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Abstract

The importance of gene regulation in animal evolution is a matter of long-standing interest, but measuring the impact of
selection on gene expression has proven a challenge. Here, we propose a selection index of gene expression as a
straightforward method for assessing the mode and strength of selection operating on gene expression levels. The index is
based on the widely used McDonald-Kreitman test and requires the estimation of four quantities: the within-species and
between-species expression variances as well as the sequence heterozygosity and divergence of neutrally evolving
sequences. We apply the method to data from human and chimpanzee lymphoblastoid cell lines and show that gene
expression is in general under strong stabilizing selection. We also demonstrate how the same framework can be used to
estimate the proportion of adaptive gene expression evolution.
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Introduction

It has long been suggested that the phenotypic divergence

between species is often due to alterations in gene expression [1–

3]. It is therefore of great interest to investigate the selection

pressures that shape gene expression evolution. If the regulatory

regions are already known, a number of sequence analysis tools

can be used to test for positive and negative selection acting on the

relevant sequences [4–7]; however, such information is scarce.

While expression quantitative trait loci (eQTLs) have been used to

detect very recent cases of positive selection [8], the use of

sequence analysis methods on a larger scale generally relies on

assumptions regarding which sequences are involved in regulation

[9–13] and will therefore exclude currently unidentified regulators,

such as many distant-acting elements, in spite of their potentially

substantial contribution to gene regulation [14]. Furthermore, the

studied sequences may experience selection due to other reasons,

which could mistakenly be attributed to gene regulation.

A more desirable solution would therefore be to infer selection

directly from gene expression data without requiring knowledge of

regulatory sequences. Much effort has been made to investigate

the evolutionary dynamics of gene expression and identify

expression shifts that may be due to adaptive evolution [15–19],

but the interpretation of these results is not straightforward as our

limited knowledge of gene expression evolution makes it difficult to

establish a suitable null model against which observations can be

evaluated. To overcome this issue, Fraser et al. [20] used the

prediction that eQTLs affecting neutrally evolving genes would

not tend to change expression in a specific direction to search for

positively selected genes in mice, however the method requires the

investigated lineages to be able to produce hybrid offspring and is

therefore unsuitable for most comparisons between species. A

second option has been to estimate the magnitude of gene

expression divergence under neutral evolution based on the

mutational variance [21] or the mutational heritability [22], but to

directly estimate these quantities from mutation accumulation

experiments is only feasible for species with short generation times

that can be reared under laboratory conditions [23,24]. For other

species, such as humans and chimpanzees, it has been suggested

that expressed pseudogenes could serve as a neutral standard [25],

but it is not clear whether they fulfil the requirement of being non-

functional [26] and they are not common.

The alternative to estimating the rate of neutral gene expression

evolution experimentally is to develop a null hypothesis based on

theoretical models. Both neutral models, i.e., where gene

expression divergence increases linearly with time [27] and models

where the increase in expression divergence is curbed by stabilising

selection [28] have been proposed. While these models may

appear mutually exclusive, it may rather be that they represent

different evolutionary phases. Studies of expression divergence in

seven Drosophila species indicate that gene expression divergence

increases rapidly following speciation, but that the rate of the

increase soon tapers off [28]. Thus gene expression evolution in

very closely related species may be best approximated by a neutral

model [27], whereas models that rely on expression optima [28]

may be more appropriate for more diverged species.

Here we present a selection index of gene expression, which can

be used to evaluate the selective forces that shape gene expression
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in a pair of species. The method is an extension of the McDonald-

Kreitman framework, which is frequently used to estimate

selection acting on DNA sequences [29–31]. When the selection

index is close to zero, it indicates that gene expression evolves

neutrally, while negative values indicate stabilising selection and

positive values indicate directional selection. In the latter case, it is

furthermore possible to estimate the proportion of gene expression

evolution that is adaptive.

Materials and Methods

In this paper, we describe a gene expression selection index,

based on the McDonald-Kreitman (MK) test, which was

developed for sequence data. In the MK test the numbers of

synonymous (Ps) and non-synonymous (Pn) polymorphisms are

compared to the numbers of synonymous (Ds) and non-

synonymous (Dn) substitutions. Under a neutral model in which

mutations at synonymous sites are neutral and mutations at non-

synonymous sites are neutral or strongly deleterious, Dn/Ds = Pn/

Ps. In contrast if some non-synonymous mutations are advanta-

geous Dn/Ds.Pn/Ps, and if some are slightly deleterious Dn/

Ds,Pn/Ps [29].

