
cancers

Article

HOTAIR as a Prognostic Predictor for Diverse Human
Cancers: A Meta- and Bioinformatics Analysis

Halil Ibrahim Toy 1, Didem Okmen 1, Panagiota I. Kontou 2, Alexandros G. Georgakilas 3 and
Athanasia Pavlopoulou 1,*

1 Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova 35340, Turkey;
ibrahim.toy@msfr.ibg.edu.tr (H.I.T.); didem.okmen@msfr.ibg.edu.tr (D.O.)

2 Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia 35131, Greece;
pankontou@gmail.com

3 DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences,
Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece;
alexg@mail.ntua.gr

* Correspondence: athanasia.pavlopoulou@deu.edu.tr; Tel.: +90-232-412-6549

Received: 26 April 2019; Accepted: 1 June 2019; Published: 5 June 2019
����������
�������

Abstract: Several studies suggest that upregulated expression of the long non-coding RNA HOX
transcript antisense RNA (HOTAIR) is a negative predictive biomarker for numerous cancers. Herein,
we performed a meta-analysis to further investigate the prognostic value of HOTAIR expression
in diverse human cancers. To this end, a systematic literature review was conducted in order
to select scientific studies relevant to the association between HOTAIR expression and clinical
outcomes, including overall survival (OS), recurrence-free survival (RFS)/disease-free survival (DFS),
and progression-free survival (PFS)/metastasis-free survival (MFS) of cancer patients. Collectively,
53 eligible studies including a total of 4873 patients were enrolled in the current meta-analysis. Pooled
hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were calculated to assess
the relationship between HOTAIR and cancer patients’ survival. Elevated HOTAIR expression was
found to be significantly associated with OS, RFS/DFS and PFS/MFS in diverse types of cancers.
These findings were also corroborated by the results of bioinformatics analysis on overall survival.
Therefore, based on our findings, HOTAIR could serve as a potential biomarker for the prediction of
cancer patient survival in many different types of human cancers.
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1. Introduction

The long non-coding RNAs (lncRNAs) are non-protein-coding RNAs≥ 200 bp in length, transcribed
by RNA polymerase II. LncRNAs can be capped, polyadenylated and spliced, but they lack a functional
open reading frame. It is estimated that approximately 27% (i.e., up to 60,000) of the annotated genes in
the human genome encode lncRNAs, while the number of protein-coding genes ranges from 20,000 to
25,000 [1,2]. They are largely involved in a myriad of cellular functions, regulating gene expression at
the transcriptional, post-transcriptional, and epigenetic level [1,3]. LncRNAs have emerged as critical
components of cancer pathophysiology, being involved in one or more hallmarks of cancer, such as
proliferation and metastasis [4,5]. They can act either as oncogenes or tumor suppressors, or indirectly
through interaction with oncogenes and tumor suppressors, such as MYC proto-oncogene (MYC) and
tumor protein p53 (TP53), respectively [4,5].

One of the most well-studied lncRNAs is HOX transcript antisense RNA (HOTAIR) which is located
within the HOMEOBOX C (HOXC) gene cluster on chromosome 12q13.13 [6]. HOTAIR is 2158 bp
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long and consists of six exons. HOTAIR orthologs are restricted to eutherian mammals [7]. HOTAIR is
known to bind to the Polycomb Repressive Complex 2 (PRC2) and the histone H3K4 demethylase LSD1,
and serves as a scaffold to assemble these regulators at the HOXD gene cluster, where it establishes
a transcriptionally repressive chromatin structure, thereby resulting in epigenetic repression of the
HOXD gene locus [8]. HOTAIR has been shown to function as an oncogene since its expression is
dysregulated in multiple types of cancers, including breast, lung, liver, renal, hepatocellular, gastric,
nasopharyngeal, cervical, colorectal, bladder, pancreatic cancer, as well as melanoma, leukemia,
etc. [9–13]. Furthermore, HOTAIR is suggested to promote cancer progression and contribute largely
to cancer cell invasion and metastasis [14–17]. The multifunctional HOTAIR is implicated in the
different aspects of cancer pathophysiology by regulating gene expression at the transcriptional,
post-transcriptional, and epigenetic level [14,18–20]. Of note, several studies suggest that HOTAIR
expression is highly predictive of cancer patient survival rates in diverse cancer types [21–29].

