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Global health effects of future atmospheric
mercury emissions
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Stephanie Dutkiewicz2, Huanxin Zhang3,4, Shiliang Wu4,5, Feiyue Wang 6, Long Chen 7,

Shuxiao Wang 8,9 & Ping Li10

Mercury is a potent neurotoxin that poses health risks to the global population. Anthro-

pogenic mercury emissions to the atmosphere are projected to decrease in the future due to

enhanced policy efforts such as the Minamata Convention, a legally-binding international

treaty entered into force in 2017. Here, we report the development of a comprehensive

climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury

and its application to project the health effects of future atmospheric emissions. Our results

show that the accumulated health effects associated with mercury exposure during

2010–2050 are $19 (95% confidence interval: 4.7–54) trillion (2020 USD) realized to 2050

(3% discount rate) for the current policy scenario. Our results suggest a substantial increase

in global human health cost if emission reduction actions are delayed. This comprehensive

modeling approach provides a much-needed tool to help parties to evaluate the effectiveness

of Hg emission controls as required by the Minamata Convention.
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Mercury (Hg) is a global pollutant, and its organic form,
methylmercury (MeHg) is associated with neurocog-
nitive deficits in human fetuses and cardiovascular

effects in adults1,2. Human exposure to MeHg is predominantly
via the consumption of food (e.g., seafood and rice)3,4. The
annual death from the fatal heart attack that is attributable to
MeHg exposure is estimated to be over 10,000 in China5. Eco-
nomic losses from intelligence quotient (IQ) decrease of devel-
oping brains associated with MeHg exposure has been estimated
at $16 billion in the U.S. and European Union3,5,6. To protect
human health and the environment, the Minamata Convention
on Mercury, a legally-binding international treaty, took effect in
August 2017 to reduce anthropogenic emissions of Hg (https://
www.mercuryconvention.org).

Future projections of global primary anthropogenic Hg emis-
sions vary drastically driven by underlying social-economic and
technological change7,8. The re-emissions from soils and oceans
that receive past atmospheric depositions of Hg (legacy emis-
sions) are also important sources, the magnitude of which is 2-3
times larger than the primary anthropogenic emissions9,10. The
MeHg exposure is influenced by a chain of processes including
atmospheric emission, atmospheric transport and deposition, air-
sea exchange, air-land exchange, chemical transformation (espe-
cially Hg methylation), food web transfers, and human food
intake11. These processes are modulated by the fluctuation and
change in climate, land-use, ocean circulation, and ecosystem
functions12,13. Earlier studies do not link emissions to exposure
changes3,14–17. Later efforts in global Hg exposure modeling have
considered only a subset of these processes. For instance, using
atmospheric transport models, atmospheric deposition is con-
sidered as an indicator for the level of MeHg in seafood5,11,13.
Zhang et al.13 included the impact of changing climate, land-use,
and land-cover on atmospheric transport and deposition, and
Amos et al.18 and Angot et al.19 considered the response of land/
ocean re-emissions to anthropogenic emission change with a
box model.

In this study, we develop a more comprehensive approach to
project the change in human MeHg exposure responding to Hg
emission changes. We integrate changes in anthropogenic emis-
sions, climate, and biogeochemical cycles. We use a coupled
three-dimensional atmosphere/ocean and two-dimensional land
model. The Hg/MeHg levels in the environment are used to scale
an intake inventory of MeHg for different countries, which are
further used to calculate the health impact based on
epidemiology-based dose-response relationships (see “Methods”
for details). We present a map of MeHg-related health risks for all
the countries. Based on this, we translate future Hg emission
projections into health risks, and to help parties and stakeholders
to evaluate impacts from changes in Hg emissions.

Results and discussion
Baseline Hg-related health risk. We estimate that the global
health impacts associated with MeHg exposure for the general
population are $117 billion (2020 USD adjusted by purchasing
power parity, PPP), contributed by 1.2 × 107 points of IQ
decrements (0.086 point per-fetus) and 29,000 deaths per year at
present-day. We include two health endpoints as a consequence
of food MeHg exposure: decrement in IQ of newborns and fatal
heart attack (FHA) for general populations. The IQ decrement is
transferred to lifelong earnings loss based on the projections of
the population and economic growth of each country3,20. The
economic loss from FHA is calculated based on a value of sta-
tistical life (VSL) approach, which is scaled by the PPP adjusted
per-capita GDP value of individual countries11. The exposures
from seafood (including fish and aquatic animals), freshwater fish

(also including other aquatic animals), and rice consumption are
included here with the MeHg concentrations from literature (see
Method for more details and the Supporting Information for
detailed data).