We can formulate a selection index for gene expression

divergence as follows: Let us assume that mutations that affect

gene expression are either neutral or strongly deleterious, and that

a proportion, f, of mutations is neutral. Let us also assume that the

evolution of gene expression over a short time follows that of a

random walk, where expression is measured as the logarithm of

the abundance. If X(t) is the expression level at time t, then

X tð Þ{X 0ð Þð Þ2~mfts2 ð1Þ

where m is the mutation rate and s2 is the increase of gene

expression per neutral mutation [32]. Hence the squared

difference in expression between two individuals, be they of the

same or different species is

E tð Þ~ X1 tð Þ{X2 tð Þð Þ2~2mfts2 ð2Þ

The squared difference is expected to increase linearly with

time, i.e. the variance in gene expression between individuals is

expected to increase linearly with time [32,33]. This is expected to

be true over the shorter time scale, but there will eventually be

limits as to how high or low expression can evolve [28].

Let us split the divergence between the two individuals into

three time periods: tb, the time between the most recent common

ancestors in each species for the locus in question; twi, the expected

time to coalescence for two randomly chosen lineages in species i,

and tci, the difference between twi and the time at which all lineages

coalesce (Figure 1). For a recombining sequence each of these

times will be the average across sites within the locus in question. If

mutations are strongly deleterious or neutral, then the sequence

divergence between individuals is linearly related to the time that

separates them

S tð Þ~2mt ð3Þ

so the divergence between species, Sb, is expected to equal S(tb) and

the divergence between individuals of the same species, Sw, is

expected to be S(tw).

We can make a similar argument for expression divergence:

The expected expression divergence between species, Eb, is

therefore expected to be equal to E(tb) and the average expression

divergence between pairs of individuals within a species, Ew, is

expected to be E(tw). Let us also define Ec = E(tc). Hence we expect

under strict neutrality to have Eb/Ew = Sb/Sw. This may be

rearranged analogously to the MK test above: Eb/Sb = Ew/Sw, to

give the selection index, which is similar to the fixation index that

has been proposed for nucleotide sequences [34–36]:

SI~log2 EbSw= EwSbð Þð Þ ð4Þ

We need to estimate the variance in expression between species

(Eb) and between individuals within a species (Ew). This can be

accomplished by using a nested analysis of variance (ANOVA), in

which the variance between individuals can be divided into error

variance, the variance between individuals within a species and the

variance between species [18]. The variance between individuals

within a species, Vw, is an estimate of Ew, and the variance between

species, Vb, is an estimate of Eb+Ec. Similarly we can consider the

average divergence between individuals within a species, the

nucleotide diversity, p, to be an estimate of Sw, and the average

divergence between individuals of different species, d, to be an

estimate of Sb+Sc+Sw. If we assume that tc is small relative to tb, we

can ignore Ec and Sc and estimate the selection index as

SI~log2 Vb�pp= �VVw d{�ppð Þð Þð Þ ð5Þ

where the averages are across species. If expression or sequence

data is not available for both species, then we suggest that we

assume that the within-species expression variance and nucleotide

diversity in the species with missing data are the same as in the

species for which we have data. Our method assumes that neutral

sequence divergence at the locus whose expression is being

analysed is an appropriate neutral standard and that tb and tw are

the same for the expression and sequence data. This is likely to be

the case for cis-acting mutations, which appear to comprise the

bulk of gene regulatory mutations [37,38]. To estimate SI for

groups of genes we suggest using the average values of Vb, Vw, d

Figure 1. Tree illustrating the time between the most recent
common ancestors of each species (tb), the expected time to
coalescence for two randomly chosen lineages within a given
species (tw) and the difference between tw and the time at
which all lineages coalesce (tc).
doi:10.1371/journal.pone.0034935.g001
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and �pp across loci; in doing this we are effectively averaging tb and

tw across loci, so even if some proportion of regulatory mutations

are trans-acting, this is unlikely to affect our estimates substantially.