Herein, we conducted a comprehensive and updated meta-analysis to further investigate the
prognostic value of HOTAIR expression for cancer patients. The potential clinical applications of our
findings are also discussed towards the prognostic application of HOTAIR to multiple and different
types of cancers.

2. Results

2.1. Study Selection and Charasteristics of Eligible Studies

A total of 264 relevant published scientific studies were retrieved from the biomedical literature
(up to 31 December 2018). According to the inclusion and exclusion criteria, 53 studies were ultimately
included in this meta-analysis, as shown in Figure 1. The main characteristics of the included studies
are summarized in Table 1, where the following information was recorded: first author’s surname;
year of publication; country of origin; type of cancer; follow-up period (in months); total number
of patients; detection assay for HOTAIR expression; HR and the corresponding 95% CI for overall
survival (OS), recurrence-free survival (RFS), disease-free survival (DFS), progression-free survival
(PFS), metastasis-free survival (MFS); survival data extraction method; and specimen type. Collectively,
4873 patients from 55 cohorts between 2010 and 2018 were included. The included studies reported a
follow-up period ranging from 36 to 276 months. The level of HOTAIR expression was measured with
quantitative reverse transcription polymerase chain reaction (qRT-PCR) in all of the included studies,
except one where HOTAIR expression was estimated by microarrays (Table 1).
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Table 1. Main characteristics of the studies included in the meta-analysis.

Author, Year Country Cancer
Max.

Follow-Up
(Months)

Sample
Case Number OS DFS/RFS MFS/PFS

Assay
Method

Data
Extraction
Method

High
Expression

Low
Expression Total HR (95% CI) p-Value HR (95%CI) p-Value HR (95% CI) p-Value

Gupta, 2010 [14] USA Breast Cancer 240 Tissue 44 88 132 2.76 (1.45–3.3) 0.036 NM NM 3.53 (2.78–4.89) 0.017 qRT-PCR K-M
Geng, 2011 [30] China HCC 36 Tissue NM NM 50 NM NM 2.24 (1.49–3.36) 0,049 NM NM qRT-PCR K-M
Kogo, 2011 [31] Japan CRC 60 Tissue 20 80 100 5.62 (1.52–9.57) 0.008 NM NM NM NM qRT-PCR reported
Yang, 2011 [32] China HCC 45 Tissue 32 28 60 NM NM 3.56 (1.67–7.63) 0.001 NM NM qRT-PCR reported
Lu, 2012 [33] Italy Breast Cancer 108 Tissue NM NM 336 0.43 (0.21–0.89) 0.022 0.47 (0.26–0.87) 0.016 NM NM qRT-PCR reported

Niinuma, 2012 [34] Japan GIST 200 Tissue 11 28 39 3.8 (0.7–21.2) 0.123 NM NM NM NM qRT-PCR reported
Chen, 2013 [24] China ESCC 60 Tissue 27 51 78 2.40 (1.35–4.28) 0.003 NM NM 2.34 (1.22–4.48) 0.01 qRT-PCR reported
Endo, 2013 [17] Japan IGC 68 Tissue 23 13 36 0.63 (0.34–1.86) 0.137 NM NM NM NM qRT-PCR K-M
Endo, 2013 [17] Japan DGC 60 Tissue 20 12 32 3.08 (1.77–5.35) <0.01 NM NM NM NM qRT-PCR K-M

Ge, 2013 [35] China ESCC 100 Tissue 90 47 137 3.16 (1.53–6.52) 0.002 NM NM 4.47 (1.99–10.06) 0.001 qRT-PCR reported
Ishibashi, 2013 [36] Japan HCC 36 Tissue 13 51 64 2.84 (1.91–4.58) 0.041 NM NM NM NM qRT-PCR K-M

Li, 2013 [37] China LSCC 60 Tissue 33 39 72 2.86 (1.15–7.07) 0.023 NM NM NM NM qRT-PCR reported
Li, 2013 [38] China ESCC 60 Tissue 30 70 100 1.91 (1.06–3.99) 0.033 NM NM NM NM qRT-PCR reported