We find that the MeHg exposure and health risk are associated
with the food intake structures of different countries. Coastal
countries with large seafood consumption have the largest MeHg
exposure, and rice and freshwater fish consumption are non-
negligible in some countries (Fig. S5). The highest per-capita
seafood MeHg exposure is found in countries with large seafood
consumption, such as the Maldives (33 μg/d), Greenland (16 μg/
d), Iceland (15 μg/d), and Kiribati (13 μg/d) (Fig. S5). The
national average per-capita seafood consumptions are 190, 89, 74,
and 48 kg/y for these four countries, respectively, which are much
higher than the global average of 15 kg/y (UN FAO, http://www.
fao.org). The lowest risk is found in inland countries with nearly
no seafood consumption, such as Ethiopia (0.0018 μg/d), Uganda
(0.0093 μg/d), and Chad (0.014 μg/d). The MeHg exposure from
rice is the highest in Southeast Asian countries such as Indonesia
(1.7 μg/d), Laos (0.90 μg/d), and Cambodia (0.77 μg/d) (Fig. S5).
The contribution of rice to MeHg exposure has previously been
found in communities relying on rice grown in areas heavily
contaminated with Hg4,21, whereas our findings highlight the
potential importance of rice consumption for the general
population. We find the contribution from rice could be
dominant in inland countries with large rice consumptions, e.g.,
Nepal (58%), Afghanistan (50%), and Bhutan (45%). The spatial
distribution of the consumption of freshwater fish is similar to
that of rice, and the exposure is the highest in Asian countries
such as Cambodia (6.3 μg/d), Myanmar (3.5 μg/d), and Japan
(2.9 μg/d). The MeHg exposure from this pathway is also
influenced by the fish MeHg concentrations, which causes
relatively high exposure over countries such as Russia (3.5 μg/d)
and Finland (3.2 μg/d).

The total health risk of MeHg reflects the total exposure of the
above-discussed pathways. The associated IQ decrease per-fetus is
the highest in the Maldives (1.2 points), Greenland (0.60 points),
and Iceland (0.56 points), where the exposure from seafood is
high. The risk is the lowest in Uzbekistan (0.0040 points),
Tajikistan (0.0036 points), and Ethiopia (0.0012 points), where
the consumption of fish and rice are both low (Fig. 1a). Figure 1c
shows the economic loss due to IQ reduction of newborns.
Besides MeHg exposure, the loss reflects the birth rate and
income level of countries. The US ranks first by losing $12 billion
per year, followed by China ($7.3 billion), Japan ($6.2 billion),
and Russia ($2.9 billion). The spatial pattern of the deaths
associated with FHA (Fig. 1b) is quite different from that of IQ
decrement but reflects the total population and baseline FHA
incidence. The most deaths are from populous countries with
mild to high per-capita risks, such as China (5600 per year),
Russia (3200), Indonesia (3200), and India (2300). Taking into
the difference in VSL per death puts Russia the first place ($9.1
billion) in economic loss from this pathway, followed by the USA
($9.0 billion), China ($7.7 billion), and Japan ($3.2 billion)
(Fig. 1d). Combining the two endpoints results in that the US
suffers from a total loss of $21 billion per year, followed by China
($15 billion), Russia ($12 billion), and Japan ($9.3 billion)
(Fig. 1e). Asia ($48 billion), Europe ($34 billion), and North
America ($23 billion) have 90% of the global health risk, with
Africa ($6.4 billion), South America ($5.4 billion), and Oceania
($1.5 billion) contributing the remaining 10%.

Our study estimates the health risk associated with MeHg
exposure based on food intake inventory and food MeHg
concentrations for individual countries at a global scale. Valida-
tion data remain sparse but our estimate generally agrees with
previous regional-scale studies for China, US and Europe. Our
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results for the Chinese population (0.11 point IQ decrease per
fetus and 5600 FHA deaths per year) are slightly lower than Chen
et al. (2019) (0.14 points per fetus and 7360 deaths), as we exclude
the exposure from other food such as pork, beef, and eggs, which
have negligible contribution to the total exposure (except for the
eggs and meat from fish-eating seabirds that are consumed by
some indigenous populations, e.g., Evers et al. (2003), but there is
limited data and may be not important for general populations)22.
We estimate the per-capita MeHg exposure from seafood
consumption for the US population is 11 μg kg body wt−1 a−1,
which agrees with the estimate of Mahaffey et al. (2004) and
Sunderland (2007): 7.3–11 μg kg−1 a−1. We estimate a total of
500,000 points per year of IQ decrements in the US at present-day,
which is higher than previous estimates (264,000–285,000 points
per year)6,23, but our estimate (720,000 points) for Europe agrees
well with Bellinger et al. (2013), who calculated 640,000 points of
IQ loss based on hair Hg concentrations among women of
reproductive age.

The modeled spatial pattern agrees with the distribution of Hg
biomarkers in general populations from individual countries
(Fig. S4). We estimate the hair and blood Hg concentrations based
on the total food MeHg exposure and pharmacokinetics models
(see Method for details), and evaluate them against available
human biomarker data in literature as summarized by Basu et al.
(2018). The estimated blood Hg concentrations among the 40
countries where data are available are 2.5 ± 1.8 μg/L (mean ±
standard deviation), consistent with measured values (2.2 ±
2.1 μg/L) with a correlation coefficient of 0.71 (Fig. S4). The
measured highest mean blood Hg concentrations are found in
Greenland (9.2 μg/L), which is well captured by our estimate
(10 μg/L, rank = 1st). High blood Hg concentrations are also
measured in Cambodia (9.1 μg/L), Spain (6.0 μg/L), Japan (5.1 μg/

L), and South Korea (4.0 μg/L), and our estimates agree with these
measurements (4.8, 3.4, 5.5, and 4.6 μg/L, respectively). A lower
correlation coefficient (0.53) is calculated for the estimated
and measured hair Hg concentrations (n= 38), but the estimate
(0.40 ± 0.27 μg/g) is within a factor of ~2 from the measured data
(0.76 ± 0.48 μg/g) (Fig. S4). In addition to the MeHg exposure, the
biomarker level subjects to the variability of pharmacokinetic and
intrinsic (such as genetics) factors24,25. Overall, our results show
that human Hg biomarker levels could be explained by the food
Hg exposure for general populations from individual countries,
supporting our approach can be used to assess the baseline risk at
present-day and its projection in the future.

