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Detecting and treating cerebrovascular diseases are essential for the survival of patients
with chronic kidney disease (CKD). Machine learning algorithms can be used to
effectively predict stroke risk in patients with end-stage renal disease (ESRD). An
imbalance in the amount of collected data associated with different risk levels can
influence the classification task. Therefore, we propose the use of a kernelized k-local
hyperplane nearest-neighbor model (KHKNN) for the effective prediction of stroke risk
in patients with ESRD. We compared our proposed method with other conventional
machine learning methods, which revealed that our method could effectively perform
the task of classifying stroke risk.
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INTRODUCTION

Chronic kidney disease (CKD) has become a prominent disease affecting global health. According
to existing research, the global incidence of CKD is approximately 8–16% and has been
increasing yearly (Jha et al., 2013). Cerebrovascular diseases, such as stroke, represent major CKD
complications that lead to neurological dysfunction and death, with negative impacts on prognosis
in patients with CKD. Cerebral apoplexy, which is a primary cause of death among patients
with CKD, refers to a series of adverse events, including cerebral ischemia, hypoxia, and cerebral
dysfunction, caused by acute cerebral vascular rupture or acute cerebrovascular embolism (Kelly
and Rothwell, 2020). A cohort study showed that CKD progression and a decline in the glomerular
filtration rate increased the stroke risk among patients with CKD by nearly 40%, accompanied
by a significant increase in the mortality rate (Toyoda and Ninomiya, 2014). Therefore, exploring
the risk factors associated with stroke among the CKD population and identifying effective early
interventions are necessary steps to reducing morbidity and mortality due to stroke.

Hypertension, diabetes, and dyslipidemia are traditional risk factors that contribute to the
development of cerebrovascular diseases in patients with CKD. In addition, recent studies have
revealed non-traditional risk factors, such as inflammation, oxidative stress, and CKD-mineral
bone disease (CKD-MBD), that impact the occurrence and development of cerebrovascular
diseases among patients with CKD. These non-traditional risk factors accelerate a series of

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 773208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.773208
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.773208
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.773208&domain=pdf&date_stamp=2021-10-25
https://www.frontiersin.org/articles/10.3389/fnins.2021.773208/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-773208 October 19, 2021 Time: 18:40 # 2

Liu et al. Prediction of Cerebrovascular Disease

pathological processes, such as cerebrovascular endothelial injury
and sclerosis, in patients with CKD, leading to cerebrovascular
calcification, further changing hemodynamics, and ultimately
causing cerebrovascular events (Allen and Bayraktutan, 2009).

Our previous work identified abnormal FGF23 and
Klotho levels, inflammatory status, and malnutrition were
the unconventional risk factors for vascular calcification and
CKD-MBD in patients with end-stage renal failure (Maraj et al.,
2018). Using machine learning methods to analyze the risk
factors of CKD-MBD in patients with end-stage renal failure,
we have found that elevated serum FGF23 levels in patients
with ESRD is an independent risk factor for abdominal aortic
calcification (Liu et al., 2021). Recent studies have also identified
FGF23 as an independent risk factor for cerebrovascular diseases
in both CKD and non-CKD populations (Wright et al., 2016).
The CHADS2 (congestive heart failure, hypertension, age = 75
years, diabetes mellitus, stroke) and CHA2DS2-VASc (congestive
heart failure, hypertension, age ≥ 75 years, diabetes mellitus,
stroke or transient ischemic attack vascular disease, age 65 to 74
years, sex category) scores are currently well-recognized methods
for predicting the risk of stroke in patients with CKD (Hsu
et al., 2020). Therefore, in this study, based on previous research
findings, we used machine learning algorithms to develop models
that explore the scientificity and veracity of both traditional and
non-traditional risk factors combined with the CHADS2 stroke
scoring tool and an abdominal aortic calcification scoring
method for the prediction of stroke risk in patients with ESRD,
which could help clinicians identify cerebrovascular disease and
provide early interventions by assessing various risk factors,
potentially delaying the occurrence and development of stroke,
reducing morbidity and mortality, and improving prognosis
among patients with ESRD.

