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Impaired emotional memo
ry and decision-making
following primary insomnia
Xi Chunhua, MDa,c,∗, Ding Jiacui, MDb, Li Xue, MDa, Wang Kai, MDc

Abstract
Previous studies have indicated that sleep plays an important role in emotional memory and decision-making. However, very little
attention has been given to emotional memory and decision-making in patients with primary insomnia (PI). We investigated whether
PI influences the accuracy of emotional memory and social decision-making.
We examined 25 patients with PI and 20 healthy controls (HC) using an emotional picture memory task and the Iowa Gambling

Task (IGT). In the emotional picture memory task, participants completed two testing sessions: an emotional picture evaluation and a
delayed recognition phase. During the emotional picture evaluation phase, participants were presented with 48 pictures with different
valence (16 positive, 16 neutral, and 16 negative), which they had to evaluate for emotional valence and arousal. During the
recognition phase, participants were asked to make a yes/no memory assessment of a set of pictures, which contained the 48 target
pictures intermingled with 48 non-target pictures.
The performance of the participants with PI was the same as that of the HC in the emotional picture evaluation task. However, the

PI group showed worse recognition of the positive and neutral pictures than did the HC group, although recognition of negative
pictures was similar in the 2 groups. In the IGT, participants in the PI groupmore frequently selected cards from the risky decks as the
game progressed and selected more disadvantageous cards than did participants in the HC group after the first block.
Our findings suggest that insomnia had different effects on memory, depending on the valence of the memory. Specifically,

memory performance was impaired for positive and neutral items, but the recognition of negative stimuli seemed to be more resistant
to the effects of insomnia. Our results also suggest that decision-making, which is known to be mediated by the ventromedial
prefrontal cortex, including decision-making under conditions of uncertainty, may be vulnerable in PI.

Abbreviations: ANOVA = analysis of variance, BAI = the Beck Anxiety Inventory, BDI = Beck Depression Inventory, DSM-V = the
Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, ESS = The Epworth Sleepiness Scale, HC = healthy controls, IGT
= Iowa Gambling Task, MMSE = the Mini-Mental State Examination, OFC = orbitofrontal cortex, PI = primary insomnia, PSG =
polysomnographic, PSQI = The Pittsburgh Sleep Quality Index.
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1. Introduction

Primary insomnia (PI) is a chronic clinical symptom characterized
by the subjective experience of sleep loss and disturbed sleep.
Patients with PI show heightened arousal and find it difficult to
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sleep in bed.[1] It is a very common sleep disorder among the
general population. Although many people with PI do not have
any identifiable psychological or psychiatric problems, there is
evidence to suggest that untreated PI may be important in the
development of psychiatric illnesses, such as substance abuse and
depression.[2,3] Moreover, insomnia can lead to impairments of
many basic cognitive functions, including learning and memo-
ry,[4] attention,[5,6] as well as emotional impairments.[7]

Over the past 20 years, the relationship between sleep and
memory has attracted much attention, and several reports have
confirmed that sleep is important for memory processing.[8–10]

Taking a nap can improve memory, which supports the view that
even short-term sleep is advantageous for memory consolida-
tion.[11] Memory impairment is thought to be the core symptom
of the decline in cognitive function associated with sleep loss[12,13]

and may encompass deficits in working memory,[14,15] as well as
encoding of new memory information.[16] Functional imaging
studies have suggested that memory impairment in patients with
PI may be related to decreased brain function in the temporal
cortex and frontoparietal network.[17–20]

In recent years, many studies on sleep disorders[21–23] have
implied that sleep is also important in emotional memory, and
that sleep loss negatively influences emotional memory,[24] but
not the categorization of emotional perception.[25] Some studies
have indicated that emotional information is remembered better
than neutral information, and that there may be a preferential
consolidation of emotional memory, as compared to neutral
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memory, during sleep.[26–28] In the past few years, it has been
suggested that sleep loss has a greater negative effect on the
memory of positive and neutral than of negative stimuli.[29,30]

The formation of emotional memory depends on the activity in
specific structures, such as the amygdala, insula, prefrontal
cortex, and hippocampus.[31] A study by Motomura et al [32]

showed increased activity in the amygdala in sleep-deprived
subjects when they were presented with aversive pictures.
Baglioni et al[33] also found that the reactivity of the amygdala
to negative stimuli does not seem to be impaired in patients with
insomnia. The above studies indicate that sleep disorders can lead
to amygdala reactivity, especially after exposure to negative
emotional stimuli.[31,33] The amygdala is a key brain region in
emotion processing, as it not only connects with many other
emotion-processing regions, but also integrates local and global
networks involved in emotional and cognitive information
processing.[31,34] A study by Shao et al [35] showed that sleep
deprivation affects the emotion-processing circuit and decreases
the functional connectivity between the prefrontal cortex or
anterior cingulated cortex and the amygdala. The altered
functional connectivity between the amygdala and other brain
regions may be dedicated to processing of emotional memory
with different valences.[35]