Liu, 2013 [39] China NSCLC 60 Tissue 21 21 42 2.043 (0.91–4.58) 0.048 NM NM NM NM qRT-PCR K-M
Lv, 2013 [40] China ESCC 70 Tissue 49 44 93 1.67 (1.02–2.79) 0.049 NM NM NM NM qRT-PCR K-M

Nakagawa, 2013 [21] Japan NSCLC 50 Tissue 17 60 77 NM NM 1.81 (1.09–3.74) 0,047 NM NM qRT-PCR K-M
Nie, 2013 [41] China NPC 82 Tissue 91 69 160 1.9 (1.13–3.19) 0.012 1.41 (0.95–2.09) 0.47 1.92 (1.11–3.31) 0.018 qRT-PCR K-M

Sorensen, 2013 [42] Denmark Breast Cancer 276 Tissue 79 85 164 NM NM NM NM 1.75 (1.13–2.71) 0.012 Microarray reported
Xu, 2013 [43] China Gastric cancer 75 Tissue 56 27 83 0.47 (0.22–0.99) 0.04 NM NM NM NM qRT-PCR reported
He, 2014 [44] China EC 48 Tissue 62 83 145 3.04 (2.13–4.58) 0.026 NM NM NM NM qRT-PCR K-M

Huang, 2014 [45] China Cervical cancer 55 Tissue 109 109 218 2.86 (1.26–6.49) 0.012 NM NM NM NM qRT-PCR reported
Lee, 2014 [46] Korea Gastric cancer 48 Tissue 28 20 48 NM NM 2.21 (0.53–9.16) 0.141 NM NM qRT-PCR reported
Liu, 2014 [18] China Gastric cancer 48 Tissue 39 39 78 2.7 (1.36–4.34) 0.023 NM NM NM NM qRT-PCR K-M

Okugawa, 2014 [47] Japan Gastric cancer 60 Tissue 77 73 150 1.77 (1.06–2.95) 0.028 NM NM NM NM qRT-PCR reported
Qiu, 2014 [48] China EOC 79 Tissue 32 32 64 1.87 (1.04–5.31) 0.041 2.54 (1.18–5.45) 0.034 NM NM qRT-PCR reported

Svoboda, 2014 [49] Czech
Republic

Colorectal
cancer 54 Tissue 36 37 73 4.46 (1.02–19.79) 0.048 NM NM NM NM qRT-PCR reported

Wu, 2014 [50] China Colon Cancer 72 Tissue 40 80 120 3.92 (1.23–12.50) 0.021 NM NM 3.88 (1.37–10.98) 0.011 qRT-PCR K-M
Yan, 2014 [51] China Bladder Cancer 60 Tissue 90 20 110 4.71 (2.89–8.71) <0.001 NM NM NM NM qRT-PCR reported

Heubach, 2015 [52] Germany UHC 200 Tissue 27 81 108 2.20 (1.23–3.93) 0.008 NM NM NM NM qRT-PCR reported
Kim, 2015 [53] Korea Cervical cancer 60 Tissue 89 22 111 NM NM 5.28 (1.01–27.74) 0,049 NM NM qRT-PCR reported
Liu, 2015 [54] China Gastric cancer 40 Tissue 24 37 61 NM NM 2.6 (1.74–3.89) <0.001 NM NM qRT-PCR K-M
Ma, 2015 [55] China Gastric cancer 60 Tissue 18 53 71 2.10 (1.10–4.03) 0.022 NM NM NM NM qRT-PCR reported

Martinez-Fernandez,
2015 [56] Spain NMIBC 38 Tissue 17 16 33 NM NM NM NM 1.86 (0.58–5.96) 0.296 qRT-PCR K-M

Martinez-Fernandez,
2015 [56] Spain NMIBC 38 Tissue 30 33 63 NM NM 3.78 (2.40–5.96) <0.001 NM NM qRT-PCR K-M

