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Abstract
Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nico-

tine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced

by certain chemotherapeutic agents, but the precise mechanisms involved remain largely

unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-

nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless,

no information has been available about whether nicotine also affects proliferation of

human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis

that α5-nAChRmay play a role in gastric cancer, we investigated its expression in gastric

cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tis-

sue compared with para-carcinoma tissues. In view of the results, we proceeded to investi-

gate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in

gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation

in a dose and time-dependent manner through α5-nAChR activation in human gastric cells.

Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR

ablated the protective effects of nicotine. However, when co-administrating LY294002, an

inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated

with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines.

These results suggest that exposure to nicotine might negatively impact the apoptotic

potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in

the anti-apoptotic activity of nicotine induced by cisplatin.

Introduction
Gastric cancer is one of the major causes of cancer deaths in the world. Apparently, both
genetic and environmental factors are involved in gastric carcinogenesis. Previous findings
have unraveled the strong association between cigarette smoke and gastric cancer incidence
[1–3], however, the detailed mechanism has not been fully studied.
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Nicotine, a major component of cigarette smoke, has been shown to be involved in the initi-
ation, promotion, and even progression of several tumors including gastric cancer. Several
lines of evidence suggest that nicotine exerts its cellular functions through nicotinic acetylcho-
line receptors (nAChRs). Different epithelial cells, not only neuron cells, express nAChRs and
the structure of nAChRs is a homo-(α7or α9) or heteropentamer (α2–α10; b2–b4). Studies
have demonstrated that nicotine stimulated the proliferation of human gastric cancer cells
through its interaction with α7-nAChR [4, 5]. While different members of nAChR family may
regulate converging signaling pathways, they often have diverse and even opposing actions.
Recently, genome wide association studies have indicated that α5-nAChR is highly associated
with lung cancer risk and nicotine dependence [6, 7]. Nevertheless, no information has been
available about whether nicotine also affects proliferation of human gastric cancer cells through
regulation of α5-nAChR.

The delivery of chemotherapeutic agent cisplatin following surgical resection currently
defines the standard treatment for gastric cancer [8–10]. Unfortunately, acquired resistance to
cisplatin is common and evasion of cell apoptosis is recognized as one of the major mecha-
nisms responsible for cisplatin resistance [11, 12]. In particular, nicotine could inhibit apopto-
sis induced by cisplatin in lung cancer cells [13–15] and oral cancers [16]. The inhibitory effect
of nicotine on apoptosis has been attributed to its ability to activate anti-apoptotic proteins like
Bcl-2 and Survivin, as well as inactivation of proapoptotic proteins like Bax and Caspase-3,
through the activation of both PI3K/AKT and PKC/ERK signaling pathways in cancer cells
[13–15]. This effect of nicotine on cell apoptosis is also mediated by nAChRs, but in addition
to α5-nAChR, other subunits seem to be involved [17, 18].

Although many of these mechanisms have been observed in lung cancer [19–21], there is no
evidence of the anti-apoptotic effect and the mechanism exerted by nicotine on gastric cancer
cells. The aim of the present study was to investigate nicotine inhibits cisplatin-induced apo-
ptosis via regulating α5-nAChR in gastric cancer cell. Moreover, we propose the involvement
of pro-survival factors, such as Bcl-2 and Survivin, activated by AKT pathways, respectively.

Materials and Methods

Ethics Statement
The study protocol was approved by the Medical Ethics and Human Clinical Trial Committee
of the Jinan Central Hospital. Written informed consent was obtained from all patients.

Tissue specimens, Cell culture and drug treatment
Fifty formalin-fixed, paraffin-embedded samples containing 40 specimens of gastric cancer
and 10 para-carcinoma tissues were retrospectively and randomly selected from the files of the
Jinan Central Hospital after the protocol was approved by the local research ethics committee.
According to the record of smoking (or not) in the case history of the patients, 32 cases had no
smoking intake history, 8 had smoking intake history. All the samples were evaluated for diag-
nosis by two experienced pathologists for diagnosis.