Future Hg emissions. Figure 2 shows global anthropogenic Hg
emissions projections under different scenarios. The global total
anthropogenic Hg emissions are 1890 Mg yr−1 in 2010 with
artisanal and small-scale gold mining (ASGM, 37%) and fossil
fuel combustion (25%) as the two largest sources followed by
non-ferrous metals production (10%) and cement production
(9%)26. Streets et al. (2009) projected Hg emissions to increase to
4900 and 3900 Mg yr−1 in 2050 under the A1B (business as
usual) and A2 (a divided world) scenarios, respectively, driven by
the increase of coal combustion in developing countries. In a
New Policies (NP) scenario, Pacyna et al.8 projected the emis-
sions to decrease to 1020 Mg y−1 in 2035. Part of the emission
reduction is from fossil fuel combustion and cement production
resulting from the co-benefits of greenhouse gas emission con-
trol. The Hg emissions from Hg-containing products are also
projected to reduce by 70% in 2035 compared to the
2010 situation, and the use of Hg in ASGM is reduced by 46%8.
In a Maximum Feasible Reduction (MFR) scenario, the global
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Fig. 1 Global health impact of methylmercury (MeHg) food exposure at present-day. (a) Per-fetus intelligence quotient (IQ) decrement; (b) Fatal heart
attack deaths; (c) Economic loss from IQ decrease; (d) Value of statistical life (VSL) loss from fatal heart attacks; (e) Total loss from MeHg exposure (the
sum of (c) and (d)). Economic losses are in United States (US) dollars (2020 value and adjusted by purchasing power parity). The gray area indicates
missing data and the color scale of (c)–(e) is in the logarithmic scale.
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emissions are projected to reduce to 300 Mg y−1 with the Hg-
containing product and ASGM emissions reduced by 95% and
76%, respectively8. The best available technologies are assumed
for the industrial and energy sectors without constraints in the
economy and increasing demand. Although it was considered an
unrealistic scenario for 20358, we treat it as an optimistic pro-
jection for 2050. We refer to this trajectory as the MFR scenario.
We also delay the NP scenario from 2035 to 2050 to represent a
slower emission reduction pathway (referred to as the NP-
Delayed scenario). As a reference, a close to constant emission
scenario (except a slight increase of emissions to 1960 Mg yr−1 in
2035) is considered following the Current Policy (CP) scenario of
Pacyna et al.8. This assumes that the increase in emission activity
is balanced by the decrease of emission factors due to continuous
emission control8.

Future MeHg exposure. We use environmental Hg levels to scale
the food Hg concentrations consumed by the general population
in the future under various emission change scenarios. The MeHg
concentrations in freshwater water fish are influenced by those in
their prey and ultimately by river/lake water MeHg levels, which
are not explicitly simulated by our integrated model. Instead, we
use the atmospheric deposition as a proxy as it is the major source
of Hg in surface waters27. The rice MeHg concentrations are
scaled by soil Hg concentrations due to the strong correlation
between them28. We use the planktonic MeHg concentrations as
a proxy for seafood because the uptake from seawater by plankton
represents the largest concentration increase for MeHg bio-
magnification in marine food webs29.

We find that atmospheric Hg deposition and marine
planktonic MeHg are highly sensitive to future Hg emissions
(Fig. 3). The atmosphere, ocean, and their exchange are simulated
by the GEOS-Chem and MITgcm models, both driven by the
meteorological/ocean physical data from climate models. The
marine plankton biomass and community structure are modeled
by an ecosystem model (see “Methods” for more details and a
model evaluation against observations is in Figs. S1–3). The
model simulates higher deposition over source regions (e.g., East
Asia, West Europe, and North America), regions covered with
forests that have larger dry deposition velocity (e.g., South
America), and over ocean regions with high precipitations
(Fig. 3a). Higher planktonic MeHg concentrations are modeled

over productive regions (e.g., high-latitudes and the eastern
tropical oceans) (Fig. 3c). The model projects that the MFR and
NP-Delayed scenarios reduce the atmospheric deposition in 2050
by 48% and 28%, respectively, compared to the CP scenario.
Overall, the decrease of Hg deposition is smaller than that of
anthropogenic emissions (85% and 48%, respectively, Fig. 2)
because primary emissions only account for 20-30% of total
atmospheric Hg emissions10. Similarly, the A1B and the
A2 scenarios project an increase of primary atmospheric
emissions by 150% and 99%, respectively, which only translate
to an increase of deposition by 87% and 59%, respectively. The
percentage change of planktonic MeHg concentrations is similar
to atmospheric deposition, since inorganic Hg, which is the
substrate of MeHg in the seawater, is mainly from atmospheric
deposition30. The percentage changes for different regions are
predicted to be fairly uniform. Contrasting to atmospheric
deposition, the changes in soil Hg concentrations are much
smaller, ranging from −3% to 4% for different scenarios in 2050.
This is because of the large mass and long lifetime of Hg in this
reservoir31,32.