When the selection index is positive, i.e., when we have evidence

of positive selection, we can also estimate the proportion of

adaptive gene expression change, ae: If we assume that some

expression mutations are advantageous then we expect Eb/

Sb.Ew/Sw because advantageous mutations contribute more to

divergence than they do to polymorphism. If we assume that the

advantageous mutations are rare, but strongly selected, then we

can ignore their contribution to polymorphism, as an advanta-

geous mutation contributes at most twice the nucleotide diversity

of a neutral mutation [39]. We then have

Ew~2mftws2 ð6Þ

and

Eb~(2mftbs2)=(1{ae) ð7Þ

where ae is the proportion of the expression divergence driven by

positive selection. Hence

ae~1{EwSb=(EbSw) ð8Þ

or, following the same reasoning as for the selection index:

ae~1{ �VVw d{�ppð Þ= Vb�ppð Þ ð9Þ

This is analogous to the method for estimating the proportion of

substitutions driven by positive selection [30].

Data analysis
To estimate Vw and Vb from experimental data, we used a

previously published expression dataset from human and chim-

panzee lymphoblastoid cell lines, measured on the human-specific

Affymetrix U133A microarray [40]. We masked the data by

removing all probes that did not have a unique perfect match in

the chimpanzee genome. Probe sets with less than four remaining

probes were discarded, as smaller probe sets tend to give unreliable

results [41]. Expression values were calculated with the robust

microchip average (RMA) method as implemented in Bioconduc-

tor [42–44]. For genes with multiple probe sets on the array, we

chose a single probe set at random to represent that gene.

The dataset from Choy et al. [40] included cell lines derived

from 5 chimpanzees and 46 humans, of which 13 were of

European descent (CEU), 19 of Han Chinese or Japanese descent

(CHB/JPT) and 14 of Yoruba descent (YRI). For each human

sample, two replicates were available, whereas three or four

replicates were available for the chimpanzee samples. To achieve a

balanced experimental design, five individuals were randomly

chosen from each of the human populations, and two replicates

were randomly chosen for each chimpanzee individual, so that for

each analysis we had five humans and five chimpanzees with two

replicates each. The between-species, within-species and error

variance components were then estimated by nested ANOVA of

the log-transformed expression values, with the modification that

we calculated separate estimates for the human and chimpanzee

within-species and error variances.

To verify that our variance estimates were unbiased even in

cases with unequal variances, we used the same method to analyse

simulated expression datasets that were based on the model

yijk~mizIijzeijk ð10Þ

where yijk is the log2 expression value for species i, individual j and

replicate k, mi is the true mean, Iij represents individual variation

and eijk is the measurement error. The values for mI, Iij and eijk were

drawn from normal distributions with variance corresponding to

the between-species, within-species and error variances displayed

in Table 1.

Estimates of p and d for each gene were obtained as follows: We

extracted the intron coordinates of all human autosomal protein-

coding genes in Ensembl release 56 [45]. To further ensure that

we were working with purely neutral sequences, we removed any

sequences that were within 50 bp of a splice junction or that

overlapped with exons from other genes. We also removed

conserved elements identified by the phastCons program [46] by

excluding all sequences that featured in the ‘Primate El’ table of

the Conservation track for the human genome release hg18 in the

UCSC Genome Browser [47]. The SNP frequency spectra for

these neutral sequences in the CEU, CHB/JPT and YRI

populations were taken from low coverage pilot data from the

1000 Genomes Project [48]. To correct for the limited power to

detect very rare variants, we divided the number of observed SNPs

at different frequencies by the power to detect SNPs at that

frequency (estimates of detection power were kindly provided by

Adam Auton). To estimate the degree of sequence divergence, we

downloaded blastz alignments [49] of the human and chimpanzee

genomes (releases hg18 and panTro2, respectively) from the

UCSC genome browser [47,50,51]. We excluded sites where the

human sequence was unknown (‘N’) or where the chimpanzee

sequence had a quality score of 40 or below, as judged from the

Quality Scores track in the UCSC Genome Browser.

