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Binary-phase acoustic passive logic 
gates
Yin Wang1, Jian-ping Xia1, Hong-xiang Sun   1,2,3, Shou-qi Yuan1 & Xiao-jun Liu   2

The recent rapid development of acoustic logic devices has opened up the possibilities of sound 
computing and information processing. However, simultaneous realization of acoustic logic devices 
with subwavelength size, broad bandwidth and passive structure still poses a great challenge. To 
overcome it, we propose a subwavelength acoustic logic gate which consists of binary-phase passive 
unit cells placed into a multi-port waveguide. Based on the phase manipulations of the unit cells, we 
experimentally and numerically realize three basic logic gates OR, NOT and AND, and a composite logic 
gate XOR with a uniform threshold of 0.4 Pa based on linear acoustic interferences. More importantly, 
We also design a composite logic gate XNOR by a four-port waveguide, and composite logic gates NOR 
and NAND and a logic operation A⊙(B+C) based on two logic gates. We demonstrate a 0.6λ-length, 
0.3λ-width, and 0.2-fractional bandwidth acoustic logic gate constructed by passive structures, 
which may lead to important advances in various applications, such as acoustic computing, acoustic 
information processing and integrated acoustics.

As major critical components in modern electronic integrated circuits, Boolean logic gates have attracted more 
and more attentions owing to its capability of implementing Boolean functions. Motivated by great potentials in 
next-generation photonic integrated circuits, the Boolean logic gates have been introduced in the field of optics1–9. 
By using photonic crystals2, nanophotonic plasmon networks4, and metal slot waveguide networks5,6, optical logic 
gates have been realized based on linear interferences of input and control signals with a certain phase difference9.

Inspired by the optical logic gates, the design of acoustic logic devices has also become a research hotspot 
owing to a variety of important potential applications10–17, such as acoustic computing, acoustic information 
processing and integrated acoustics. Based on a nonlinear dynamical effect of a driven granular chain composed 
of spherical particles, Li et al.13 have experimentally realized an acoustic switch and logic gates AND and OR. 
Beyond that, the rapid development of sonic crystals (SCs)18–22 and acoustic metamaterials (AMMs)23–29 has pro-
vided feasibility for realizing linear acoustic logic devices. By using the SCs, Bringuier et al.30 have designed logic 
gates NAND, XOR and NOT based on the linear interferences of input and control signals. Zhang et al.31 have 
theoretically proposed and experimentally demonstrated basic Boolean logic gates XOR, OR, AND and NOT by 
using self-collimated beams in the SCs with line-defects. However, the acoustic logic devices fabricated with the 
SCs inevitably involve large structure size at low frequency. By introducing density-near-zero AMMs32–34, a series 
of Boolean logic gates AND, OR, XOR and NOT and a logic operation have been realized based on two input 
signals with a certain phase difference35. Additionally, as a category of AMMs, acoustic metasurfaces with the 
characteristics of ultrathin planar structure and wholly controlled phase delay36–40 have been introduced to design 
acoustic analog computing systems for nth-order ordinary differential equations41. Moreover, the recent emerg-
ing acoustic topological insulators42–47 immune to backscattering has great significance for the development of 
acoustic logic devices. As an example, Xia et al.48 have proposed acoustic topological insulators with reconfig-
urable and programmable functionalities realize two types of acoustic switches and tunable logic gates OR and 
XOR. Furthermore, to realize acoustic logic gates with broad bandwidth, Zuo et al.49 have designed an acoustic 
logic gate based on multi-port circular waveguides, in which its working bandwidth is larger than 5 kHz and all 
logic functions and a complex logic operation can be realized by modulating signal phases. The aforementioned 
works have realized acoustic logic gates and operations with high efficiency. However, most of them have been 
designed based on active manipulations of the phases of input and control signals, and their structure sizes are 
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still large, which severely limits their integration and practical applications. Simultaneous realization of acoustic 
logic devices with subwavelength size, broad bandwidth and passive structure still poses a great challenge.