Health effects. The CP scenario projects a flat trend for the global
total IQ decrease until 2050 (an increase from 11.1 to 11.6 × 106

pts during 2010–2050) (Fig. 4a), reflecting similar trends in both
total MeHg exposure (Fig. 3) and new birth number (World
Population Prospects: https://population.un.org). We find the
changes in future primary anthropogenic emissions are sub-
stantially dampened for their health effects. The total IQ decrease
in 2050 predicted by the MFR and NP-Delayed scenarios are 24%
and 15% lower than that of the CP scenario, respectively, even
though the anthropogenic emissions have been projected to
decrease by 85% and 48%, respectively. The A1B and
A2 scenarios predict a 51% and 34% increase in the IQ effect,
respectively, whereas the changes in primary emissions are 150%
and 99%, respectively.

The global population is projected to increase by ~40% to 9.7
billion in 2050 (World Population Prospects), which translates to
the projected FHA deaths associated with MeHg exposure by 43%
to 40,000 per year for the CP scenario. This results in a
cumulative death of 1.6 million during 2010-2050. The increase in
total population also cancels the decreasing trend in per-capita
exposure of the MFR and NP-Delayed scenarios. The projected
trajectory for the deaths of these two scenarios is quite flat, with a
cumulative death of 1.4 and 1.5 million, respectively (Fig. 4b). In
contrast, the projected deaths for A1B and A2 scenarios are 120%
and 94% higher than the level in 2010, amounting to a cumulative
death of 2.0 and 1.9 million, respectively.

The economic valuation of these two health endpoints relies on
the projection of the global economy. We adopt the middle-of-
the-road pathway projected by the Shared Socioeconomic Path-
ways (SSP2) in the 21st century (https://tntcat.iiasa.ac.at/SspDb).
Due to the increase in per-capita GDP, the total economic loss of
the CP scenario is projected to increase by a factor of 2.3, and the
loss for the strictest emission reduction scenario, MFR, also
increases by a factor of 1.4 (Fig. 4c). The cumulative economic
loss for the CP scenario is $19 trillion (2020 USD, discounted to
2050 at a rate of 3%). The projected health benefits of the MFR
and NP-Delayed scenarios compared to the CP scenario are $2.4
trillion and $1.5 trillion, respectively. On the other hand, the A1B
and A2 scenarios will result in an additional loss of $4.9 trillion
and $3.3 trillion, respectively. The two health endpoints
contribute roughly equally to the total loss; however, the
contribution from the VSL of FHA becomes more dominant
(60%) in 2050 due to a faster increase in total population than
new birth.
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Uncertainty. We assess the uncertainty and variability of the
health effects projected by our integrated model by identifying
key driving factors, including food consumption data, food MeHg
concentrations, dose-response parameters linking MeHg expo-
sure and health effects, and economic valuation (Fig. 5). We rely
on the database of the United Nations’ Food and Agriculture
Organization (FAO, http://www.fao.org) for food consumption.
Compared with national data, the two data sources generally
agree within a factor of 2 (Figure S6). This reflects both the
different survey methods and variability among the
population33,34. This results in a variability of cumulative

economic loss for the CP scenario as $10 to $27 trillion (95%
confidence interval in 2020 value and realized in 2050, same
thereafter). This variability also propagates to the estimated
benefits (or extra costs) for other scenarios (Fig. 5). By con-
sidering the log-normal distributions of food MeHg data, the
cumulative effects for the CP scenario would range from $12 to
$31 trillion. This indicates that the food intake and MeHg data
contribute roughly equally to the uncertainty of exposure calcu-
lation. We find that the dose-response functions between MeHg
intake and health effects have the largest contribution to the
uncertainty, ranging from nearly $7.8 to $47 trillion. This reflects
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the large variability in the coefficients for IQ decrement and heart
attack risk per unit hair Hg increase11,35, despite convincing
evidence for the association between MeHg exposure and human
health impact36. The pharmacokinetics parameters to link food
exposure to blood and hair Hg levels play a much smaller role
with a variability of 10–20%. Another source of uncertainty
comes from the parameters for economic valuation, especially the
VSL of heart attack deaths (a factor of 10)11. Using high and low
assumptions for the economic valuation leads to a range of
$5.8–24 trillion for the health effect of the CP scenario. By taking
a Monte Carlo approach (see Methods), we also calculate the
overall uncertainty range as $4.7–54 trillion.

Our ability to model the MeHg exposure and risk is limited by
existing scientific knowledge and data, such as the food web
dynamics of MeHg in higher trophic levels and the dose-response
relationships between MeHg exposure and its health effects
(Fig. 5). The future Hg emissions to water and soil are subjected
to change37. We only consider the general populations, but not
the so called high exposure population groups24. The fishery
harvest and human food consumption patterns will also change
in the future38. Our results do not show strong interannual
variability for environmental Hg levels on a global scale, but the

change in dietary structure and food web dynamics in high
trophic levels that are not covered in this model may amplify
these variabilities, especially at regional scales39. The permafrost
stores a large amount of Hg and may serve as a potential Hg
source as a consequence of thawing31. There are likely other
health endpoints not considered in this study due to the limited
epidemiological data36. Our assessment is thus considered
illustrative and not a comprehensive projection of impacts.
However, much uncertainty of the model framework could be
reduced using a similar methodology as science and data evolve.