In equations 5 and 9 we need to subtract the average nucleotide

diversity, across our two species, from d. Unfortunately we do not

have data from chimpanzee and so we assumed that the nucleotide

diversity for each gene was the same in humans and chimpanzees.

The true chimpanzee value is likely to be larger [52,53], which

means that our estimate of d is slightly inflated and will cause our

test to be somewhat conservative. To test whether this had a major

influence on our results, we repeated the analysis, assuming that

the chimpanzee average heterozygosity was 10-fold larger than the

one found in humans.

To gauge the accuracy of selection index estimates for

individual genes, we generated datasets of 5000 genes where all

Table 1. Nested ANOVA estimates of variance components
based on datasets with unequal variances.

Vb Vwh Veh Vwc Vec

Average 0.061 (0.06) 0.020 (0.02) 0.063 (0.06) 0.051 (0.05) 0.096 (0.10)

Higher Ve 0.061 (0.06) 0.020 (0.02) 0.060 (0.06) 0.046 (0.05) 1.002 (1.00)

Higher Vw 0.062 (0.06) 0.020 (0.02) 0.600 (0.06) 0.492 (0.50) 0.101 (0.10)

Higher Ve

and Vw

0.062 (0.06) 0.020 (0.02) 0.060 (0.06) 0.512 (0.50) 0.995 (1.00)

Vb is the between-species variance, Vwh the human within-species variance, Veh

the human error variance, Vwc the chimpanzee within-species variance and Vec

is the chimpanzee error variance. The variance estimates were averaged across
10000 simulations. The true variances used to generate the data are given in
brackets. The first set of simulations was based on the average observed
variances in humans and chimpanzee, and the chimpanzee error variance and
within-species variances were then increased by a factor of 10.
doi:10.1371/journal.pone.0034935.t001
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genes had a true selection index of 25, 22, 0, 2 or 5. In our

simulations, we drew Vw from a uniform distribution ranging from

1024 to 1 and used this value and the true selection index to set the

true Vb for that gene. Note that the results of this analysis are

independent of the magnitude of Vw. We then estimated Vb based

on two species means drawn from a normal distribution with a

mean of 0 and variance corresponding to the true Vb, and used this

to calculate the estimated selection index.

Results

We propose a selection index for gene expression based on the

well-established McDonald-Kreitman test for sequence data [29].

Under a neutral scenario, suitably measured expression divergence

is expected to increase linearly with time, just as we expect for

neutral sequence evolution. We can therefore construct the index

by contrasting the expression divergence between and within

species to the level of neutral sequence divergence between and

within species. Negative values of the selection index are indicative

of stabilizing selection, whereas positive values suggest adaptive

evolution. Here, we have applied the selection index to gene

expression data from human and chimpanzee cell lines [40]. We

chose this dataset because it contains replicate measurements from

multiple individuals from both species, allowing us to remove the

error variance from our estimates of between-species and within-

species expression variance using nested ANOVA.

Nested ANOVA assumes that the experimental design is

balanced, that the data is normally distributed and that variances

do not differ between groups [54]. Before proceeding, we therefore

ensured that the expression data fulfilled these requirements. The

design of the original dataset was not balanced, as it contained

different numbers of individuals and replicates for the two species.

Although methods exist to estimate variance components based on

unbalanced designs, they tend to be either cumbersome or give

biased results [55]. We therefore chose to balance the design by

randomly excluding some of the raw data, leaving us with five

individuals and two replicates from chimpanzees and from each of

the three human populations represented in the original dataset.

After processing the resulting dataset (see Materials and Methods)

we examined the distributions of the standardised log-transformed

expression values, which in all cases proved to be approximately

normal. However, using single-classification ANOVA to estimate

the within-species and error variance for each gene, we found that

the variances were not equal: the average human within-species

variance was 0.02 while the average chimpanzee within-species

variance was 0.05. The difference could be due to the fact that

chimpanzees have a higher effective population size than humans

do [56,57], or because the sampled chimpanzees were bred in

captivity and may therefore belong to different subspecies [58].