MATERIALS AND METHODS

Assessment of the CHADS2 and
CHA2DS2-VASc Scores
We calculated the CHADS2 score based on the scoring system,
as follows (de Bie et al., 2017): 1 point each was assigned
for age ≥ 75 years, the presence of hypertension, diabetes
mellitus, and congestive heart failure, and 2 points each were
assigned for transient ischemic attack or a history of stroke.
In addition, we calculated the CHA2DS2-VASc score based on
the scoring system, as follows: 1 point each was assigned for
congestive heart failure, hypertension, age between 65 and 74
years, diabetes mellitus, female sex, and vascular disease, whereas
2 points each were assigned for a history of stroke and age ≥ 75
years. CKD was defined as estimated glomerular filtration rate
(eGFR) < 60 mL/min/m2 and classified as stages 3, 4, or 5
based on the eGFR level (30–59, 15–29, or <15 mL/min/1.73
m2, respectively) combined with kidney damage lasting for
longer than 3 months. Patients were categorized into two groups
according to their CHADS2 and CHA2DS2-VASc risk scores: (1)
low-risk group (0–1 score) for CHADS2 and CHA2DS2-VASc
scores and (2) high-risk group (≥2 scores) for CHADS2 and
CHA2DS2-VASc scores.

Calculation of the Nutritional Indexes
The Geriatric Nutrition Risk Index (GNRI) = [14.89 × serum
albumin (g/dl)] + [41.7 × (actual body weight/ideal body
weight)] (Yamada et al., 2020). Serum levels of intact FGF23,
klotho, fetuin-A, and interleukin-6 were determined using
two-site enzyme-linked immunosorbent assays (Elabscience
Biotech, Wuhan, China).

Abdominal Aortic Calcification
Integration Method: Abdominal Aortic
Calcification Score
All patients underwent lateral lumbar X-ray examinations within
1 week of biochemical blood examinations to assess abdominal
aortic calcification corresponding to L1 to L4 (Asher et al.,
2021). Each patient was scored based on the length of the
calcified plaques identified on the anterior and posterior walls
of the abdominal aorta, with each segment scored between 0
and 3 points, as follows: 0 points for no calcification; 1 point
for calcification less than one-third of the arterial wall length;
2 points for calcification between one-third and two-thirds of
the artery wall length; and 3 points if calcification covers more
than two-thirds of the arterial wall length. Each lumbar segment
is scored separately for both the posterior and anterior walls,
resulting in a total score of 0–24 points. Table 1 shows the
demographic and clinical details of our data set.

The k-Local Hyperplane Distance
Nearest-Neighbor Model
Vincent and Bengio developed an improved version of the
k-nearest-neighbor algorithm (KNN), called the k-local
hyperplane (LH) nearest-neighbor algorithm (HKNN) (Vincent
and Bengio, 2002). The purpose of HKNN is to estimate the
distance from the test sample in each class to its corresponding
LH, which is built using the nearest k samples of the test sample.
Suppose there are C classes; HKNN will obtain the predicted
results of the test sample by calculating the minimum distance
from C LHs. For the c-th class, the c-th LH is based on the nearest
k neighbors of x in the training set, where x belongs to the c-th
class. The c-th hyperplane is expressed as follows:

LHc
k =

{
pc|pc = Nc

+

∑k

i=1
αciV

c
i , α

c
i ∈ Rk, i = 1, ..., k

}
(1)
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=

1
k
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(3)
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TABLE 1 | Data set information.