The human gastric cancer cell lines MKN28, SGC7901, BGC823, MGC803, AGS, HGC27,
and MKN45 were obtained from the Cell Bank of Shanghai, Institute of Biochemistry and Cell
Biology, Chinese Academy of Sciences. Cells were cultured in DMEM (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS; Invitrogen), 1% antibiotics at 37°C in 5% CO2
humidified air. In all experiments, 60–70% of confluent cells were washed and incubated in
serum-free medium for 24 hours prior to treatment with nicotine, cisplatin and LY294002
(Sigma, St. Louis, MO) for the indicated time.
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Immunohistochemistry
Immunohistochemical staining using the streptavidin peroxidase method (S-P method) was per-
formed on 4 μm sections of paraffin-embedded specimens to detect α5-nAChR expression in gas-
tric cancer and para-carcinoma tissues. In brief, after deparaffinization and hydration, the slides
were treated with endogenous peroxidase in 0.3%H2O2 for 30 min and blocked for 2 h at room
temperature with 1.5% blocking serum in phosphate-buffered saline (PBS). The sections were
then incubated with anti-α5-nAChR antibody (Abcam, Inc. Cambridge, MA) (1:100 dilution) at
4°C overnight, washed with PBS, and incubated with secondary anti-mouse biotinylated antibody
(KIT-5010, Max Vision, Maixin.Bio, China) (1:2000) in PBS for 30 min at 37°C. The antibody
binding was detected using the streptavidin–biotin–peroxidase complex/HRP (Code K0377;
Dako) with 3, 3- diaminobenzidine for 3 min as a chromogenic substrate. The slides were then
lightly counterstained with hematoxylin. As a negative control, duplicate sections were stained
without exposure to the primary antibodies. The results were observed under a microscope.

Quantitative Real-time RT-PCR
Total RNAwas isolated using the Trizol reagent (Invitrogen) according to the manufacturer’s
instructions. Twenty-five nanogram total RNA per sample was reverse transcribed by using the
Reverse Transcription Reaction Kit (Takara Code: DRR061S) according to the manufacturer's
instructions. Quantitative real-time PCR was performed analyzed on the Applied Biosystems 7300
Real-Time PCR System to determine the relative amounts of α5-nAChR and β-actin (internal con-
trol) mRNAs expressed. The SYBR Green Supermix was used for all real-time PCR reactions. PCR
primers used in this study are as follows: α5-nAChR Forward: GAAACTGAGAGTGGTAGTGGA
CCAA, Reverse: GGGCTATGAATTTCC AATCTTCAAC; glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) forward, 5’-CATGAGAAGTATGACAACAGCCT-3’ and reverse, 5’-AGTCCT
TCCACGATACCAAAGT-3’. The quantitative real-time PCR parameters were 95°C for 10s as a
pre-denature step followed by 40 PCR cycles of 95°C for 5 s, 60°C for 30 s and 72°C for 10 min. All
the samples were performed in triplicates in each experiment. The relative amount mRNAwas cal-
culated using the comparative CTmethod after normalization to β-actin mRNA levels.

Western blotting analysis
Cell pellets were homogenized in extraction buffer (50 mmol/L Tris-HCl, pH 6.8, 0.1% SDS,
150 μmol/L NaCl, 100 mg/L phenylmethylsulfonyl fluoride, 1 mg/L aprotinin, 1% NP-40 and
0.5% sodium orthovanadate), incubated at 4°C for 30 min, and centrifuged for 20 min at 12000
g/min. Total protein in the cell lysate was measured with use of the Bio-Rad colorimetric kit
(Bio-Rad, Hercules, CA, USA). For western blot analysis, total protein was separated on 10%
SDS-PAGE and transferred onto nitrocellulose membranes (0.45 μm, Millipore, Billerica, MA,
USA), which were incubated for 24 h at 4°C with the antibodies for α5-nAChR (1:500, ab41173
or ab166718), AKT(1:500, Epitomics Cat no:1085–1), P-AKT(1:500, Epitomics Cat no:2118–
1), Caspase-3 (1:500, Epitomics Cat no:1087–1), Bcl-2 (1:500, Epitomics Cat no:1017–1), Survi-
vin (1:500, Epitomics Cat no:2463–1) and GAPDH (1:1000; ab37168), then horseradish peroxi-
dase-conjugated anti-mouse/rabbit IgG antibody (Santa Cruz Biotechnology) after a final
wash. Signals were detected with use of an enhanced chemiluminescence kit (Amersham Phar-
macia, Buckinghamshire, UK). GAPDH level was an internal standard.