Qiu, 2015 [57] China SOC 96 Tissue 34 34 64 1.90 (1.01–3.56) 0.046 NM NM NM NM qRT-PCR reported
Wu, 2015 [58] China OSCC 60 Tissue 25 25 50 1.91 (1.33–2.74) <0.001 NM NM NM NM qRT-PCR K-M
Wu, 2015 [59] China AML 40 Tissue 52 33 85 3.37 (0.99–8.31) 0.008 4.68 (2.81–7.79) <0.001 NM NM qRT-PCR reported
Wu, 2015 [16] China OSCC 96 Tissue 38 38 76 1.18 (0.68–2.84) 0.03 1.11 (0.78–2.54) 0.044 NM NM qRT-PCR reported

Xing, 2015 [60] China AML 36 Tissue 68 68 136 2.03 (1.16–3.55) 0.007 0.61 (0.37–1.00) 0.034 NM NM qRT-PCR reported
Zhang, 2015 [61] China Gastric cancer 45 Tissue 35 15 50 1.87 (1.46–2.1) 0.028 NM NM NM NM qRT-PCR K-M
Zhao, 2015 [62] China Gastric cancer 65 Tissue 84 84 168 1.47 (1.04–2.06) 0.027 NM NM NM NM qRT-PCR reported

Luczak, 2016 [63] Poland EC 96 Tissue 56 100 156 1.44 (0.81–3.19) 0.03 NM NM NM NM qRT-PCR K-M
Luo, 2016 [64] China Colon cancer 70 Tissue NM NM 80 1.99 (1.4–2.8) <0.001 NM NM NM NM qRT-PCR K-M
Sun, 2016 [65] China Cervical cancer 50 Tissue 49 10 59 1.31 (0.79–2.26) 0.02 NM NM NM NM qRT-PCR K-M
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Table 1. Cont.

Author, Year Country Cancer
Max.

Follow-Up
(Months)

Sample
Case Number OS DFS/RFS MFS/PFS

Assay
Method

Data
Extraction
Method

High
Expression

Low
Expression Total HR (95% CI) p-Value HR (95%CI) p-Value HR (95% CI) p-Value

Yan, 2016 [66] China DLBCL 120 Tissue 25 25 50 3.13 (1.22–8.04) 0.018 NM NM NM NM qRT-PCR reported
Zhang, 2016 [67] China Acute leukemia 40 Tissue 19 77 96 2.41 (1.25–4.62) 0.005 NM NM NM NM qRT-PCR K-M
Chen, 2017 [68] China Gastric cancer 62 Tissue 33 32 65 1.99 (1.06–3.77) 0.033 NM NM NM NM qRT-PCR reported
Hu, 2017 [69] China RCC 50 Tissue 32 11 43 0.72 (0.20–2.55) 0.62 NM NM NM NM qRT-PCR K-M

Katayama, 2017 [70] Japan RCC 100 Tissue 21 43 64 1.82 (1.06–3.88) 0.02 NM NM NM NM qRT-PCR K-M
Luan, 2017 [71] China MM 60 Tissue 30 30 60 1.36 (0.79–2.83) 0.01 NM NM NM NM qRT-PCR K-M

Xu, 2017 [72] China * EC 36 Tissue 20 20 40 2.69 (1.14–6.33) 0.032 NM NM NM NM qRT-PCR K-M
Zhang, 2017 [73] China Thyroid cancer 60 Tissue NM NM 35 2.21 (1.38–3.54) 0.001 NM NM NM NM qRT-PCR reported
Dong, 2018 [74] China Gastric cancer 60 Tissue 22 10 32 2.26 (0.74–6.89) 0.158 NM NM NM NM qRT-PCR K-M

Huang, 2018 [75] China Colorectal
cancer 110 Tissue 26 26 52 2.56 (0.91–7.35) <0.01 NM NM NM NM qRT-PCR reported

Xiao, 2018 [76] China Colorectal
cancer 60 Tissue 52 52 104 1.45 (0.87–2.43) 0.041 NM NM NM NM qRT-PCR K-M