The mean error variance also differed between humans and

chimpanzees, which might reflect variation in the establishment

and maintenance of the cell lines. However, unequal variances are

only problematic if they introduce bias into the nested ANOVA

procedure. To test if this was the case, we simulated datasets of

10000 replicates with differing within-species and error variances,

calculated the variance components using nested ANOVA and

compared the estimated between-species variance to the set value

(Table 1). We found that a 10-fold increase in chimpanzee within-

species and error variances only had a marginal effect on the

between-species variance estimate, which was overestimated by

around 3%. In cases with unequal variances our test may therefore

give a biased estimate of the selection index, but the overall effect

is negligible.

We used intronic sequences as our neutral reference as it has

previously been shown that mammalian introns are essentially

neutral [59]. For these sequences we estimated the average

divergence, d, between human and chimpanzee, as well as the

nucleotide diversity, p, for the three human populations CEU,

CHB/JPT and YRI [48]. In total, we had expression and

sequence data for 7302 genes, which we used to calculate the

selection index for each of the three human populations versus

chimpanzee by averaging the values of Vb, Vw, d and �pp across loci

and then applying equation 5 (Table 2). We constructed

confidence intervals for these estimates by bootstrapping the data

by gene, i.e., by randomly choosing genes (with replacement) from

our original data, recalculating the selection index for these new

datasets and choosing the confidence limits in such a way that

2.5% of our simulated selection index values fell above the upper

limit and 2.5% below the lower limit. In all cases, the selection

index was significantly negative. While the estimate was somewhat

higher for the CHB/JPT population, this is likely to be an artefact

caused by the high error variance for these samples (Table 2),

rather than a sign of varying selection pressures among human

populations. Our results therefore indicate that gene expression

divergence between humans and chimpanzees increases in a non-

linear fashion and that stabilising selection plays a dominant role

in shaping gene expression evolution even over short evolutionary

distances.

Even though this dataset does not fulfil the requirements for

estimation of the proportion of adaptive evolution, ae, we may still

ask whether, in spite of the overarching trend of strong stabilising

selection, we can use the selection index to identify adaptively

evolving genes. In principle, a positive estimate of the selection

index for a single gene can be taken as an indication of positive

selection. To evaluate the performance of this method, we

investigated the distribution of gene-specific estimates of the

selection index under different evolutionary scenarios, by consid-

ering an ideal experiment where both gene expression and

sequence variation could be measured without error for an infinite

number of individuals. Under these conditions, any discrepancy

between the true and the estimated value of the selection index will

stem from the estimation of the between-species expression

variance based on the two species means. As shown in Figure 2

there is considerable overlap between the distributions of selection

index estimates for positively and negatively selected genes, even

when all experimental error is removed. This illustrates an

important difference between the evolution of gene expression and

the evolution of DNA sequences: While for each gene we can base

our estimate of sequence divergence on multiple sites, we only

have a single measure of gene expression divergence. We therefore

recommend the use of the selection index as a straightforward

method to capture the main evolutionary trends for larger groups

of genes, but caution against its use on a single-gene basis.

Simulations such as those that we have presented here can be a

valuable tool to assess the performance of the selection index in

different conditions and could also be extended to include

parameters for experimental error and sample size to fit a

particular experimental setup.

Discussion

The gene expression selection index encapsulates the main

selective forces that affect gene expression levels in two species. It

complements previous approaches that require multiple species

comparisons to draw conclusions about evolutionary trends

[17,25,28]. Our method has some similarities to the test of

selection developed by Lemos et al. [22], but we infer the rate of
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neutral gene expression evolution from sequence data, rather than

from a combination of estimates of divergence times, generation

times and the typical range of mutational heritability for

phenotypic characters. Furthermore, as the analysed expression

and sequence data come from the same set of genes, we reduce the

problem of sampling the neutral standard from a different

genomic region to that in which regulatory changes are probably

occurring.

In our analysis, we have made the assumption that all regulatory

mutations have taken place in cis rather than trans. We believe that

this is a reasonable simplification, based on experimental evidence

suggesting that cis-regulatory effects are more common [37,38].