In this work, we propose a subwavelength acoustic logic gate which consists of binary-phase passive unit cells 
placed into a multi-port waveguide. Based on the phase manipulations of the unit cells, we design the basic logic 
gates OR, NOT and AND, and two composite logic gates XOR and XNOR with a uniform threshold of 0.4 Pa 
based on the linear acoustic interferences, and the fractional bandwidth (the ratio of the bandwidth to the center 
frequency) can reach about 0.2. The measured results agree well with the simulated ones. Finally, we also present 
the realizations of two composite logic gates NOR and NAND and a logic operation A⊙(B+C) based on two 
logic gates.

Results and Discussions
Design of acoustic logic gate.  As shown in Fig. 1a, the unit cell (with length l = λ/2 and width w = λ/10) 
consists of two symmetric Helmholtz resonator arrays and a straight channel50 with a tunable width w1, where 
λ is the wavelength. The cavity width w2 is determined by w1, and the other parameters l1 = 0.03 l, l2 = 0.225 l, 
w3 = 0.05w and w2 = w − w1 − 4w3. The unit cell filled with air is fabricated with epoxy resin to satisfy the sound 
hard boundary condition. The wavelength λ of input acoustic signals is selected as 10 cm (viz., frequency 
f0 = 3430 Hz in air).

Figure 1b shows the phase delays (blue solid line) and transmissions (red dashed line) created by the unit cells 
with different width ratios (w1/w). Note that, in the range 0.12–0.70, the phase delay of the unit cell can cover the 
whole 2π range, and the transmission is larger than 0.85. Here, the two selected unit cells I and II (black hollow 
dots) with the parameter w1/w of 0.22 and 0.69, which correspond to the transmissions TI = 0.94 and TII = 0.99 
and the difference of the phase delays ϕI − ϕII = π, are used to design acoustic logic gates.

As shown in Fig. 1c, we design an acoustic logic gate which consists of a symmetric three-port waveguide 
with a rectangular solid made of epoxy resins and two types of passive unit cells placed into two channels, in 
which the parameters d = 0.1λ and d1 = 0.055λ. Note that the width and length of the logic gate structure are only 
about 0.3λ and 0.6λ, respectively. When the unit cells in the channels A and B are different (shown in Fig. 1c), 
two output signals with out-phase characteristic produce the interference cancellation at the port O. However, 
the interference enhancement is obtained at the port O by placing the same unit cells into the channels A and B 

Figure 1.  Design of acoustic logic gate. (a) Schematic of a unit cell of phase manipulation based on two 
symmetric Helmholtz resonator arrays. (b) Phase delays (blue solid line) and transmissions (red dashed line) 
created by unit cells with different width ratios w1/w. (c) Schematic of acoustic logic gate. Red arrows at ports A 
and B represent same input signals, and black arrows are output signals.
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owing to the in-phase characteristic of output signals. Based on the linear acoustic interferences, we can realize all 
acoustic logic gates and complex logic operations.

Logic OR and XOR gates.  Figure 2 shows the simulated results for the logic gates OR and XOR, in which 
the unit cells II is placed into both channels A and B for the logic gate OR, but the unit cells I and II are used to 
design the logic gate XOR. Here, the same incident signals (with the initial amplitude of 1.0 Pa) are placed at the 
input ports A and B. The input state is expressed as {Q1, Q2}, in which Qi represent if there is (encode “1”) or not 
(encode “0”) acoustic signal from the respective input port. In addition, to determine the output states, we intro-
duce a uniform threshold At = 0.4 Pa. When the output amplitude is larger than At, the output state is 1/TRUE, 
while the output is 0/FALSE with the output amplitude smaller than At.