RNA interference
A double strand siRNA oligonucleotide targeting CHRNA5, which encodes α5-nAChR, (sense:
5’-CCCGCAAACUACAAAAGUUTT-3’, antisense: 5’-AACUUUUCUAGUUUGCCGGTG-3’)

α5-nAChR/AKT in Nicotine-Induced Cisplatin Resistance in BGC-823

PLOS ONE | DOI:10.1371/journal.pone.0149120 February 24, 2016 3 / 14



was synthesized by Shanghai Genepharma Co. Ltd. (China). A pair of negative control siRNA
was also designed with sequences different from siRNA-CHRNA5 and not homologous to any
sequences found in gene bank (sense: 5’-UUCUCCGAACGUGUCACGUTT-3’, antisense: 5’-
ACGUGACACGUUCGGAGA-3’). The cells were plated in six-well plates. When cells reached
30–50% confluence, the siRNAs were added to a final concentration of 50 nMwith lipofectamine
2000 (Invitrogen) according to the manufacturer's instruction.

Cell Viability Assay
Cell viability was determined by the CCK8 assay (Dojindo, Tokyo, Japan). Briefly, cells plated
in 96-well plates (1500 cells/well) were treated with nicotine at the indicated doses. The cell
proliferation assay was performed by the addition of 10 μl CCK8 solution to each well, followed
by incubation at 37°C for 2 h. Absorbance was measured at a wavelength of 450 nm using a
microplate reader (Synergy 2 Multi-Mode Microplate Reader; BioTek, Winooski, VT, USA).

Annexin V/7-AAD staining
BGC823 cells were cultured at confluence into 6-well tissue culture plates (Falcon, Becton
Dickinson Labware) in a complete medium. Then the medium was replaced by fresh complete
medium or by serum free medium; the cells were then stimulated with 100 μM nicotine alone
or in combination with 20 mM cisplatin for 24 h based on our previous data, trypsinized and
washed twice with PBS. The cells were stained with PE labeled annexin V/7-AAD (7-aminoac-
tinomycine-D) according to the instructions of the manufacturer (annexin V/7-AAD kit; Bec-
ton, Dickinson and Company). Briefly, a washed cell pellet was resuspended in 500 μl binding
buffer. Next, 5 μl Annexin-V-PE and 5μl 7-AAD were added. Flow cytometric analysis was per-
formed immediately after supravital staining. Data acquisition and analysis were performed in
a Becton Dickinson FACSCalibur flow cytometer using CellQuest software. The cells in early
stages of apoptosis were AnnexinV positive and 7-AAD negative, whereas the cells in the late
stages of apoptosis were both AnnexinV and 7-AAD positive.

Hoechst 33342 staining
Cells were seeded in 12-well tissue culture plates and treated with the indicated concentrations
of nicotine and cisplatin. At the end of each incubation, cells were fixed with 4% paraformalde-
hyde for 20 min, washed with PBS, and then incubated with Hoechst 33342 (1 μg/ml) for
10 min. After washing with PBS, cells were observed using a fluorescent microscope (Olympus,
Japan). At least 400 cells from 12 randomly selected fields per dish were counted, and each
treatment was performed in triplicate.

Statistics analysis
The result of the immunohistochemistry was analyzed using the χ2 test. All results were pre-
sented as means ± S.D. from triplicate experiments performed in a parallel manner unless oth-
erwise indicated. The significance of difference between control groups and nicotine treatment
groups was determined by a two-tailed Student’s t-test. Differences were considered significant
at P< 0.05 or P< 0.01.

Results

α5-nAChR expressions in gastric cancer tissue specimens and cell lines
The expression of α5-nAChR were detected and localized in paraffin-embedded human gastric
tissue sections. α5-nAChR was mainly localized on the membrane of the tumor cells, although

α5-nAChR/AKT in Nicotine-Induced Cisplatin Resistance in BGC-823

PLOS ONE | DOI:10.1371/journal.pone.0149120 February 24, 2016 4 / 14



some cytoplasm staining was also observed (Fig 1A). Expression of α5-nAChR was higher in
gastric cancer tissues (77.5%, 31/40) than that in para-carcinoma tissues (20%, 2/10). The
results showed a trend that the positive rate of α5-nAchR expression increased in patients with
nicotine intake history (87.5%, 7/8) compared with patients without nicotine intake history
(75.0%, 24/32).