Abbreviations: OS, overall survival; RFS, recurrence-free survival; DFS, disease-free survival; MFS, metastasis-free survival; PFS, progression-free survival; HR, hazard ratio; CI, confidence
interval; qRT-PCR, quantitative reverse transcription polymerase chain reaction; NM: not mentioned; K-M, Kaplan-Meier plot; AML, acute myeloid leukemia; CRC, colorectal cancer; DGC,
diffuse gastric cancer; DLBCL, diffuse large B cell lymphoma; ESCC, esophageal squamous cell carcinoma; EC, endometrial carcinoma; EOC, epithelial ovarian cancer; * EC, esophageal
cancer; GIST, gastrointestinal stromal tumors; HCC, hepatocellular carcinoma; IGC, intestinal gastric cancer; LSCC, laryngeal squamous cell carcinoma; MM, malignant melanoma; NSCLC,
non-small cell lung cancer; NPC, nasopharyngeal carcinoma; NMIBC, non-muscle-invasive bladder cancer; OSCC, oral squamous cell carcinoma; RCC, renal cell carcinoma; SOC, serous
ovarian cancer; and UHC, urothelial carcinoma.
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2.2. Association between High HOTAIR Expression and Overall Survival in Diverse Cancers

A total of 45 studies were included for overall survival (OS). We found a statistically significant
relationship between elevated HOTAIR expression and poor OS (random-effects model: pooled
HR = 2.00; 95% CI: 1.77–2.27; p < 0.001), with marginally moderate heterogeneity (I2 = 50.2%;
Ph < 0.001) (Figure 2a). Subgroup analyses were performed based on the type of cancers, ethnic group,
and data extraction method (Figure 3). When the studies were classified based on major cancer types
(according to NCBI’s medical subject headings (MeSH) [77]), a significant association was found
between HOTAIR overexpression and poorer OS in solid cancers, such as gastrointestinal cancers
(fixed-effects model: pooled HR = 1.96; 95% CI: 1.65–2.35; p < 0.001), liver cancers (fixed-effects model:
pooled HR = 2.84; 95% CI: 1.83–4.40; p < 0.001), head and neck cancers (fixed-effects model: pooled HR
= 1.93; 95% CI: 1.53–2.43; p < 0.001), and urogenital cancers (random-effects model: pooled HR = 2.11;
95% CI: 1.58–2.84; p < 0.001), as well as liquid cancers, including leukemia (fixed-effects model: pooled
HR = 2.32; 95% CI: 1.56–3.44; p < 0.001) and lymphoma (fixed-effects model: pooled HR = 3.13; 95% CI:
1.22–8.04; p < 0.001). Of note, the heterogeneity was reduced significantly in the individual cancer
types (Figure 3a). In the subgroup analysis based on ethnicity, a statistically significant worse OS was
observed for Asians (fixed-effects model: pooled HR = 2.04; 95% CI: 1.81–2.31; p < 0.001). Regarding
the Caucasian subgroup, despite the relatively high HR, the relationship cannot be considered robust
because the p-value is slightly higher that the cutoff value (random-effects model; pooled HR = 1.65;
95% CI: 0.82–3.33; p = 0.077) (Figure 3b). In stratified analysis, according to data extraction method,
HOTAIR was found to have a significant prognostic value irrespectively of the data source. that is, the
HR reported in the articles (random-effects model: pooled HR = 2.05; 95% CI: 1.64–2.57; p < 0.001) or
extracted from the survival curves (fixed-effects model: pooled HR = 2.01; 95% CI: 1.75–2.30; p < 0.001)
(Figure 3c).
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Abbreviations: HR, Hazard ratio; OS, overall survival; RFS, recurrence-free survival; DFS, disease-free
survival; MFS, metastasis-free survival; and PFS, progression-free survival.
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2.3. HOTAIR Overexpression Is Associated with Cancer Recurrence and Progression

To investigate the relationship between HOTAIR expression and cancer recurrence or relapse, the
recurrence-free survival (RFS) and disease-free survival (DFS) studies were combined; collectively
accounting for 14 studies. Increased HOTAIR expression was found to be strongly related to cancer
recurrence (pooled HR = 1.84; 95% CI = 1.28–2.64; p = 0.001). A random-effects model was applied
because of the high heterogeneity (I2 = 83.5%; Ph < 0.001) across studies (Figure 2b).

Furthermore, there are seven studies for combined metastasis-free survival (MFS) and
progression-free survival (PFS). Of importance, high HOTAIR expression was predicted to be associated
significantly with worse MFS/PFS (pooled HR = 2.60; 95% CI: 1.91–3.54; p < 0.001). A fixed-effects
model was used because of the relatively low heterogeneity (I2 = 46.6%; Ph = 0.081) (Figure 2c).