As shown in Fig. 2a,b, the output amplitude for the input state {1, 1} is about two times larger than those for 
the input states {1, 0} and {0, 1} in the logic gate OR (Fig. 2a), while that is almost zero for the input state {1, 1} in 
the logic gate XOR (Fig. 2b). Such a phenomenon is attributed to the interference enhancement and cancellation 
at the output port O owing to the phase manipulation of the unit cells, which is different from previous works 
based on external active manipulations of signal phases31,35,49. Figure 2c shows the bar charts of the output ampli-
tudes and the true table of the logic gates OR and XOR. By introducing the uniform threshold of 0.4 Pa, the output 
states are {1}, {1}, {1} and {0} for the input states {1, 1}, {0, 1}, {1, 0} and {0, 0} at the port O1, and {0}, {1}, {1} and 
{0} at the port O2, realizing the logic gates OR and XOR, respectively.

Logic NOT gate.  We also realize the logic gate NOT with the same structure as the logic gate XOR, in which 
A is the input port, and B is the control port with a constant signal. As shown in Fig. 3a, the output amplitude 
approaches zero for the input state {1} owing to the interference cancellation, while that is larger than 0.7 Pa for 
the input state {0}. With the uniform threshold of 0.4 Pa, the corresponding output states are {0} and {1} for the 
input states {1} and {0} (Fig. 3b), respectively, realizing the logic gate NOT. The corresponding input and output 
states are also clearly shown in the truth table.

Logic AND gate.  In addition to the logical gates constructed by the three-port waveguide structure, we 
design the logic gate AND based on a four-port waveguide structure, in which the rectangular solid at the center 
of the three-port waveguide (Fig. 1) is replaced by the channel C with the same size as the channel A. To realize 
the logic function AND, we introduce another passive unit cell placed into the channel C as the control port. 
Figure 4 shows the phase delays (blue solid line) and transmissions (red dashed line) of the unit cell with different 
cavity widths (l2), in which the parameter w1/w is a constant of 0.12. Here, we select the unit cell III (the param-
eters w1/w = 0.12 and l2 = 6.5 mm) with the transmission TIII = 0.71 and the phase delay ϕIII = ϕI + π/6, which is 
utilized to realize the output amplitude less than 0.4 Pa for the input state {0, 0} and the interference cancellation 
between the input and control ports.

As shown in Fig. 5a, the output amplitude is about 0.92 Pa for the input state {1, 1}, which is smaller than that 
of the logic gate OR (Fig. 2a). Such energy reduction arises from the weak interference cancellation induced by 
the control signal from the port C. Moreover, the output amplitudes are smaller than 0.4 Pa for the input states 

Figure 2.  Logic OR and XOR gates. Distributions of pressure amplitude field induced by logic gates (a) OR and 
(b) XOR for different input states, and (c) corresponding output pressure amplitudes and true table.
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{0, 1}, {1, 0} and {0, 0}, which is attributed to the interference cancellation induced by the signals from the port C 
and the ports A and B for {1, 0} and {0, 1}, and the sound energy propagating from the control port C to the other 
three ports for {0, 0}. Therefore, with the uniform threshold of 0.4 Pa, the output states are {1}, {0}, {0} and {0} for 
different input states (Fig. 5b), realizing the logic gate AND.

Working bands of basic logic gates.  The proposed logic gates have broadband characteristic. As shown 
in Fig. 6a, for the logic gate OR, the output amplitudes for the three input states are larger than 0.4 Pa, and its 
working band far exceeds the range 3140–3840 Hz (shadowed region) owing to the interference enhancement 
based on the phase manipulation of two same unit cells. However, the working bands are fixed in the ranges 
3140–3840 Hz for the logic gates XOR (Fig. 6b) and NOT (Fig. 6c) and 3270–3880 Hz for the logic gate AND 
(Fig. 6d). This is because the design mechanisms are closely related to the interference cancellation based on two 
different unit cells with the out-phase characteristic, and the phase difference of the two unit cells is determined 
by the frequency. Therefore, we have demonstrated the broad bandwidth of the logic gates, in which the fractional 
bandwidth can reach about 0.2 for the logic gates OR, XOR and NOT, and is 0.17 for the logic gate AND.