Another functional change includes the prefrontal lobe, which
is more prone to be affected by sleep loss. A study by Thomas et al
[36] showed that, after 24hours of sleep deprivation, there is a
significant decrease in metabolic activity in the prefrontal cortex,
including the orbitofrontal regions, which are involved in
decision-making under conditions of uncertainty, such as that
required for the Iowa Gambling Task (IGT).[37] Altena et al[38]

also revealed that patients with PI exhibit smaller gray matter
volumes in the left orbitofrontal region, a finding that strongly
correlated with the subjective severity of insomnia. A wide body
of literature has provided evidence of the neural mechanisms
underlying IGT performance, which involve the function of the
prefrontal cortex, and especially of the orbitofrontal regions.[39–
41] Moreover, several studies have reported that this neural
circuitry maybe sensitive to insomnia.[19,42–45] Previous studies
have shown impaired decision-making ability in the IGT in
participants with sleep deprivation, as evidenced by their
increased number of choices from disadvantageous decks.[46,47]

A recent study from Seeley et al[48] suggested that sleep improves
strategy-decision learning ability in the IGT; these results provide
new insights into the relationship between sleep and IGT
learning. Decision-making in the IGT is associated with the
orbitofrontal regions,[40,49] and decision-making ability has been
shown to be impaired in participants with sleep deprivation.[46,50]

Previous studies have also confirmed functional abnormalities in
the prefrontal cortex of patients with PI.[38,45] These functional
abnormalities may underlie the significant cognitive deficits
associated with PI, which may include deficits in emotional
memory and decision-making. However, whether PI shows
analogous outcomes in emotional memory and decision-making,
similar to sleep deprivation, remains unclear.[21,22,46]

In the current study, we hypothesized that patients with PI
would have deficits in emotional memory of different valences
and in decision-making. We administered an emotional picture
recognition task that included a phase of emotional picture
evaluation and a delayed recognition phase. In order to
investigate whether emotional memory impairment is attributed
to emotional perception, we also asked participants to evaluate
the valence and arousal of the emotional pictures with scores
2

during the emotional picture evaluation phase. We also tested the
decision-making ability of participants using the IGT and a series
of neuropsychological tests, to determine if the above cognitive
deficits could be detected in patients with PI.
2. Materials and methods

2.1. Participants

Participants provided written informed consent before the study
and the present study was approved by the Third Affiliated
Hospital of Anhui Medical University Ethics Committee
(2016063) on 20 November 2016.
Twenty-five medication-naive outpatients with PI, from the

Department of Neurology in the Third Affiliated Hospital of
Anhui Medical University, and 20 HC participants, matched for
sex, age, and years of education, were included in this study.
Before the trial experiment, we contacted participants and their
family members by phone or in person and collected information
on whether their clinical manifestations included night snoring,
daytime sleepiness, apnea, or restless legs syndrome; if so, the
participants were excluded. All participants were screened based
on a complete 1-week sleep diary. The Pittsburgh Sleep Quality
Index (PSQI)[51] was also used to assess the quality of sleep. The
Epworth Sleepiness Scale (ESS) questionnaire was used to
measure daytime sleepiness. Moreover, all participants under-
went a night of polysomnographic (PSG) measurement the day
before the test day. A standard PSG was used involving
electromyographic (EMG; submental), electrooculographic
(EOG: horizontal and vertical), and electroencephalographic
(Fp1 [neutral], C3, P3 [reference], O1, Fpz, Fz, Cz, Pz, Oz, F4,
C4) recordings. Sleep was recorded on PSG for 8hours from
“lights out” (22:00) until “lights on” (06:00). All participants
showing PSG evidence of other sleep disorders, such as periodic
leg movements or sleep apnea syndrome, were excluded from the
study.
The diagnostic criteria for PI included a PSQI higher than 5, a

sleep diary showing an average sleep efficiency <85%, and the
following diagnostic criteria for PI of the Diagnostic and
Statistical Manual of Mental Disorders, 5th Edition (DSM-V):
(1)
 the presence of a subjective complaint of insomnia, including
sleep difficulties ≥3nights/week for at least 3 months ((a)
sleep onset latency>30min (difficulty initiating sleep) or time
awake after sleep onset>30min (maintaining sleep), (b) early
morning awakening and insufficient amount of sleep (<6
hours of sleep));
(2)
 insomnia or its perceived consequences causing significant
impairment in daytime functionalities (e.g., mood disturban-
ces, fatigue, attention, social or occupational function).