Policy implications. This study develops and applies a compre-
hensive climate-atmosphere-land-ocean-ecosystem and exposure-
risk model framework for global toxic pollution from Hg. We
show that the annual global health risk associated with MeHg
exposure at present-day is $117 billion (2020 value), contributed
by 1.2 × 107 points of IQ loss and 29,000 heart attack deaths per
year. By 2050, the cumulative health effects are projected to be
$19 ($10–27 as uncertainty range) trillion (discount rate of 3% to
2050). Compared to the CP scenario, the MFR and NP-Delayed
scenarios have benefits of $2.4 and $1.5 trillion, respectively,
while the A1B and A2 scenarios have additional losses of $4.9 and
$3.3 trillion, respectively.

Food intake structure is an important factor for MeHg
exposure and risk. Globally, seafood consumption contributes
56% to the total MeHg exposure, with freshwater fish and rice
contributing 34% and 10%, respectively. Coastal and island
countries with access to more seafood have the largest seafood
consumption and they will have the greatest health benefits if Hg
emissions are reduced in the future. Freshwater fish consumption
is the highest in Asian countries, where fish is often raised in rice
paddies40. The rice consumption in these countries is also high.
Despite the elevated MeHg exposure risk, the overall health
effects of fish consumption may be positive if considering the
intake of n-3 polyunsaturated fatty acids, vitamins, and other
nutrients41. Another important influencing factor is the trophic
level of fish/aquatic animals. The mean Hg levels vary for ~10
times between the lowest and highest trophic levels, much larger
than the impact of water types and whether wild-caught or farm-
raised (Fig. S7). Dietary guidance on fish selection but not the
total fish consumption is the rule of thumb to minimize the
overall health risks, especially considering the nutrient effects of
fish42,43. For countries with the least MeHg exposure as found in
this study, such as Ethiopia, Tajikistan, and Afghanistan, which
are listed as the countries with serious levels of hunger (Global
Hunger Index: https://www.globalhungerindex.org). In these

a. Total Decreased IQ Points b. Total Heart Attack Deaths c. Total Loss 

Fig. 4 Trajectories of global annual health effects associated with different future emission scenarios. (a) Total intelligence quotient (IQ) decrements of
newborns; (b) Total heart attack deaths; (c) Economic valuation of health effects: total valuation (solid lines) and from IQ decrements (dashed lines). Five
scenarios are included: A1B (business as usual), A2 (divided world scenario), CP (current policy), NP-Delayed (new policy delayed), and MFR (maximum
feasible reduction).

CP 

MFR 

NP-Delayed 

A1B 

A2 

10 20 30 40 50 60 

Cumulative economic loss to 2050 (Trillion 2020 USD)  

Food Consumption 

Economic Valuation 

Dose-Response 

Food Hg 

0 

Fig. 5 Range in cumulative health impacts (unit: US dollars in 2020
value) to 2050 for the CP (current policy), MFR (maximum feasible
reduction), NP-Delayed (new policy delayed), A1B (business as usual),
and A2 (divided world scenario) scenarios. Bars indicate the sensitivity of
cumulative health effects to high and low case assumptions for uncertain
parameters (as 95% confidence intervals): food consumption, economic
valuation, dose-response parameterization, and food methylmercury
concentrations. The black lines are our best estimates.
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countries, the MeHg exposure risk of fish consumption is even
more outweighed by its nutrient benefits44. We suggest that the
Hg level in rice is the most recalcitrant to emission reduction
among the three major food categories, and the global
contribution from rice consumption could increase to 23% in
2050 under the MFR scenario, which makes limiting rice
consumption may be a more important Hg exposure mitigation
strategy then.

This study focuses on the MeHg exposure of the general
population. Significantly higher exposure and biomarker levels
are found for populations exposed to Hg from point sources (e.g.,
ASGM workers) and populations with high seafood consumption
(e.g., Arctic populations that consumes a lot of marine mammals,
tropical riverine communities, and coastal and/or small-island
communities)24. Although we do not include these two groups
due to the lack of global-scale data, to include them will
supplement our estimate of MeHg exposure and health risk. With
the future improvement of spatial resolution in exposure and risk
modeling, our model could also be a useful tool to identify
populations that are vulnerable to Hg exposure45.

We show that the cumulative health effects realized within the
2050 time horizon are not responding linearly with emission
changes. The MFR scenario with a rather low emission level in
2050 (300 Mg yr−1) is only 13% lower than the CP scenario. This
is associated with the relatively small change in emissions
between the two scenarios in the early years (e.g., during
2010–2025), which contributes a large portion to the cumulative
health effect realized in 2050 due to its compound interest.
Delaying the MFR scenario (i.e., the NP-Delayed scenario) would
further reduce the benefit by 38%, not to mention the
substantially increased health effects projected for the A1B and
A2 scenarios. Even though these estimates are very sensitive to
choices of the temporal scope of analysis and evaluation
parameters (e.g., VSL, discounting rate)11, our results demon-
strate the necessity of emission reduction sooner.