No. Feature Value r*

1 Sex (male/female) 32/27 −0.0455

2 Age (years) 55.83 ± 15.60 0.4010

3 Smoking (yes/no) 1/58 −0.0847

4 BMI (kg/m2) 23.56 ± 3.12 0.1639

5 DM (yes/no) 24/35 0.4847

6 CI (yes/no) 3/56 0.0025

7 CHD (yes/no) 5/54 0.0433

8 Systolic blood pressure (mmHg) 155.69 ± 23.63 −0.1150

9 Diastolic blood pressure (mmHg) 88.11 ± 13.71 −0.2043

10 Phosphate binder (yes/no) 36/23 −0.2141

11 Hemoglobin (g/L) 85.38 ± 18.12 −0.2584

12 C-reactive protein (mg/L) 11.74 ± 35.61 0.3016

13 Serum creatinine (µmol/L) 785.09± 368.62 −0.4252

14 Serum glucose (mmol/L) 5.48 ± 2.28 0.2608

15 Serum calcium (mmol/L) 2.08 ± 0.24 0.0520

16 Serum phosphorus (mmol/L) 1.81 ± 0.38 −0.0862

17 Total glyceride (mmol/L) 1.69 ± 1.08 −0.0542

18 Total cholesterol (mmol/L) 4.53 ± 1.42 −0.0466

19 Low density lipoprotein-C (mmol/L) 2.45 ± 0.96 −0.0252

20 High density lipoprotein-C (mmol/L) 0.97 ± 0.55 0.0866

21 HbA1c (%) 5.82 ± 1.03 0.2151

22 Serum albumin (g/L) 34.31 ± 6.61 −0.1308

23 25-OH Vitamin D3 (ng/ml) 7.86 ± 4.55 0.3850

24 iPTH (pg/ml) 274.50± 306.31 −0.0225

25 GNRI 96.06 ± 12.76 −0.0078

26 FGF23 (pg/ml) 32.21 ± 53.02 −0.0966

27 Klotho (ng/ml) 2.38 ± 2.33 0.0443

28 Interleukin-6 (pg/ml) 25.37 ± 53.69 0.2634

29 Fetuin-A (pg/ml) 3.0320e+05
± 2.0606e+05

−0.0234

30 AACS 1.95 ± 1.55 0.2113

31 CHADS2 score 1.93 ± 1.11 0.4247

32 Group (low-risk group/high-risk group) 25/34 0.4619

33 CHA2DS2-VASc score 2.79 ± 1.50 0.5097

*Denotes each feature correlated with vascular calcification level using Pearson
correlation coefficient (r).
BMI, body mass index; DM, diabetes mellitus; CI, cerebral ischemia; CHD,
coronary heart disease; HbA1c, glycated hemoglobin; iPTH, intact parathyroid
hormone; GNRI, Geriatric Nutritional Risk Index; FGF23, fibroblast growth factor
23; AACS, Abdominal Aortic Calcification Score, CHADS2, congestive heart
failure, hypertension, age = 75 years, diabetes mellitus, stroke; CHA2DS2-VASc,
congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke or
transient ischemic attack vascular disease, age 65–74 years, sex category.
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To further improve the performance of the model, we applied
feature mapping and the kernel trick to HKNN to obtain a
kernelized HKNN model (KNKNN). Let x map to f by φ : χ→ F
and set x = x− Nc. Eq. 2 can then be rewritten, as follows:

(
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We obtained the differential of Eq. 5 as follows:
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whereK (Vc,Vc) ∈ Rk=kis a Gram matrix calculated by the radial
basis function (RBF), and K (Vc, x) ∈ Rk=1 is a vector. The RBF
is defined as:

K
(
xi, xj

)
= exp

(
−γ ‖ xi − xj ‖2) (7)

where γ is the Gaussian kernel bandwidth.
To avoid overfitting of the model, KHKNN employed two

strategies: (1) For test sample, KHKNN separately constructs a
local hyperplane for each category by linear representation of
neighborhood samples. It can alleviate the parameter (number)
sensitivity of neighbors. (2) When constructing the hyperplane,
we added the regular term (L2) of the coefficient. The schematic
diagram of KNKNN is shown in Figure 1.

RESULTS

Measurements
In this study, accuracy (ACC), sensitivity (SN), specificity (SP),
positive predictive value (PE), negative predictive value (NPV), a
weighted average of the PE and sensitivity (Fscore), and Matthews
correlation coefficient (MCC) were calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
(8a)

SN =
TP

TP + FN
(8b)

Spec =
TN

TN + FP
(8c)

PE =
TP

TP + FP
(8d)

Class 1 Class 2

Local hyperplane 1 Local hyperplane 2

Test sample

Training sample
Training sample

Distance 1

Distance 2

FIGURE 1 | The schematic diagram of KNKNN.
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NPV =
TN

TN + FN
(8e)

Fscore = 2×
SN × PE
SN + PE

(8f)

MCC =
TP × TN − FP × FN

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(8g)
where TP, TN, FN, and FP are the number of true positive, true
negative, false negative, and false positive results, respectively.
The high-risk patients are positive samples, whereas the low-risk
patients are negative samples.