Twenty-four healthy participants were recruited through an
advertisement in the local community and had to self-define as
good sleepers. Healthy participants were satisfied with their sleep
(in an interview and based on sleep diaries), did not use
medication to facilitate their sleep, reported having 7 to 9hours of
total sleep time per night in their sleep diary, had no daytime
performance complaints, and their PSQI was lower than 5.
Exclusion criteria for both groups were as follows: other sleep

disorders, such as periodic leg movements and sleep apnea
syndrome; color blindness; neurological disease; drug abuse;
current or previous psychiatric diagnoses; and history of diffuse
brain damage.
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2.2. Background information and neuropsychological tests

The following neuropsychological tests were administered to all
participants:
(1)
 the Mini-Mental State Examination (MMSE) was used to
evaluate global cognitive function;[52]
(2)
 the Beck Depression Inventory (BDI) was used to assess the
presence of depression;
(3)
 the Beck Anxiety Inventory (BAI) was used to assess the
presence of anxiety;
(4)
 a verbal fluency test (number of animals per min) was used to
assess frontal lobe functions; [53]
(5)
 trail-making tests A and B were used to assess executive
functioning; [54]
(6)
 a digit-span test, including forward digit span and backward
digit span,[55] was used to estimate short-term memory; and
(7)
 a digit symbol substitution test was used to measure
psychomotor speed.

2.3. Emotional memory task

The emotional memory task included two parts:
(1)
 emotional pictures evaluation, and

(2)
 a delayed (30min) recognition activity.

The pictures used fell into 1 of 3 valence categories: positive,
neutral, or negative, and were chosen from the Chinese Affective
Picture System.[56]

During the emotional picture evaluation phase, the partic-
ipants viewed 48 target pictures, including 16 positive, 16
neutral, and 16 negative pictures. Each emotional picture was
presented (for 1000 ms) after a fixation cross on a computer
screen, and the pictures were presented in a pseudo-random order
after the cross disappeared from the screen. After each picture
was presented, the subjects were asked to evaluate its valence
using scores ranging from 1 (very negative) to 5 (neutral) to 9
(very happy), as rapidly as possible, and to give arousal ratings on
a scale from “not arousing at all” (1 point) to “very arousing” (9
points). The emotional picture valence and arousal display
remained visible until the participant responded, up to a
maximum of 5000 ms.
During the delayed recognition phase, participants viewed 96

pictures comprising a mix of the 48 target pictures (“old”) and 48
new distractors pictures, including 16 positive, 16 neutral, and 16
negative pictures. Each presentation began with a fixation slide
(for 1000 ms) followed by the emotional picture (for 2000 ms).
The participants were then asked whether the presented picture
included the same target, “old,” as shown in the emotional
picture evaluation phase (yes/no). For each subject, the number of
“old” pictures accurately recognized (hits) and the number of
false alarms (inaccurately recognized “old” pictures) were
calculated. The discrimination index (d0 value) was obtained
by subtracting the false alarms (i.e., the new distractor pictures,
identified as old) from the hits (i.e., the old pictures accurately
recognized). Thus, a higher accuracy rate, represented by the d0

value for different valence pictures (positive, neutral, and
negative), indicated better memory discrimination performance.
2.4. The Iowa Gambling Task

The IGT has often been used to test the ability of social decision-
making under conditions of uncertainty.[57] We used the
3

computerized version of the IGT in Chinese, described in detail
in our previous publication.[58]

The subject was asked to select a card repeatedly from four
decks of cards (1–4). Four decks of 40 cards were used, labeled
“1,” “2,” “3,” and “4” in Chinese. Subjects were given<2000 of
play money and instructed to select a card from any deck in order
to win as much money as possible, 1 card at a time. The subjects
would win an amount of money with some selections, while
losing an amount of money with other selections. Decks 1 and 2
were characterized by large wins (<100 on each trial) but with
occasional large punishments (e.g., <1250 on deck 2), leading to
losses over repeated choices, and these were defined as the
disadvantageous cards. Decks 3 and 4 were associated with
smaller wins (only <50 per trial) but smaller losses, leading to
profit over repeated choices, and these were defined as the
advantageous cards. The task included 100 selections. The risks
of each deck yielding rewards or penalties and the number of
selections allowed were not disclosed to the subjects. The main
dependent variables of the IGT task included the number of
disadvantageous cards chosen from deck 1 or deck 2, and the
number of advantageous cards chosen from deck 3 or deck 4. The
100 cards selected by the participants were divided into 5 blocks
of 20 cards, according to the selection sequence. The first 20 trials
represented the learning phase and were thus analyzed separately
from trials 21 to 100, which represented the “test phase.” We
then calculated the total number of selected advantageous cards
(decks 3 and 4) and disadvantageous cards in each block. The net
score was calculated from each block using the formula [(3 + 4) –
(1 + 2)]. After the task, we rewarded each participant with the
money earned based on the results of the experiment. Positive net
scores indicated that participants selected more advantageous
cards, as a pattern of favorable behavior, while negative scores
indicated that they selected more disadvantageous cards,
determined as a pattern of disadvantageous behavior.
2.5. Statistical analysis

