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Abstract
Purpose Elasticity of soft tissue provides valuable information to physicians during treatment and diagnosis of diseases.
A number of approaches have been proposed to estimate tissue stiffness from the shear wave velocity. Optical coherence
elastography offers a particularly high spatial and temporal resolution. However, current approaches typically acquire data at
different positions sequentially, making it slow and less practical for clinical application.
Methods We propose a new approach for elastography estimations using a fast imaging device to acquire small image
volumes at rates of 831 Hz. The resulting sequence of phase image volumes is fed into a 4D convolutional neural network
which handles both spatial and temporal data processing. We evaluate the approach on a set of image data acquired for gelatin
phantoms of known elasticity.
Results Using the neural network, the gelatin concentration of unseen samples was predicted with a mean error of 0.65 ±
0.81 percentage points from 90 subsequent volumes of phase data only. We achieve a data acquisition and data processing
time of under 12 ms and 22 ms, respectively.
Conclusions We demonstrate direct volumetric optical coherence elastography from phase image data. The approach does
not rely on particular stimulation or sampling sequences and allows the estimation of elastic tissue properties of up to 40 Hz.

Keywords Optical coherence elastography · Deep learning · Convolutional neuronal networks · Real-time imaging

Introduction

Elasticity of tissue canbeused todifferentiate betweenmalig-
nant and healthy tissue. Hence, estimating elastic properties
of soft tissue can assist physicians in treatment and diagnosis
of diseases [1]. Different approaches for elastography have
been proposed, includingmethodsmeasuring the tissue com-
pression and methods estimating the shear wave propagation
velocity. The latter is directly related to the shear modulus,
resulting in a quantitative value. Given the speed of shear
waves in soft tissues, the measurement of the shear wave
propagation velocity needs to be sufficiently fast to fulfill the
sampling theorem.

A number of image modalities have been studied for
shear wave imaging, including magnet resonance imaging
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[2], ultrasound [1] and optical coherence tomography (OCT).
The respective data acquisition schemes depend on the tem-
poral sampling rates and the field of view (FOV). Optical
coherence elastography (OCE) is particularly sensitive for
small displacements and allows for rather high spatial and
temporal resolution. Different approaches to estimate shear
wave velocities with OCE have been proposed. Conventional
methods detect the signal peak at two positions [3] which
is only feasible when the direction of wave propagation is
known. Acquiring OCE data at multiple imaging positions
in a reverberant shear wave field has also been demonstrated
[4]. However, the authors of this recent publication used a
triggered sequential data acquisition with 60 s per 4D dataset
and explicit data processing methods.

We propose a novel approach that obtains full volumet-
ric OCE images at a rate of 831 Hz. Instead of conventional
data processing to estimate shear wave peaks, we employ
a specifically designed 4D convolutional neural network to
process the phase of the complex OCE images. Our network
is trained to predict the concentration of gelatin in different
phantoms, and we demonstrate that fast and accurate esti-
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mation of elastic tissue properties is feasible independent
on the measuring position relative to the excitation point.
Also, our novel 4D neural networks are designed to identify
temporal patterns without any explicit physical model of the
wave propagation or assumptions about the wave type. Our
approach could potentially differentiate precisely between
tumor and surrounding tissue in real time during minimal
invasive surgery.

Methods

Dataset We employ a high-speed OCE imaging system
(OMES, OptoRes, Germany) with a scan rate of 1.59 MHz
and define a scan line as a one-dimensional depth resolved
signal. An optical scanner deflects scan lines along the x-
and y-axes resulting in a volume size of 3× 3× 2 mm in air
(32 × 32 × 470 pixels) along the x-, y- and z-axes, respec-
tively. A continuous shear wave field is inducedwith a needle
(gauge 21) attached to a piezoelectric actuator ( f = 100
Hz). Phantom and actuator are mounted onto a robot which
allows us to position the FOV on the phantom. The position
of the needle is not changed in the phantom as we move the
FOV relative to the needle. The overall experimental setup
is depicted in Fig. 1. Note, the advantage of our approach is
that no synchronization is required since wave propagation
is covered in the sequence of volumetric images.

For data acquisition, we record at each position 90 sub-
sequent volumes with a temporal rate of 831 Hz, which
we define as a 4D OCE data sequence. For each gelatin
to water concentration (5.00%, 7.50%, 10.00%, 12.5%,
15.00%, 17.5% and 20.00%), we produce six phantoms. We
established the gelatin elasticity using mechanical indenta-
tion tests similar to [5]. The elasticities of our phantoms range
from 21 to 119 kPawhich is similar to the elasticity of benign
and malignant prostate tissue (24–92 kPa) [6]. Note that we
report concentrations, as they correspond to simpler values
used when creating the phantoms. A 4D OCE data sequence
is acquired at the indicated 52 positions in Fig. 1 for each
phantom.

The 4D OCE data sequence is pre-processed by detecting
the surface of the phantom as an intensity peak. Next, the
phase part is extracted since this data type includes infor-
mation on the wave travelling through our FOV. We crop
volumes along the depth axis (z-axis) to 250 px beneath the
surface and unwrap the phase between subsequent volumes.
Last, each volume is resized to 32 × 32 × 32 pixels along
the x-, y- and z-axes, respectively, to reduce computation
time and memory requirements. Note that we do not apply
any specific calculations for data pre-processing except for
phase unwrapping and only use phase data for training our
networks.