The Optimal Parameters
In our model, three parameters (k, γ, and λ) must be selected. To
make the model robust, we set λ as 1. The optimal parameters of k
and γ were selected using a grid search. The value of k ranges from
2 to 8 (maximum number of negative samples), with a step of 1.
The value of γ ranges from 2−5 to 25 with a step of 21. The results
are shown in Figure 2, which shows the predictive performance
of the model using different parameters. When k and γare 4 and
2−3, respectively, the best MCC (0.5393) value was obtained.

Comparison of Performance Between
Our Method and Other Existing Methods
We compared the performance of several traditional classifiers
with our method using the obtained dataset. The results are
shown in Table 2. The compared classifiers included artificial
neural network with backpropagation (ANN-BP), support vector
machines (SVM), Takagi-Sugeno-Kang fuzzy system (TSK-FS),
KNN, HKNN, and KHKNN. For small samples, KNN (ACC:
86.67%), HKNN (ACC: 85.00%), and TSK-FS (ACC: 78.33%)
achieved good results. Our method (KHKNN) achieved the best
MCC (0.5393) and ACC (89.67%) on small dataset. KHKNN
was found to have an SN of 94.00%, with Spec reaching 60.00%.
Our method achieved a relatively balanced performance for the
recognition of both positive and negative samples.

FIGURE 2 | The predictive performance of the model using different
parameters.

DISCUSSION

Stroke is one of the most serious complications among
patients with CKD, leading to brain dysfunction and even
death. Over the past 10 years, scholars have conducted a
large number of mechanistic studies and epidemiological
investigations exploring the kidney–brain interaction. The
results of these studies have indicated that the kidney and
brain have similar anatomical and functional characteristics.
For example, both organs feature an arterial system that
automatically adjusts perfusion pressure to ensure a continuous
and relatively stable blood flow. In patients with CKD,
cerebrovascular sclerosis occurs due to calcifications that
form in the arterial system, disrupting the autoregulation
function and allowing cerebrovascular events to occur
(Lau et al., 2017).

The risk of stroke in patients with CKD is much higher
than that in patients without CKD (Chen et al., 2012), and
the stroke risk increases further as renal functional defects
progress to ESRD. In recent years, in addition to traditional
risk factors, such as hypertension, diabetes, and dyslipidemia,
the influence of non-traditional risk factors on the occurrence
of cerebrovascular calcification in patients with CKD has gained
increasing attention, including inflammation, malnutrition, and
the FGF23/klotho axis. The results of previous studies performed
at our center have indicated that abnormal FGF23, klotho,
and fetuin-A levels and malnutrition represent risk factors for
abdominal aortic calcification in patients with ESRD (Maraj
et al., 2018). FGF23 has been to play an important role in
phosphate regulation. Klotho is the receptor protein for FGF23,
which participates in regulating bone, calcium, and phosphorus
metabolism; protecting the integrity of blood vessels; and
inhibiting vascular calcification through the formation of FGF23-
klotho complexes. The FGF23/klotho axis is a key participant
in CKD-MBD and is closely related to vascular calcification
and cerebrovascular diseases (Moldovan et al., 2014). Relevant
studies have shown that an elevated FGF23 level is a risk factor
for ischemia and hemorrhagic stroke in patients with CKD
(Wright et al., 2014).

TABLE 2 | Comparison of performance between our method and other existing
methods using the PDB1075 data set (Jackknife test evaluation).