Figure 3.  Logic NOT gate. (a) Distributions of pressure amplitude field induced by logic gate NOT for different 
input states, and (b) corresponding output pressure amplitudes and true table.

Figure 4.  Performances of unit cell III. Phase delays (blue solid line) and transmissions (red dotted line) with 
different cavity widths l2.
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Figure 5.  Logic AND gate. (a) Distributions of pressure amplitude field induced by logic gate AND for different 
input states, and (b) corresponding output pressure amplitudes and true table.

Figure 6.  Working bands of basic logic gates. Output amplitude spectra induced by logic gates (a) OR, (b) 
XOR, (c) NOT and (d) AND for different input states.
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Experimental measurements.  To further demonstrate the aforementioned logic gates, we experimentally 
measure output time-domain signals for these logic gates. The measurement setup and the photograph of the 
sample are shown in the Fig. 7.

Figure 8a-e shows the measured time-domain signals at the input ports A and B and the output port O for 
the logic gates OR, XOR and AND, respectively, in which all measured signals are normalized by the maximum 
amplitude in Fig. 8a. As shown in Fig. 8a,b, the input signals with the same initial phases at the ports A and B are 
modulated to realize four input states {1, 1}, {1, 0}, {0, 1} and {0, 0} in the time domains t = 0–3 ms, 3–6 ms, 6–9 ms 
and 9–12 ms, respectively. Figure 8c-e shows the measured output signals at the port O for the logic gates OR, 
XOR and AND, respectively. With the uniform threshold of 0.4 Pa, the measured output states for different input 

Figure 7.  Experimental setup and sample photographs. (a) Experimental setup and photograph of logic gate 
OR. Photographs of (b) cylindrical acoustic source, (c) logic gate XOR (NOT) and (d) logic gate AND.

Figure 8.  Measured time-domain signals. The input ports (a) A and (b) B and output port O in logic gates (c) 
OR, (d) XOR, and (e) AND.
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states are {1}, {1}, {1} and {0} in Fig. 8c; {0}, {1}, {1} and {0} in Fig. 8d; {1}, {0}, {0} and {0} in Fig. 8e, which agrees 
well with the logic functions OR, XOR and AND, respectively.

Moreover, as shown in Fig. 9a,b, the input signal at the port A is modulated to realize two input states {1} and 
{0} in the time domains t = 0–3 ms and 3–6 ms, respectively, and the constant signal placed at the port B acts as a 
control port (Fig. 9b). Figure 9c shows the measured output signals for the logic gate NOT, in which the output 
states are {0} and {1} based on the uniform threshold of 0.4 Pa, and the experiment results agree well with the logic 
function NOT. However, there exist weak output signals for the input states {1, 1} (Fig. 8d) and {1} (Fig. 9c), which 
arises from non-complete interference cancellation of two signals induced by considerable fabrication errors of 
the passive unit cells. Therefore, we have experimentally demonstrated the logic gates OR, XOR, AND and NOT.

Logic XNOR gate.  We can design the logic gate XNOR based on the four-port waveguide, in which the unit 
cell II is placed into the channels A and B as the input ports, but the unit cell I is placed into the channel C as the 
control port. As shown in Fig. 10a, the output amplitude at the port O for the input state {1, 1} is almost the same 
as that for {0, 0}, which arises from the fact that the interference cancellation exists between the signals from the 
ports A and C for {1, 1}, and therefore the output signals are from the ports B and C for the input states {1, 1} and 
{0, 0}, respectively. In addition, the output amplitudes are smaller than 0.4 Pa for the input states {1, 0} and {0, 1} 
owing to the interference cancellation of the out-phase signals created by the phase manipulation of the unit cells. 
As shown in Fig. 10b, with the uniform threshold of 0.4 Pa, the output states are {1}, {0}, {0} and {1} for the input 
states {1, 1}, {0, 1}, {1, 0} and {0, 0}, respectively, which is also clearly shown in the truth table. Therefore, the logic 
gate XNOR is realized.