2.4. Publication Bias

Publication bias was detected by Begg’s funnel plot and Egger’s test. There was no obvious
asymmetry in Begg’s funnel plots of OS, RFS/DFS, and MFS/PFS (Figure 4). Additionally, the p-values
of Egger’s tests were all greater than 0.05, indicating no potential publication bias (OS: p = 0.73;
RFS/DFS: p = 0.70; MFS/PFS: p = 0.64).
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2.5. Sensitivity Analysis

Sensitivity analyses did not indicate alterations in the results due to the inclusion of any individual
study (Figure 5), that is, no single study affected the pooled HR or 95% CI.
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2.6. TCGA-Derived Survival Curves

To further the clinical relevance of our work and HOTAIR importance, we explored the possibility
for any association of the HOTAIR expression to overall cancer survival. It was found that HOTAIR
overexpression was significantly associated with worse OS in adrenocortical carcinoma (ACC),
mesothelioma (MESO), and glioblastoma multiforme (GBM) (Figure S1).

3. Discussion

HOTAIR exhibits pro-oncogenic activity since it has been shown to be overexpressed in numerous
cancers and be implicated in several hallmarks of cancer, such as cellular proliferation, inhibition of
apoptosis, genomic instability, angiogenesis, invasion, and metastasis [19,20].

In the current study, an updated, comprehensive meta-analysis on the prognostic value of HOTAIR
in various human cancers was presented. By applying stringent inclusion and exclusion criteria, we
included 53 eligible studies, a relatively large number necessary for a meta-analysis to be considered
robust. Previous meta-analyses on the association of HOTAIR with clinical outcome have included a
rather limited number of studies with inconclusive and inconsistent findings [28,29]. Other related
studies have focused on certain types of cancers, such as head and neck squamous cell carcinoma [22]
or digestive system cancers [55,78,79].

In the present study, we showed that there is a statistically significant relationship between
elevated HOTAIR expression and poor OS. In the subgroup analysis, based on cancer type, HOTAIR
was shown to be a significant predictor for worse prognosis for a variety of cancers, including solid
cancers, such as urological cancers, head and neck neoplasms, cancers of the digestive system, and
several female cancers (e.g., cervical, ovarian, and endometrial cancers), as well as the blood cancers,
lymphoma and leukemia. Moreover, we complemented the findings from meta-analysis and further
strengthened our hypotheses with survival information from other types of cancers, for which there
were not any available eligible studies, retrieved from TCGA. It was found that there is, also, a
strong relationship between HOTAIR overexpression and poor OS in neoplasms of the adrenal cortex,
mesothelial neoplasms, and neuroepithelial tumors.

Taken together, the above findings lead to the suggestion that similar HOTAIR-mediated pathways
might be implicated both in solid and liquid cancers [13]. In particular, in several solid tumors, HOTAIR
has been shown to exert its oncogenic and metastatic potential by mediating a repressive chromatin
structure through the recruitment of histone-modifying or chromatin-remodeling complexes, such as
PRC2 [14,16,31]. For example, HOTAIR can promote pancreatic cancer cell proliferation by suppressing
the expression of miR-663b via remodeling the chromatin structure within the miR-663b promoter [80].
In a recent study, HOTAIR was also found to recruit PRC2 to catalyze H3K27 trimethylation to
transcriptionally repress E-cadherin and promote EMT in gastric cancer [81]. Similarly, high expression
levels of HOTAIR and PRC2 proteins (H3K27 methylase EZH2, SUZ12, and EED) were found to be
positively correlated with lymphomagenesis [82]. In addition, HOTAIR, through miRNA sponging,
contributes to carcinogenesis both in blood [60] and solid tumors [83,84]. However, there is a rather
limited number of studies available on major cancers, such as breast neoplasms and respiratory tract
cancers. Thus, more clinical trials on these cancers would enable us to better assess the relationship
between HOTAIR expression and cancer patients’ survival.