The inclusion of land and ocean in our model enables us to
directly model the contribution of legacy sources (re-emissions
from soil and ocean) without using a scale function46 or box
models19. The inclusion of the ocean model coupled with the
plankton ecosystem in our integrated model is of great interest
because seafood consumption is the major exposure pathway in
most countries (Fig. S5). The marine plankton and soil Hg
concentrations are better proxy data to scale the future change of
seafood and rice Hg levels, respectively, than atmospheric
deposition that is often employed in previous studies5,11.

Our model framework provides a much-needed tool for parties
to evaluate the effectiveness of the implementation of the
Minamata Convention, especially to assess the response of

environmental Hg levels to emission reduction and its implica-
tions to human exposure and health risk. Detailed scenario
studies using our model framework could be conducted to
evaluate and prioritize the health benefits of individual policy
measures. For example, as the largest emission source, the control
of ASGM is left decided for individual parties and the future
emissions have large uncertainty. Our model framework would
assist related countries to make their national action plans.

Methods
Mercury transport model. We develop a model framework to simulate the fate and
transport of Hg in the Earth system that includes climate, atmosphere, land, ocean,
and marine ecosystem (Fig. 6). Three-dimensional atmospheric (GEOS-Chem) and
oceanic (MITgcm) transport models for Hg are coupled online with a two-
dimensional terrestrial mercury model (GTMM). These models are driven by pre-
dicted meteorological and ocean circulation data from climate models (GISS GCM
ModelE2 and IGSM, respectively). Biogeochemical parameters important for Hg
transformation are taken from a marine plankton ecosystem model (Darwin), which
is also driven by the IGSM model. The details of these models are elaborated below.

We use the output of the Integrated Global System Modeling (IGSM)
framework for the future climate simulated by Sokolov et al.47 and Dutkiewicz
et al.48. Briefly, the model framework includes a three-dimensional ocean model
that has a horizontal resolution of 2° × 2.5° and 22 vertical levels from 10 m in the
surface to 500 m at depth, and a two-dimensional (latitude and height) atmosphere
physical and chemical model. The framework has a terrestrial component with
hydrology, vegetation, and natural emissions. The model is run with a pre-
industrial level of greenhouse gas concentration for 2000 years as spin up and then
for 1860–2000 with observed GHG levels. For the 21st century, a business as usual
scenario (close to IPCC AR5 RCP8.5 scenario) is assumed for anthropogenic
emissions. We use the IGSM archived monthly mean ocean physics data such as
seawater temperature, ocean current velocities, and mixing conditions to drive the
MITgcm model48.

As the IGSM only contains a two-dimensional atmosphere module, we use the
archived future climate data simulated by the NASA Goddard Institute for Space
Studies (GISS) general circulation model (GCM) (ModelE2) to drive the GEOS-
Chem model49. The model has a horizontal resolution of 2° × 2.5° for the
atmosphere, land surface, ocean, and sea ice models. The three-dimensional
atmosphere model has 40 vertical levels from the surface to 0.002 hPa (~85 km
altitude). The greenhouse gas concentrations are specified following the IPCC AR5
RCP8.5 scenario. The meteorology fields such as temperature and precipitation are
archived with a frequency of 3–6 h. The discrepancies between these two climate
models are minimal due to the similar pathways of greenhouse gas concentrations
in the 21st century.

The ocean biogeochemistry and ecosystem data are from the Darwin model
within the MITgcm framework simulated by Dutkiewicz et al.48 during the 21st
century. This model is driven by the archived ocean physics fields from the IGSM.
The transport of inorganic and organic forms of carbon, nitrogen, phosphorus,
iron, and silica are included. The model includes six phytoplankton functional
groups and two zooplankton grazers (namely diatoms, other large phytoplankton,
diazotroph, coccolithophore, Prochlorococcus, Synechococcus, and small and large
herbivorous plankton). The model simulates biogeochemical processes including
phytoplankton growth, zooplankton grazing, zooplankton mortality, and the
formation and transformation of particulate and dissolved organic matters. The
monthly mean concentrations of organic carbon and plankton biomass, and the
rates of plankton growth, grazing, and mortality are archived to drive the Hg
component of the model.

Fig. 6 The model framework used in this study. Blue boxes represent models while arrows indicate data flows. Models with dashed boxes are run by
previous studies and we directly use their archived output, while those with solid lines are run in this study. Black arrows mean feeding of archived data
from one model to another (i.e., models are run separately), while green arrows mean running two models simultaneously with online data exchange.
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We simulate the chemistry, transport, and trophic transfer of Hg in the ocean
using the MITgcm following Zhang et al.30. The model is driven by ocean physics
data from the IGSM and biogeochemical parameters from the Darwin model. The
model has the same grid as the ocean component of the IGSM. The model
simulates 14 tracers that include elemental Hg, oxidized Hg, monomethylmercury
(MMHg), dimethylmercury (DMHg), particulate-bound inorganic Hg, and
particulate-bound MMHg, and MMHg in plankton (six phytoplankton groups and
two zooplankton types). The model includes a detailed photo- and biological
mediated redox chemistry of inorganic Hg, and the transformation with
methylated Hg species. The bioaccumulation and biomagnification of MMHg in
the marine plankton food web is simulated following Zhang et al.30.