Logic NOR gate.  Owing to the easy connection characteristic of the multi-port waveguide, we can realize 
the composite logic gates NOR and NAND based on two basic logic gates. Figure 11 shows the simulated results 
for the composite logic gate NOR composed of the logic gates OR and NOT, in which A and B are the input ports, 
and C is the control port. As shown in Fig. 11a, the output amplitude for the input state {0, 0} at the port O is 
about 0.7 owing to the signal energy from the control port C. However, the output amplitudes are smaller than 
0.4 Pa for the input states {1, 1}, {0, 1}, and {1, 0}, which is attributed to the interference cancellation induced by 
two signals from output port of the logic gate OR and the control port C. As shown in Fig. 11b, with the uniform 
threshold of 0.4 Pa, the output states are {0}, {0}, {0} and {1} for the input states {1, 1}, {1, 0}, {0, 1} and {0, 0}, 
respectively. Therefore, we have realized the logic gate NOR based on the basic logic gates OR and NOT.

Figure 9.  Measured time-domain signals. The input ports (a) A and (b) B and (c) output port O in logic gate 
NOT.

https://doi.org/10.1038/s41598-019-44769-0


8Scientific Reports |          (2019) 9:8355  | https://doi.org/10.1038/s41598-019-44769-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 10.  Logic XNOR gate. (a) Distributions of pressure amplitude field induced by logic gate XNOR for 
different input states, and (b) corresponding output pressure amplitudes and true table.

Figure 11.  Logic NOR gate. (a) Distributions of pressure amplitude field induced by logic gate NOR for 
different input states, and (b) corresponding output pressure amplitudes and true table.
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Logic NAND gate.  Furthermore, as shown in Fig. 12, the composite logic gate NAND consists of the basic 
logic gates NOT and AND, in which A and B are the input ports, and C and D are the control ports. It is noted 
that the output amplitude for the input state {1, 1} is small than 0.4 Pa, which stems from the interference cancel-
lation between the output signal of the logic gate AND and the control signal at the port D. Besides, the output 
amplitudes are large than 0.4 Pa for the input states {0, 1}, {1, 0} and {0, 0}. This is because the signal energy at the 
port D is stronger than that at the output port of the logic gate AND, and thus the weak interference cancellation 
is obtained at the port O. Thus, as shown in Fig. 12b, the output states are {0}, {1}, {1} and {1} for the input states 
{1, 1}, {1, 0}, {0, 1} and {0, 0}, respectively, realizing the logic gate NAND.

Acoustic logic operation.  We can also carry out complex acoustic logic operations based on the designed 
logic gates. As an example, we realize the logic operation A⊙(B+C) based on the logic gates OR and XNOR 
(shown in Fig. 13), in which A, B, and C are the input ports, and D is the control port. As shown in Fig. 13a, the 
output amplitudes at the port O are smaller than 0.4 Pa for the input states {1, 0, 0}, {0, 1, 1}, {0, 1, 0} and {0, 0, 1}, 
but are larger than 0.4 Pa for {1, 1, 1}, {1, 1, 0}, {1, 0, 1}, and {0, 0, 0}, which is also attributed to the linear inter-
ference phenomena of the three input signals and the control signal. Figure 13b shows the corresponding output 
amplitudes and the true table for the logic operation A⊙(B+C). With the uniform threshold of 0.4 Pa, the output 
states are {1}, {1}, {1}, {0}, {0}, {0}, {0} and {1} for the input states{1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 
0}, {0, 0, 1} and {0, 0, 0}, respectively. The output states agree well with the theoretical results of the logic opera-
tion A⊙(B+C). However, the output amplitudes for the input states {1, 1, 0}, {1, 0, 1} and {0, 1, 1} are close to the 
threshold. This is because the output amplitude of the logic gate OR is smaller than the standard input amplitude 
(1.0 Pa) of the XNOR gate for {1, 1, 0} and {1, 0, 1}, but is larger than 1.0 Pa for {0, 1, 1}. Practically, this challenge 
may be overcome by placing an acoustic triode structure at the junction of two logic gates, and the output satu-
ration value of the acoustic triode is set as the standard input value of the lower level logic gate to normalize the 
output value of the upper level logic gate.

