lactation. Since 
the receptor of prolactin is also present in liver, it may 
play a role in hepatic metabolic regulation. A negative 
correlation between prolactin plasma levels and body 
weight, insulin resistance, and NAFLD development has 
been observed in observational studies (162, 163). The 
prolactin receptor is down-regulated in obese subjects with 
NAFLD, and in vitro experiments indicate that prolactin, 
via its hepatic receptor, improves hepatic steatosis 
through a reduction of fatty acid translocase (FAT)/CD36, 
which is a major transporter for hepatic uptake of free 
fatty acids (162). Prolactin and its hepatic receptor may, 
therefore, represent an attractive approach to counteract 
the development of NAFLD.

Summary and conclusion

NAFLD is the most common chronic liver disease in 
Western countries, with NASH being a more progressive 
subtype notably characterized by inflammation and 
hepatocyte injury, with or without fibrosis. The latter is the 
only histologic feature associated with long-term outcomes 
of patients with NAFLD. NAFLD is intimately entangled 
with various endocrine diseases, sharing the keystone 
pathophysiological mechanism of insulin resistance. 
However, our understanding of the pathophysiology of 
NAFLD in different endocrinopathies is far from being 
understood and therefore limits our capacity to more 
specifically treat NAFLD in this context. Moreover, the 
natural course of NAFLD secondary to endocrine disorders 
compared to the course of ‘primary’ NAFLD is unknown. 
Therefore, in the coming years, it will be of importance 
to better understand the interrelationships between 
endocrine diseases and NAFLD in order to better target 
treatments.
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