α5-nAChR mRNA and protein were detectable in a panel of gastric cancer cell lines. The
cell lines expressed different levels of α5-nAChR protein, where cell lines with a higher expres-
sion were BGC823, AGS and SGC7901 normalized to that of GAPDH(Fig 1B). The levels of
α5-nAChR mRNA expression detected by RT-PCR correlated with the levels of protein expres-
sion (Fig 1C). BGC823 expresses higher levels of α5-nAChR than that of other cell lines. For
further functional experiments, BGC823 cell line was chosen due to its higher expression (suit-
able for induction by nicotine or silencing by siRNA).

Nicotine promoted gastric cancer cell proliferation through α5-nAChR
To determine whether nicotine may regulate the proliferation of gastric cells, we examined the
effect of nicotine with various concentrations on cell viability in BGC823 by a CCK8 analysis
(Fig 2A). BGC823 were exposed to nicotine (0, 1, 10, 100, 500, 1000 μM) for 24, 48, and 72h,
respectively. As shown in Fig 2A, nicotine promoted cell proliferation in a time-dependent and
concentration-dependent relation. Nicotine significantly stimulated cell proliferation at lower
concentration (1, 10, 100, 500 μM) and time (24–72 h), but a noticeable decrease in cell number
was observed in nicotine-treated cultures at higher concentration (1000 μM) and time (72 h).
Studies showed levels of nicotine in the body vary widely among individuals even when smok-
ing the same number of identical cigarettes [22–24].The concentration of nicotine (100 μM)
used in the present study mimicked the daily intake of cigarettes in moderate smokers [25, 26].
The concentration of nicotine (100 μM) is equivalent to concentration in the saliva in smoker
who intake 25 cigarettes/day [27]. For further functional experiments, the concentration of nic-
otine (100 μM) was chosen to treat gastric cells for 24h.

To determine whether the nicotine-mediated promotion of cell proliferation in gastric cells
is mediated through α5-nAChR signaling, we analyzed the effect of nicotine on the expression
of α5-nAChR protein in BGC823 cells by Western blot. As shown in Fig 2B, treatment of nico-
tine at the dose of nicotine (0, 1, 10, 100, 500, 1000 μM) for 24 hours promoted the expression
of α5-nAChR protein in a dose-dependent manner. To further confirm the involvement of
α5-nAChR signaling pathway in the nicotine-mediated promotion of gastric cancer cell prolif-
eration, we blocked α5-nAChR protein expression by transfecting BC823 cells with a
α5-nAChR-specific siRNA (si-α5-nAChR) (Fig 2C) and evaluated its effects on nicotine-medi-
ated promotion of cell proliferation by CCK assay (Fig 2D). By comparison with the scrambled
nonspecific control siRNA (si-NC), transfection with si-α5-nAChR inhibited cell proliferation.
Moreover, si-α5-nAChR transfection significantly reduced the nicotine-mediated promotion
of cell proliferation in BGC823 cells (Fig 2D).

Nicotine inhibition of cisplatin-induced apoptosis
To further characterize the apoptosis effects of nicotine combined with cisplatin on BGC823,
cisplatin was used to induce apoptosis in the BGC823 cells. The cells were treated with 20 mM
cisplatin [28]. As shown in Fig 3A, the apoptotic cells became rounded in shape and their
nuclei exhibited a fragmented morphology, forming apoptotic bodies. In contrast, the cells co-
treated with nicotine and cisplatin showed little nuclear fragmentation and few apoptotic
bodies.