Deep learning methods To estimate gelatin concentration
based on 4DOCE data in an end-to-end fashion, we use a 4D
spatiotemporal convolutional neural network, which jointly
learns from the spatial and temporal dimensions by using
4D convolutions as the network operations. As a baseline,
we consider a densely connected neural network (DenseNet)
[7], due to its parameter and computational efficiency, which
is particularly relevant for the challenging problem of 4D
deep learning. Also, a similar architecture has been used for
gelatin concentration prediction based on 3D OCE data [8].
Next, we refine the architectures components, using our vali-
dation dataset. We use an initial convolutional part with four
convolutional layers, followed by our DenseNet architec-
ture, which consists of three DenseNet blocks with a feature
growth rate of 8. Each of the DenseNet blocks consists of
three convolutional layers, while each layer is connected to
all its proceeding layers within one block. To preserve the
input size throughout the convolutional layers, we use zero
padding of the inputs. For connecting the DenseNet blocks
and for downsampling of our input dimensions, we use aver-
age pooling layers with a stride of 2. Also, we use batch
normalization [9] for all our convolutional layers and employ
the rectified linear activation function for our network layers.
After the last DenseNet block, we employ a global average
pooling layer and connect the linear regression output layer
for predicting the gelatin concentration. Our final architec-
ture is shown in Fig. 2. Note that we used TensorFlow for
our implementation.

For our deep learning approach, we consider sequences
of ten subsequent volumes cropped from 4DOCE sequences
with a length of 90. During training, we loop through our
training data and randomly crop subsequences with a length
of 10 from the entire OCE sequences. In this way, we are able
to augment our training dataset size by using random tempo-
ral cropping during training. We do not apply any additional
data augmentation, such as rotations of the volumes.We train
our network for 1000 iterations with a batch size of 13, using
Adam for optimization combined with a mean squared error
(MSE) loss function between our predictions and the target
labels. For evaluation, we use ordered temporal crops and
average the results to obtain one final prediction for an entire
sequence.We randomly split our data to avoid overfitting.We
use data from four different phantoms from each concentra-
tion for training and data from two independent phantoms
from each concentration for test and validation, respectively.

Results

Mean and standard deviation for the predicted gelatin con-
centration are given in Table 1. Our results demonstrate that
performance is improved when more sequences are used. On
average, the gelatin concentration can be estimated with a
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Fig. 1 Experimental setup: a robot a drives a scanning profile along
the x- and y-axes. Shear waves are excited continuously inside a gelatin
phantom b through a needle connected to a piezoelectric actuator (c).
An OCT scan head (d) acquires volumes with a frequency of 831 Hz at

the positions indicated by the black rectangles on the image (right). Raw
data are reconstructed and pre-processed, and gelatin concentration is
estimated with a 4D deep learning network
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Fig. 2 Our architecture predicts gelatin concentration in an end-to-end
fashion using a 4DOCT sequence. The architecture consists of an initial
part with four convolutional layers, followed by three DenseNet blocks,

which are connected with transition layers. The last block is connected
to a global average pooling (GAP) layer, and the output is fed into the
regression output layer

Table 1 Results for predicting
gelatin concentration

Num. of sequences MAE (p.p.) rMAE (p.p.) PCC Inference time (ms)

1 (10 volumes) 0.715 ± 0.938 0.143 ± 0.188 0.973 21.65 ± 0.19

3 (30 volumes) 0.675 ± 0.819 0.135 ± 0.164 0.978 55.76 ± 0.15

9 (90 volumes) 0.655 ± 0.812 0.131 ± 0.162 0.980 148.6 ± 0.05

Each sequence consists of ten subsequent volumes which we input into our network. We evaluate a varying
number of sequences. Prediction results are average when multiple sequences are used

mean absolute error (MAE) of 0.66± 0.81 percentage points
and a Pearson correlation coefficient (PCC) of 98% with a
total input sequence length of 90 volumes. The relative mean
absolute error (rMAE) is 0.131 ± 0.162 percentage points.
Note that the rMAE is relative to the target’s standard devi-
ation.

The inference time ranges from22 to 149ms for sequences
of length 10, 30 and 90 volumes. Mean and standard devi-
ation for the predicted gelatin concentration with an input
sequence of 10 volumes are given in Table 2. Figure 3 shows
the spatial distribution of the estimated concentrations. Each
phantom has the same scale in percent concentration, and
the colored squares represent the measured volumes, and the
red crosshairs denote the position of the excitation. While
concentrations 10% and 17.5% show a slightly increased

error close to the origin of the waves, the remaining con-
centrations show a slightly increased error at inconsistent
positions. This indicates that single estimates are affected
by phantom inclusions or inhomogeneities. Hence, no clear
dependency between estimate accuracy and the relative posi-
tion with respect to the origin of the waves can be derived.

Conclusion

We demonstrate that elastic properties can be estimated from
4DOCEdata usingdeep learning.Our newapproachuses fast
volumetric imaging of shearwave fieldswithout any assump-
tions regarding the spatial wave propagation and no need for
temporal triggering and binning. Considering a data acqui-
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Table 2 Mean and standard
deviation in estimating gelatin
concentration with a sequence
length of ten subsequent
volumes

Gelatin concentration 5% 7.5% 10% 12.5% 15% 17.5% 20%

Mean estimation [%] 5.47 7.59 9.80 12.77 13.60 17.25 19.67

Mean estimation error [p.p.] 0.55 0.31 0.89 0.65 1.40 0.52 0.67

SD 0.93 0.70 0.95 0.87 0.81 0.66 1.19

Fig. 3 Heat maps show distribution of gelatin concentration estimations. The red ‘x’ indicates the excitation position of the shear waves

sition time of approximately 12 ms and an inference time of
approximately 22 ms, elastography can be realized with up
to 40 Hz and small delays. Hence, the proposed setup would
be particularly interesting for clinical applications outside
controlled laboratory environments.
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