However, with a more complete knowledge of the regulatory

structure of different genomes, it will be possible to further refine

our model to also take trans-regulatory mutations into account. For

example, if it is known that the change in expression of a given

gene is primarily due to a specific regulatory factor that operates in

trans, it might be more appropriate to base the neutral expectation

on sequences from the trans factor locus. However we note that our

method is most useful when applied to a set of genes, meaning that
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Figure 2. Estimates of the selection index for individual genes
under different evolutionary scenarios, assuming that all
measurements are without error and can be obtained from
an infinite number of individuals. A. Genes with true SI = 22
(negative selection) in red, genes with true SI = 0 (neutral evolution) in
green and genes with true SI = 2 (positive selection) in blue. B. Genes
with true SI = 25 in red, true SI = 0 in green and true SI = 5 in blue.
doi:10.1371/journal.pone.0034935.g002

A Selection Index for Gene Expression Evolution

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34935



d and �pp are estimates of the genome-wide values. Hence, our

estimate of the selection index will be unbiased unless the genes

responsible for trans changes have unusual values of d and p.

Our estimates of the selection index for human and chimpanzee

lymphoblastoid cell lines suggest prevalent stabilising selection on

gene expression levels. While this contradicts some early estimates

[25,60], it is in line with later analyses of primate gene expression

[17,22]. Thus our study reinforces the view that gene expression

evolution is constrained by negative selection even over relatively

short time spans.

To what extent are lymphoblastoid cell lines a suitable system to

study gene expression evolution? It is known that many genes are

differentially expressed between these cell lines and the cells from

which they were originally derived, although the magnitude of

change tends to be minor [61]. On the other hand, the use of cell

lines that can be grown under control conditions has some

potential advantages over tissue samples, where it is often not

possible to match individuals with regard to environmental factors

have been found to influence gene expression [62,63]. Another

question is whether lymphoblastoid cell lines are representative of

the entire organism, as the selection index will vary between

tissues, cell types and developmental stages. While our results are

consistent with analyses of brain and liver from adult humans and

chimpanzees [17,22], we cannot exclude that an equivalent

analysis of other samples could lead to different conclusions. We

do however note that lymphoblastoid cell lines are derived from

blood cells involved in the body’s immune response and that genes

with functions in immunity show signs of positive selection on both

protein-coding and non-coding sequences [11]. We therefore do

not have any reason to believe that these cell lines should be

particularly void of adaptive changes in gene expression, which

could cause the selection index to be exceptionally low. We

therefore consider it very likely that strong stabilising selection is a

general feature of human and chimpanzee gene expression

evolution.

Negative estimates of the selection index do not necessarily

imply that the species under study have not experienced adaptive

evolution of gene expression, as positive selection acting on a few

genes might be overshadowed by negative selection acting on

others. The extent to which human gene expression evolution has

been adaptive is however a question that remains to be settled:

Lemos et al. [22] did not identify any targets of positive selection in

human and chimpanzee brain and liver, while Kudaravalli et al.

[8] estimated that 0.1% of human genes had experienced very

recent positive selection, as judged from lymphoblastoid cell lines

from the YRI population. Contrary to this, Brawand et al. [64]

identified a number of candidates for positive selection based on

their analysis of gene expression in six tissues. The difference in

sensitivity between these analyses might to some extent be

explained by the use of different null hypotheses: Lemos et al.

[22] assumed that the between-species variance accumulated in a

linear fashion, while Brawand et al. [64] used a model that

incorporated strong stabilising selection. Our results indicate that

this latter model is preferable for humans and chimpanzees, even

though they diverged relatively recently.

When the selection index is positive, it is possible to calculate the

proportion of the between-species expression variance that is

contributed by adaptive evolution, ae. This estimate is likely to be

conservative as some genes may be constrained by stabilising

selection. Assuming constant population size, a value of ae that is

significantly above 0 is therefore powerful evidence of the role of

positive selection. While human-chimpanzee comparisons do not

currently lend themselves to this type of analysis, it would be

interesting to investigate gene expression evolution within the

Drosophila genus, as some of the species may be closely enough

related for gene expression divergence to increase relatively

linearly [28] and positive selection on protein-coding sequences

has played a much larger role in Drosophila than in mammals

[31,65]. Following the method of Eyre-Walker and Keightley [66]

it might also be possible to determine the distribution of fitness

effects for mutations that affect gene expression and use this

information to control for the effects of slightly deleterious

mutations that contribute to within-species but not between-

species expression variance, thereby making it possible to calculate

ae for a wider range of species, including humans and

chimpanzees.
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