Methods MCC ACC (%) SN (%) Spec (%) PE (%) NPV (%) Fscore

ANN-BP 0.3521 77.58 82.18 60.00 92.32 40.00 0.8541

SVM NaN 86.52 100 0 86.52 NaN 0.9272

TSK-FS 0.3803 78.33 82.91 60.00 92.00 43.33 0.8612

KNN 0.3697 86.67 94.18 40.00 90.73 50.00 0.9237

HKNN 0.4865 85.00 90.55 50.00 91.92 66.67 0.9094

KHKNN 0.5393 89.67 94.00 60.00 94.52 63.33 0.9407

MCC, Matthews correlation coefficient; ACC, accuracy; SN, sensitivity; Spec,
specificity; PE, positive predictive value; NPV, negative predictive value; Fscore,
weighted average of the PE and sensitivity; ANN-BP, artificial neural network
with backpropagation; SVM, support vector machines; TSK-FS, Takagi-Sugeno-
Kang fuzzy system; KNN, k-nearest-neighbor; HKNN, k-local hyperplane distance
nearest-neighbor algorithm; KHKNN, kernelized HKNN; NaN, not a number. The
best results in each column are in bold faces.
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The CHADS2 and CHA2DS2-VASc scores are considered to
be effective evaluation tools for predicting the risk of ischemic
stroke in patients with CKD. Among patients with a high
risk of ischemic cerebrovascular accidents, the administration
of secondary prevention agents, such as anticoagulation and
antithrombosis factors, when indicated by the cerebral ischemia
score warning system, has been shown to greatly reduce the
incidence of stroke and improve prognosis (Toyoda et al., 2014).
The results of this study revealed a correlation between the
CHADS2 and CHA2DS2-VASc scores in patients with ESRD
and vascular calcification, which indirectly suggests the existence
of an important relationship between vascular calcification and
ischemic stroke. Moreover, when we combined the ischemic
stroke scoring tool with traditional stroke risk factors, such as
vascular calcification, to predict the risk of CKD stroke, the
results were more reasonable, with a stronger scientific basis, than
the use of the stroke scoring tool alone to predict risk.

The sample size is very small, so a simple machine learning
model is preferred to solve the classification problem. Among
them, KNN and SVM are suitable methods. The KNN algorithm
is very sensitive to the number of neighboring samples. In the
original feature space, the model cannot achieve satisfactory
results of prediction. Therefore, we proposed KHKNN on the
basis of KNN and HKNN to solve the above two problems.
In the results section, KHKNN has obtained good prediction
results. KHKNN separately constructs a local hyperplane
for each category of test sample. The prediction result is
determined by evaluating the distance (minimum) from the
test sample to the hyperplane of each category. Therefore,
it can alleviate the parameter sensitivity of KNN and avoid
overfitting. The prediction result is determined by evaluating
the distance (minimum) from the test sample to the hyperplane
of each category.

In our study, KHKNN was employed to predict the risk of
cerebrovascular disease among patients with ESRD. KHKNN
estimates the distance from the test sample in each class to its
corresponding LH in a high-dimensional feature space. Unlike
KNN, KHKNN is not as sensitive to the parameter k, and
its prediction performance is better than that of the ANN-BP
and SVM models for small data sets. Compared with other
models (ANN-BP, SVM, TSK-FS, KNN, and HKNN), our model
achieved the best MCC (0.5393) and ACC (89.67%) values,
showing that our method has good robustness and may be useful
for determining clinical risk in the future.

CONCLUSION

We proposed a KHKNN method to filter noise samples, improve
the generalization ability of the model, and obtain good results.
Although our method achieves a relatively balanced performance
for the recognition of positive and negative samples, the following
disadvantages must be acknowledged. (1) The sample size must
be further increased to minimize prediction bias. (2) No detailed
analysis was performed to examine the contribution of various
patient factors. (3) Although the kernel function was used to
map the original space to further improve the performance, the

interpretability of the model was affected. Fuzzy systems will be
introduced in the future to improve interpretability. At present,
artificial intelligence technology has been used for large-scale
medical information processing (Jian et al., 2019; Guo et al., 2021;
Jiang et al., 2021a,b; Zhang et al., 2021a,b) and bioinformatics
(Qian et al., 2021; Zou et al., 2021) on a large scale, with good
performance. (4) The k-dimensional tree is employed to speed
up the search speed of the nearest neighbor samples. In addition,
parallel computing technology also can increase the speed of
searching. In the future, we will use artificial intelligence methods
to solve additional clinical problems.
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