A positive correlation between HOTAIR and CDKN1A (p21) expression levels was also found
(Figure S2), suggesting a possible functional and/or physical association between HOTAIR and CDKN1A
(p21) in cancer pathophysiology. From a clinical perspective, there is an emerging role of CDKNIA (p21),
especially in cases where p53 is mutated like in many different solid tumors. The role of p21 has been
extensively viewed as an indicator of wildtype p53 activity [85]. However, recent evidence suggests
that upregulated p21 can also act as an oncogenic factor in a p53-deficient environment, thereby
driving a subset of atypical cancerous cells to more chemoresistant and aggressive phenotypes [86].
Therefore, we cannot exclude a possible mechanistic association between HOTAIR and p21 towards
the negative regulation of target genes and a potential role in OS. Interestingly, recent studies have
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shown that HOTAIR expression was significantly higher in non-small-cell lung cancer (NSCLC) tissues
compared to the adjacent normal tissues, and HOTAIR was negatively associated with p53 functionality
rather than p53 expression [87]. In addition, HOTAIR, p21, and p53 mRNA expression in doxorubicin-
or γ rays-treated oral squamous cell carcinoma (OSCC) cells was up-regulated, indicating that the
DNA damage response includes HOTAIR upregulation and may be closely connected to p53 and p21
expression and/or functionality [88].

To investigate any possible effect of the genetic background and environment on the overall HRs,
analyses were conducted based on the ethnic background of the participants. HOTAIR was found to
be a powerful negative prediction biomarker for Asians. In the case of Caucasians, there was a link
between HOTAIR overexpression and poor OS, albeit with moderate statistical significance; this is
probably due to the relatively low number of available studies on patients of Caucasian origin. There
were not, also, any available studies for other major ethnic groups, such as Africans or Indians, which
would have further allowed us to estimate the influence of the genetic make-up on the association
between HOTAIR and clinical outcome. The overall effect was similar in the stratified analysis according
to data source, that is, the estimated HR reported in the articles or extrapolated from survival curves.

Therefore, high HOTAIR expression can predict an unfavorable clinical outcome in different types
of cancers and possibly ethnic groups using different extraction methods. Notably, elevated expression
of HOTAIR and prognosis in cancer patients is not particularly affected either by cancer type or even
the patients’ genetic background.

HOTAIR was found to be a poor predictor for both cancer recurrence and progression. The similar
outcomes suggest that there are similar HOTAIR-dependent mechanisms underlying these two
phenomena. In particular, HOTAIR was shown to mediate recurrence and progression in bladder
cancer via the histone methyltransferase EZH2 [56]. Similarly, enhanced HOTAIR expression was
found to be associated both with progression and tumor recurrence in hepatocellular carcinoma by
regulating the Wnt/β-catenin signal transduction pathway [89].

HOTAIR has been demonstrated to promote tumor cell invasion and metastasis by modulating
epithelial-to-mesenchymal transition (EMT) [16,46,90]. Enhanced HOTAIR expression has also been
shown to promote metastasis and invasion through different mechanisms including genome-wide
re-targeting of PRC2 and subsequent epigenetic silencing of multiple anti-metastatic genes [14],
inhibition of the expression of the metastasis suppressor gene E-cadherin by recruiting the histone
methyltransferase of PRC2, EZH2 [16,90], targeting of Notch/Wnt signaling pathway-associated
genes [91], and upregulating chondroitin sulfotransferase CHST15 [92], etc. HOTAIR also promotes
invasion and migration by acting as a ‘miRNA sponge’, through targeting the corresponding miRNAs
in the miR-1/CCND2 [93], miR-148a/SNAIL2 [72], and miR-23b/MAPK1 [94] axes.

Heterogeneity was observed within the forest plots of OS and RFS/DFS, suggesting that HRs
vary across studies. For this reason, the random-effects model was applied, where the overall HR
was estimated based on the weighted average of the HRs of the individual studies. Given that the
overall effect for OS and RFS/DFS was not affected by any single study, according to sensitivity
analyses, we could suggest that, despite heterogeneity, the pooled HR can be considered quite reliable
and representative.

Moreover, potential publication bias was not detected in the present meta-analysis, probably due
to the sufficient representation of eligible studies in this meta-analysis.