α5-nAChR/AKT in Nicotine-Induced Cisplatin Resistance in BGC-823
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Fig 1. The expression of α5-nAChR in gastric cancer tissues and cell lines. A: Expression of α5-nAChR in gastric para-carcinoma tissue (Left) and
cancer Tissues (Right). (IHC 200×); B: Protein expression of α5-nAChR in gastric cancer cell lines (N87, MKN28, MGC803, BGC823, HGC27, SGC7901,
MKN45, AGS); C: The expression of α5-nAChRmRNA in the above cells in (A) was analyzed by RT-PCR, and normalized to that of GAPDH.

doi:10.1371/journal.pone.0149120.g001
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Cisplatin induced apoptosis was further assayed by AnnexinV/7-AAD staining. Flow cytome-
try plots showed that the proportions of total apoptotic cells (AnnexinV+/7-AAD−) decreased
from43.2±2.32% to29.9 ± 1.26%, when exposed to cisplatin combined with 100 μMnicotine (Fig
3B). These results suggested that nicotine can suppress apoptosis induced by cisplatin.

α5-nAChR/AKT signaling pathway involved in anti- apoptotic effects of
nicotine in cisplatin-induced apoptosis of BGC823 cells
To determine the role of AKT in mediating the effects of nicotine in these cells, we determined
whether nicotine induces activation of AKT in BGC823 cells. In Fig 4A, 20 mM cisplatin
strongly suppressed activity of AKT (lane 2) but nicotine increased AKT expression (lane 3) in
the presence of cisplatin. It suggested that AKT was activated after exposure to 100 μM nicotine
in BGC823 cells as reported in various papers [29, 30]. The down-regulation of α5-nAChR
expression decreased P-AKT expression (lane 4). Treatment with 10 mM LY294002, a phos-
phatidylinositol 3-kinase (PI3K)/AKT pathway inhibitor, decreased the anti-apoptotic effects
of nicotine in BGC823 cells (lane 5). In addition, treatment with LY294002 combined with si-
CHRNA5 transfection significantly repressed the nicotine induced P-AKT protein levels (lane

Fig 2. Nicotine promoted BGC823 cell proliferation through α5-nAChR. A: BGC823 were exposed to nicotine (0, 1, 10, 100, 500, 1000μM) for 24, 48,
and 72h, respectively. Nicotine promoted cell proliferation in a time-dependent and concentration-dependent relation; B: Treatment of nicotine at the dose of
nicotine (0, 1, 10, 100, 500, 1000μM) for 24 hours promoted the expression of α5-nAChR protein in a dose-dependent manner; C: Cells were transfected with
α5-nAChR specific siRNA (si-α5) and then treated with nicotine at 100μM for 24 hours. α5-nAChR expressions were significantly decreased compared with
scrambled nonspecific control siRNA (si-NC) and Nic (Nicotine) + si-NC group; D: By comparison with the si-NC, transfection with si-α5 considerably
inhibited cell proliferation. *P < 0.05 vs. the untreated control; each experiment was performed in triplicate.

doi:10.1371/journal.pone.0149120.g002
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6). These data suggest that α5-nAChR /AKT pathways play a critical role in mediating the
effects of nicotine and chemotherapy in gastric cancer cells.

We further examined the effects of nicotine on cisplatin-induced caspase-3 activation in
BGC823 cells by Western blot assay. As shown in Fig 4B, cisplatin induced an increase in cas-
pase-3 activation, whereas nicotine blocked cisplatin-induced caspase-3 activation in BGC823
cells. Moreover, exposure of BGC823 cells to cisplatin caused the expression of apoptotic pro-
tein Bax increased while the prosurvival protein Bcl-2 and Survivin decreased, which were
inhibited by treatment with nicotine.

Meantime, as shown in Fig 4C, the anti-apoptotic effect of nicotine was obviously blocked
by si-α5-nAChR in BGC823 cells. Flow cytometry plots showed that the proportion of total apo-
ptotic cells (AnnexinV+/7-AAD−) increased from 18.5 ± 0.92% to 34.9 ± 1.74% after si-5 treat-
ment compared with si-NC group. Addition of AKT inhibitor LY294002 with si-α5-nAChR
significantly promoted the apoptotic effect of cisplatin from 31.5 ± 1.57% to 61.2 ± 3.06% com-
pared with LY294002 group. These results indicate that nicotine plays an important role in the
prevention of cisplatin-induced apoptosis via α5-nAChR/AKT signaling pathway.

Discussion
This study is the first to demonstrate a vital role of α5-nAChR in nicotine anti-apoptosis of
cisplatin in human gastric cancer cells. The analysis of clinical specimens indicated that
α5-nAChR expression is generally higher in tumor cells compared with para-carcinoma cells.