Working bands of composite logic gates and logic operation.  Finally, we discuss the bandwidth of 
the composite logic gates XNOR, NOR and NAND and the logic operation A⊙(B+C), which is shown in Fig. 14. 
Compared with the working bands of the basic logic gates (shown in Fig. 6), the band of the logic gate XNOR 
(3100–3740 Hz) remains almost unchanged, but those of the logic gates NOR (3350–3900 Hz) and NAND (3300–
3750 Hz) and the logic operation A⊙(B+C) (3160–3500 Hz) change greatly. This is because the logic functions 

Figure 12.  Logic NAND gate. (a) Distributions of pressure amplitude field induced by logic gate NAND for 
different input states, and (b) corresponding output pressure amplitudes and true table.
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NOR and NAND and the logic operation are realized based on two different logic gates, and there exists a mis-
match between the output and input amplitudes of both the logic gates.

Conclusion
In conclusion, we have demonstrated the binary-phase acoustic logic gate based on the multi-port waveguide 
structure, in which the width and length of the logic gate are only about 0.3λ and 0.6λ. The results show that the 
basic logic gates OR, NOT and AND, and the composite logic gate XOR with a uniform threshold of 0.4 Pa are 
realized based on the linear acoustic interferences, which arises from the phase manipulations of the binary-phase 
unit cells. The measured results agree well with the simulated ones, and the fractional bandwidth can reach about 
0.2. Moreover, we design the composite logic gate XNOR by using the four-port waveguide, and realize the com-
posite logic gates NOR and NAND and the logic operation A⊙(B+C) based on two different logic gates, cor-
responding to the logic gates NOT and OR, the logic gates NOT and AND, and the logic gates OR and XNOR, 
respectively. The proposed acoustic logic gates have advantages of the subwavelength size, broad bandwidth, 
and passive structure, which have important potential applications in acoustic computing, acoustic information 
processing and integrated acoustics.

Methods
Sample and experimental setup.  The designed acoustic logic gates are fabricated with epoxy resin by 
three-dimensional printing technology. To obtain the same input signals, two same cylindrical acoustic sources 
are placed on the right side of the input ports, and the distance between the unit cell and the cylindrical source is 
5 mm. The input signals are generated from the cylindrical sources driven by a power amplifier. On the left side of 
the output port, a 1/4 inch microphone (Brüel & Kjær type-4961) is adopted to measure output signals. The meas-
ured data is recorded by the Brüel&Kjær 3160-A-022 module, and is analyzed by the software PULSE Labshop.

Numerical simulations.  The finite element method (COMSOL Multiphysics software 5.2a) is utilized 
to numerically simulate the characteristics of the acoustic logic gates. The pressure field is calculated in the 
Acoustic-Solid interaction module, and the Helmholtz resonator arrays filled with air are fabricated with epoxy 

Figure 13.  Acoustic logic operations. (a) Distributions of pressure amplitude field for logic operation 
A⊙(B+C) with different input states, and (b) corresponding output pressure amplitudes and true table.
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resin to satisfy the acoustic-structure boundary conditions. In addition, the boundaries of the waveguides are set 
as the sound hard boundary, and those of the input and output ports are the plane wave radiation boundary. The 
parameters used for air under an ambient pressure of 1 atm at 20 °C are mass density ρair = 1.21 kg/m3 and sound 
speed cair = 343 m/s. The mass density, the longitudinal wave velocity and the transversal wave velocity for epoxy 
resin are 1180 kg/m3, 2720 m/s and 1460 m/s, respectively.
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