4. Materials and Methods

4.1. Search Strategy and Study Eligibility Criteria

This systematic review and meta-analysis was conducted by following strictly the PRISMA
(preferred reporting items for systematic reviews and meta-analyses) guidelines [95].

The bibliographic database PubMed/MEDLINE [96] was manually searched for published scientific
studies on the associations between HOTAIR expression and prognosis in different types of cancers by
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using combinations of the relevant keywords: (“HOTAIR” OR “HOX transcript antisense RNA” or
“HOXC cluster antisense RNA 4” or “HOXC-AS4” OR “HOXC11-AS1”) and (“cancer” or “carcinoma” or
“tumor” or “neoplasm” or “malignancy”) and (“prognosis” or “survival” or “outcome” or “mortality”
or “death”). The studies had to fulfill the following inclusion criteria so as to be considered eligible:
(1) studies of human clinical trials, (2) studies including more than 30 patients in total, (3) the correlation
between HOTAIR expression and cancer patients’ survival was estimated, (4) availability of HR and 95%
confidence interval (CI) or survival curves or sufficient data to calculate HR and 95% CI, (5) quantitative
measurement (e.g., qPCR) of HOTAIR expression in cancers was included, and (6) studies published
in English. Accordingly, the studies were excluded on the basis of the following exclusion criteria:
(1) laboratory studies on animal models or cell lines; (2) reviews, meta-analyses, editorials, case reports,
commentaries, unpublished data; (3) lack of sufficient data to estimate HR and 95% CI; and (4) samples
other than tissue (e.g., blood, serum).

4.2. Study Selection, Data Extraction, and Quality Assessment

All potential studies were independently retrieved from the literature by two of the authors
(H.I.T. and D.O.). Quality assessment of the studies was performed by H.I.T. and D.O. independently.
Any disagreement was resolved by a third investigator (A.P.). Relevant data were extracted from
the included studies and recorded into an ad hoc Excel worksheet. In the case that the HR was not
reported in the corresponding article, the data were extracted from the graphical survival plots (i.e.,
Kaplan-Meier curves) by using the Engauge Digitizer v10.11 software, as previously described [97].

4.3. Statistical Analyses

All statistical analyses were performed with STATA statistical software version 13.0 (Stata
Corporation, College Station, TX, USA) and Microsoft Excel. The heterogeneity among the included
studies was estimated by Higgins I-squared (I2) statistic as follows: I2 < 25%; no heterogeneity; 25% < I2

< 50%: low heterogeneity; 50% < I2 < 75%: moderate heterogeneity; I2 >75% high heterogeneity [98,99].
In the case of statistically significant heterogeneity (I2 > 50% and Ph < 0.05), a random-effect model
was applied, otherwise a fixed-effect model [100,101] was used. Sensitivity analysis was performed by
consecutive omission of individual studies to verify the consistency of outcomes. Potential publication
bias was detected by Begg’s funnel plot [102] and Egger’s test [103]; a p-value less than 0.05 was
indicative of statistically significant publication bias.

4.4. Bioinformatics Analysis

4.4.1. Survival Analysis

Overall survival curves for different types of cancers were retrieved through the online tool GEPIA
(Gene Expression Profiling Interactive Analysis) [104], which provides survival analysis based on
datasets obtained from The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov).

4.4.2. Correlation Analysis

Correlation analysis between gene expression levels was performed through the web-based tool
GEPIA [104] which analyzes gene expression based on RNA sequencing (RNA-Seq) data from TCGA.

5. Conclusions

In this study, we have performed a meta-analysis complemented with bioinformatics analyses
towards investigating the prognostic potential of the prominent lncRNA HOTAIR in cancer. On the
basis of our findings, HOTAIR represents a potential powerful predictor of prognosis of overall
survival, cancer recurrence, progression, and metastasis in multiple and diverse types of cancers.
Therefore, HOTAIR could be applied in the clinical setting as a universal biomarker for monitoring
cancer patient survival.

https://tcga-data.nci.nih.gov
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Figure S1: Kaplan-Meier plots depicting the prognostic potential of HOTAIR for OS in various types of cancers.
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dashed lines, Figure S2: Correlation between HOTAIR and CDKN1A expression.
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