Fig 3. Nicotine inhibition of cisplatin-induced apoptosis. A: Cisplatin induced cells apoptosis compared with the control. In contrast, the cells co-treated
with 100 μM nicotine and 20 mM cisplatin showed little nuclear fragmentation and few apoptotic bodies by fluorescence microscopy (200 X); B: Cisplatin
induced apoptosis was assayed by AnnexinV/7-AAD staining. Flow cytometry plots showed that the proportion of total apoptotic cells was decreased when
exposed to 20 mM cisplatin combined with 100 μM nicotine.

doi:10.1371/journal.pone.0149120.g003
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The results showed a trend that the positive rate of α5-nAchR expression was higher in patients
with nicotine intake history than patients without nicotine intake history. The in vitro results
showed that nicotine up-regulated the expression of α5-nAChR protein and inhibited cis-
platin-induced apoptosis by regulating α5-nAChR/AKT signaling pathway in gastric cancer
cells. Nicotine prevented cisplatin-induced activation of caspase-3 and Bax, and up-regulated
the expression of anti-apoptotic proteins, Bcl-2 and Survivin. Furthermore, activation of AKT
was found to play a role in mediating cisplatin-induced apoptosis, as well as anti-apoptotic
effects of nicotine in BGC823 cells. It may be interesting to pay attention to the relationship
between cigarette smoke (second smoking) and gastric cancer incidence.

Fig 4. α5-nAChR/AKT signaling involved in anti-apoptotic effects of nicotine in cisplatin-induced apoptosis of BGC823 cells. A: P-AKT was
activated after exposure to 100μM nicotine in BGC823 cells (lane 2 and lane3). Cisplatin strongly suppressed activity of P-AKT (lane 1 and lane 2) but
nicotine also induced P-AKT in the presence of cisplatin (lane 2 and lane 3). Down-regulation of α5-nAChR expression decreased the level of P-AKT (lane 4
and lane 5). Treatment with LY294002 downregulated P-AKT expression (lane 3 and lane 5). Combination LY294002 with si-CHRNA5 transfection
significantly repressed the nicotine induced P-AKT protein levels (lane 3 and lane 6); *p<0.05; B: Cisplatin induced an increase in caspase-3 and Bax
activation in BGC823 cells a decrease in Bcl-2 and Survivin expressions, whereas nicotine blocked cisplatin- induced Bcl-2, Bax, caspase-3 and Survivin
expressions; With silence of α5-nAChR co-administrated LY294002, an increased apoptosis was observed with the induction of Bcl-2, Bax, Survivin and
Caspase-3 by nicotine in BGC823 cells. *p<0.05; C: Assessment of apoptosis by AnnexinV/7-AAD staining in each group. BGC823 cells were pre-treated
with 100 μM nicotine and cisplatin for 24 h, and/or si-α5-nAChR for 48h, and/or AKT inhibitor LY294002 for 24h, and harvested.

doi:10.1371/journal.pone.0149120.g004
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Previous findings have unraveled the strong association between cigarette smoke and gastric
cancer [31, 32]. Nicotine was shown to increase the proliferation and migration of gastric can-
cer cells by inducing cyclooxgenase-2 (COX-2), prostaglandin E2, VEGF, β-adrenoceptors,
protein kinase C [26, 33, 34]. These effects appear to be mediated through the homopentameric
α7-nAChRs [35]. However, recent studies have demonstrated an unexpected effect of the het-
eropentameric α5-nAChRs on nicotine intake [36–38]. Our previous works reported that the
nicotine/α5-nAChR pathway is critical for lung cancer cell viability [21, 39]. Nevertheless, no
information has been available about whether nicotine also affects proliferation of human gas-
tric cancer cells through regulation of α5-nAChR. Here, we studied the role of α5-nAChR in
human gastric cancer. Our results demonstrated that expression of α5-nAChR was higher in
gastric cancer tissues compared to para-carcinoma tissue, which suggested that α5-nAChR
may play a role in gastric carcinogenesis. Furthermore, nicotine promoted α5-nAChR protein
expression and blocking the activation of α5-nAChR by siRNA attenuated nicotine-induced

Fig 5. Schematic diagram of nicotine-mediated α5-nAChR/AKT signaling pathway in the prevention of cisplatin-induced apoptosis in gastric
cancer.Nicotine may interact with α5-nAChR on the surface of gastric cancer cells, then activate AKT signaling pathway and up-regulate Survivin and Bcl-2
expressions to prevent cisplatin-induced apoptosis.

doi:10.1371/journal.pone.0149120.g005
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gastric cancer cell proliferation. It suggested that α5-nAChR is one of the major molecules to
mediate cell proliferation stimulated by nicotine in gastric cancer cells.