The atmospheric chemistry and transport of Hg are simulated by the GEOS-
Chem model following Horowitz et al.10. The model is based on version v9-02
(www.geos-chem.org). The model has the same resolution as the GISS GCM
ModelE2 model and is driven by its archived meteorology fields. The simulated
chemistry includes three forms of Hg in the atmosphere: gaseous elemental,
gaseous oxidized, and particle-bound Hg. The redox chemistry of Hg is modeled
following Horowitz et al.10. The chemistry includes two-stage oxidation of
elemental Hg by bromine atoms and photoreduction of oxidized Hg in cloud
droplets. Concentrations of related chemical species are taken from GEOS-Chem
simulation of tropospheric oxidant-aerosol chemistry50. The model also includes
geogenic and biomass burning sources, as well as reemissions from snow
reservoirs10.

The soil pool and land-atmosphere exchange of Hg are simulated using the
GTMM model32. The model has a horizontal resolution of 1°x1° and covers the top
30 cm of soils. The model takes the atmospheric deposition of both elemental and
oxidized Hg from GEOS-Chem as input. This part of Hg is assumed to be loosely
adsorbed to soil and leaf surfaces and undergoes photoreduction and
revolatilization. Part of the Hg can reach to soil pool through litterfall. The model
considers four soil Hg pools that are tied to carbon pools with characteristic
turnover time ranged from 100 to 104 years. Hg bound to different soil carbon
pools can be transformed between each other, and Hg is released to the atmosphere
when the soil carbon is respired by microbial activities. The model is run for 30,000
years with atmospheric deposition at pre-industrial levels before ramped up with
monthly deposition from 1840 to 200032.

The GEOS-Chem, GTMM, and MITgcm Hg models are online two-way
coupled using a coupler (NJUCPL) following Zhang et al.51. With a frequency of
60 min, atmospheric Hg concentration and deposition data are passed from GEOS-
Chem to GTMM and MITgcm, and soil re-emission and ocean evasion fluxes are
passed from GTMM and MITgcm to GEOS-Chem, respectively. The initial
conditions of these models are taken from previous simulations for the present-
day10,30,32.

The total anthropogenic Hg emissions for the future are taken from Streets
et al.7 and Pacyna et al.8. Five policy scenarios are developed for the emissions
during 2010–2050 (Fig. 2). These global total emissions are spatially distributed to
each model grid based on the WHET emission inventory for 201052. The spatial
distribution and speciation of Hg emissions are assumed to keep constant during
the model period. The model is run from 2010 to 2050 for each emission scenario.

Mercury exposure modeling. Figure 7 summarizes the approach we use to esti-
mate MeHg exposure and risk. The MeHg exposure via three food categories is
considered in this study: seafood, freshwater fish (including aquatic animals), and
rice. Other types of food are ignored because of less data and much lower MeHg
concentrations. The per-capita consumption of different food categories (including
rice, total fish and aquatic animals) for each country is taken from the database of
the Food and Agriculture Organization of the United Nations (UN FAO, http://
www.fao.org).

A database for the average MeHg concentrations of these food categories is
developed by collecting available data from the literature (a full list of literature is
provided in the Supporting Information). There is a total of 210,000 data points
(208,000 for fish/aquatic animals and 6,400 for rice) collected from 395
publications (data handled by Microsoft Excel 2019). We exclude the data points
near point sources or contaminated sites. The fish/aquatic animals are further
divided into two categories: farm-raised and wild-caught with fractions from the
UN FAO database. Due to the large concentration variability and the lack of fish/
aquatic animals consumption data for individual species, we group the fish/aquatic
animals into four tropic level bins: 2–2.5, 2.5–3.5, 3.5–4.5, and 4.5–5, and the
geometric mean of MeHg concentrations for each trophic level bin is calculated.
The trophic level of each fish with reported MeHg concentration and consumption
data is from the Fishbase Database (https://www.fishbase.org). The fraction of fish
consumption for each trophic level bin is estimated based on the marine trophic
index if detailed consumption inventory is missing (http://www.seaaroundus.org/
mti-fib-rmti/). We use the global geometric mean concentrations for countries
without data. The total MeHg exposure (E) for the general population from each
country is calculated as:

E ¼ ∑
4

i¼1
IFW fish
i;j CFW fish

i;j þ ∑
4

i¼1
Iseafoodi;j Cseafood

i;j þ IriceCrice ð1Þ

where I and C are for food intake and MeHg concentrations, respectively, for each
category [freshwater (FW) fish, seafood, and rice] and trophic level bin i (2–2.5,
2.5–3.5, 3.5–4.5, and 4.5–5) (Fig. 7). The agreement with human biomarker data
suggests that our simplified exposure model works reasonably well.

Future mercury exposure. We scale the future population exposure of MeHg
based on the exposure level at present-day and the model-projected environmental
Hg levels (Fig. 7). Due to the lack of data, the food consumption pattern is held
constant during 2010–2050. The freshwater fish and rice MeHg concentrations for
individual countries in a given year are assumed to be proportional to the average
total Hg atmospheric deposition (D)5,11 and total soil Hg concentration (S)28 in the
corresponding country, respectively. For the seafood, we assume the MeHg
exposure of each country for a given year is proportional to the global average
plankton MeHg concentrations weighted by the spatial distribution of fish harvest
(P)53:

CFW fish
year ¼ CFW fish

2010

Dyear

D2010
ð2Þ

Crice
year ¼ Crice

2010

Syear
S2010

ð3Þ

Cseafood
year ¼ Cseafood

2010

Pyear

P2010
ð4Þ

Human health impact. We include two health endpoints in benefit estimates:
decrement in IQ of newborns and fatal heart attack (FHA)5,11,16. A linear dose-
response relationship without thresholds is recommended by the National
Research Council (NRC) between MeHg intake and fetal IQ decrements1:

ΔIQ ¼ γλβ ´ΔEDI ´BW ð5Þ
where ΔIQ is the changes in IQ (points), ΔEDI is the changes in estimated daily
intake (EDI) of MeHg, and BW is the average body weight for female adults. The
coefficients β (0.6 μg L−1 per μg day−1), λ (0.2 μg g−1 per μg L−1), and γ (0.3 IQ
points per μg g−1) convert from MeHg intake to blood concentration, blood
concentrations to hair concentrations, and hair concentrations to IQ decrements,

Fig. 7 Diagram for the approach and data sources for methylmercury exposure and risk calculation in this study. Blue frames represent model
calculated variables, while black ones are for literature data.
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respectively. The total IQ decrements are calculated by multiplying per-fetus IQ
decrements and the number of newborns, which are taken from the World
Population Prospects by the UN database (https://population.un.org). This data-
base includes projections of the total population of both sexes and newborns for
each country to 2100.

A log-linear dose-response relationship between MeHg intake and Hg-related
fatal heart attacks is used in this study5:

ΔCF ¼ ∑
g
POPg ´Cf g ´ω ´ 1� e�φλβ ´4EDI ´BW� �

ð6Þ

where ΔCF is the changes in the deaths from fatal heart attacks associated with
MeHg exposure, POPg is the population of gender g (male and female) from World
Population Prospects, and Cfg is the age-adjusted incidence of FHA of gender g
from Global Health Estimates by World Health Organization (http://www.who.int/
healthinfo/global_burden_disease). The coefficient φ (0.066 per μg g−1) converts
hair MeHg concentrations to fatal heart attack risks. The subjective coefficient ω
(0.33) represents the probability of the causality of the associations, reflecting the
substantial uncertainties due to limited epidemiological studies.

For model evaluation, we also calculated the averaged Hg concentrations in the
blood (Cblood) and the hair (Chair):

Cblood ¼ β ´EDI ´BW ð7Þ

Chair ¼ λ ´Cblood ð8Þ
The modeled Hg biomarker concentrations for individual countries are compared

with the geometric mean of measured data (961,000 data points) from 245
publications for 83 countries and regions (a full list of literature is provided in the
Supporting Information). The blood and hair Hg concentrations for general
population are used by excluding high exposure group data (high fish consumption
population or population exposed to point Hg sources such as ASGM and Hg mines).

Economic valuation. The IQ decrements are converted to monetary values using
$18,832 (2008 value) per IQ point normalized by the ratio between the PPP-
adjusted GDP per capita in each country and the US3. The economic loss from
FHA deaths associated with MeHg exposure is calculated by a value of statistical
life (VSL) approach. We adopt a VSL per death of $6.3 million (2005 value)
following Giang and Selin11. This value is also normalized by the PPP-adjusted
GDP per capita in each country. The sum of these two endpoints is calculated as
the total economic loss. The economic data is taken from the shared socioeconomic
pathways database that projects the GDP growth for each country in the 21st
century (https://tntcat.iiasa.ac.at/SspDb). We use the SSP2 scenario that assumes a
median level of GDP growth rate. A discount rate of 3% is used to realize the
economic loss from 2010-2050 to 205011.

Uncertainty analysis. We consider the contribution of the data and parameters for
food consumption, food MeHg concentrations, dose-effect relationship, and eco-
nomic valuation to the total uncertainty. We compare the food consumption data
from UN FAO with national datasets (details available in the Supporting Infor-
mation). The difference between them is used to represent the uncertainty range of
the FAO datasets. For food MeHg concentration, we use the variability of the log-
transformed concentrations in each food category to represent its uncertainty. We
use the ranges (or standard deviations) of the dose-effect relationship between
MeHg exposure and its health effect summarized by Chen et al.5 and Giang and
Selin11. For per-IQ earn loss, we use a high- and low-end value of $18,832 and
$8013, respectively11. The VSL per death ranges from $1 to $10 million following
Giang & Selin11. The overall uncertainty is estimated by a Monte Carlo approach.
The health risk calculation is repeated for 1000 times with randomly sampled
parameters for these four factors following Chen et al.5. The 2.5% and 97.5%
percentiles of the calculated risk are taken as the overall uncertainty range (i.e., 95%
confidence interval). The exposure and risk calculation and the associated uncer-
tainty analysis are conducted using Python 3.8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are available in the Supplementary
Information and the research group website: https://www.ebmg.online/mercury. FAO/
WHO global individual food consumption database: http://www.fao.org/nutrition/
assessment/food-consumption-database/en/. World population prospects: https://
population.un.org. Shared socioeconomic pathways database: https://tntcat.iiasa.ac.at/
SspDb. Global hunger index: https://www.globalhungerindex.org. Fishbase database:
https://www.fishbase.org. Marine trophic index: http://www.seaaroundus.org/mti-fib-
rmti/. Global health estimates: http://www.who.int/healthinfo/global_burden_disease.

Code availability
All model code is available at the research group website: https://www.ebmg.online/
mercury.
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