The current standard chemotherapy for gastric cancer is cisplatin, but the success rate of this
treatment is poor. The efficacy of cisplatin depends on the ability to induce DNA damage [40, 41].
Hence, how cancer cells respond to cisplatin- induced apoptosis plays a critical role in cisplatin
sensitivity. Recent reports show that nicotine inhibits cisplatin induced apoptosis in lung cancer
cells, oral cancer, Raw264.7 and El4 cells [13, 16, 18], which may suggest that nicotine has the abil-
ity not only to promote cancer development by activating cell growth pathways, but also to reduce
the efficacy of chemotherapeutic agents by stimulating survival pathways. In agreement with the
previous findings, results from the present study showed that co-treatment of the cells with cis-
platin and nicotine, a significant activation of caspase-3 was observed, indicating that nicotine is
able to determine an inhibition of the apoptotic potential of the cisplatin in gastric cancer.

The signaling pathways that regulate cell processes, including cell proliferation, cell cycle
progression and cell apoptosis, have significant impact on deciding cellular response to cis-
platin. Previous studies have shown that activation of AKT pathway may lead to resistance to
cisplatin [42, 43]. An over-expression of serine phosphorylated AKT has been detected in a
wide range of human cancers, including gastric cancer [44, 45]. As reported in various papers,
nicotine by binding to nAChR leads to downstream activation of tumor promoting proteins
including activation of the AKT pathways [46–48]. Exposure to nicotine might negatively
impact on the apoptotic potential of cisplatin in human oral cancer cells, and the AKT pathway
was required for nicotine function [16]. However, AKT pathway of nicotinic downstream sig-
naling and the anti-apoptotic effects of nicotine in gastric cancer cells were unknown. There-
fore, we investigated whether P-AKT may account for the antagonizing effect of nicotine on
the cytotoxicity of cisplatin. We found that co-treated with siRNA-α5-nAChR and LY294002,
a PI3k/AKT pathway inhibitor, increased cisplatin-induced apoptosis and attenuated the
effects of nicotine in BGC823 cells. Several studies highlighted nicotine activated AKT signal-
ing pathways is in modulating cell proliferation and survival through activation of the prosur-
vival protein Bcl-2 and Survivin [15, 49, 50]. Our research also demonstrated that role of
nicotine on cell apoptosis induced by cisplatin through α5-nAChR/AKT is confirmed by
induction of Survivin and Bcl-2, as final effectors of the pathways above.

In summary, we demonstrated that nicotine activated α5-nAChR/AKT signaling and is
involved in the resistance of cisplatin in gastric cancer. These findings provide new insights
into the possible molecular mechanisms of nicotine inhibition of cisplatin-induced apoptosis
in human gastric cancer cells (Fig 5). Nicotine present in cigarette smoke may interfere with
gastric cancer pharmacological treatment by inhibiting chemotherapeutic drug-induced apo-
ptosis. Strategies aimed at understanding nicotine-mediated signaling may facilitate the devel-
opment of improved therapies in gastric cancer.

Supporting Information
S1 Fig. Expression of α5-nAChR and α7-nAChR without or with α5-siRNA treatment.
(TIF)

S2 Fig. Down-regulation of α5-nAChR expression decreased the level of P-AKT.
(TIF)

S3 Fig. Expression of α5-nAChR in BGC823 cells without or with si-α5-nAChR treatment.
(TIF)

S4 Fig. Nicotine promoted BGC823 cell proliferation through α5-nAChR and α7-nAChR.
(TIF)
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S5 Fig. Nicotine promoted SGC7901 cell proliferation through α5-nAChR.
(TIF)

S6 Fig. Nicotine inhibition of cisplatin-induced apoptosis of SCG7901.
(TIF)
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