The statistical analyses were carried out using the SPSS software
(version 23.0 for Windows). Parametric tests were used for
normally distributed data (t test for 2 independent samples or
analysis of variance [ANOVA]). Pearson correlations were used
to examine potential relationships among emotional memory,
decision-making, background characteristics, and neuropsycho-
logical tests in the PI and HC groups. The level of significance for
all statistical tests was set at P = .05.
3. Results

3.1. Background characteristics and neuropsychological
tests

We did not find any significant differences between the groups
regarding age, sex, years of education, the MMSE score,
forward digit span, and digit substitution symbol (all P > .05),
and t tests for 2 independent samples showed significant
group differences in scores for the PSQI, BDI, BAI, verbal
fluency, backward digit span, and trail-making test (part B–
part A) (all P < .05). As expected, the PI group showed
shorter total sleep time, lower sleep efficiency, and higher
sleep onset latency than the HC group (all P < .05); however,
there was no difference in the objective level of time in bed
and subjective ESS (both P > .05) (Table 1).
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Table 1

Background characteristics and neuropsychological test results for the Primary Insomnia and Healthy Control groups (mean ± standard
deviation).

PI (n = 25) HC (n = 20) Statistics value P value

Age (years) 42.40 ± 8.99 40.35 ± 7.01 t = 0.83 .41
Education (years) 9.12±3.63 11.20±4.76 t = 1.61 .11
Sex (M, F) 15, 10 9, 11 X2 = 1.00 .32
MMSE 29.00±1.55 29.15±1.46 t = 0.33 .74
Course of disease (months) 21.08±15.01 — — —

PSQI 15.64±2.41 3.35±1.31 t = 21.78 <.001
BDI 9.40±1.95 4.35±2.36 t = 7.83 <.001
BAI 9.44±1.19 3.65±2.23 t =11.15 <.001
ESS 2.52±0.82 2.35±0.75 t = 0.72 .48
Total time in bed (min) 465.6±17.58 470.0±14.14 t = 0.91 .37
Total sleep time (min) 328.68±13.05 422.55±14.66 t = 22.69 <.001
Sleep efficiency (%) 70.65±3.15 89.91±1.75 t = 25.97 <.001
Sleep onset latency 47.96±5.34 19.25±2.71 t = 21.85 <.001
Verbal fluency 9.40±2.66 13.55±3.48 t = 4.53 < .001
Forward digit span 6.80±1.11 7.20±1.15 t = 1.17 .25
Backward digit span 4.48±0.91 5.45±1.35 t = 2.85 .007
Trail making test:
Part B–Part A (s) 52.32±25.37 37.55±15.60 t = 2.39 .02
Digit substitution symbol (number) 30.88±5.41 33.25±4.29 t = 1.59 .12

PI=primary insomnia; HC=healthy control; M=male; F= female; MMSE=Mini-Mental State Examination; PSQI=Pittsburgh Sleep Quality Index; BDI=Beck Depression Inventory; BAI=Beck Anxiety Inventory;
ESS=Epworth Sleepiness Scale.
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3.2. Emotional picture evaluation: valence ratings

In the emotional picture evaluation phase, we conducted a 2
(group [PI andHC])�3 (valence [positive, neutral, and negative])
ANOVA on the score for the 3 valence-type emotional pictures.
There was no significant main effect of group [F(1,43)= 1.26, P=
.26] and group�valence interaction [F(2,43) = 1.24, P = .29],
but there was a significant effect of valence [F(2,86) = 1726.12, P
< .001]. Post-hoc analysis showed that the valence score for
neutral pictures was lower than that for positive pictures (P <
.001) and higher than that for negative pictures (P < .001) in the
PI and HC groups (Table 2).
3.3. Emotional pictures evaluate: arousal ratings

A 2 group�3 valence (positive, neutral, and negative) ANOVA
on arousal showed no significant main effect of group [F(1,43) =
0.043, P = .84],valence [F(2,86) = 0.3, P = .74], or group�
valence interaction [F(2,43) = 0.044, P = .95], indicating no
significant differences in arousal evaluation among the three
valence pictures during the emotional picture evaluation between
patients with PI and HC (Table 2).
Table 2

Valence and arousal for the negative, neutral, and positive pictures
(mean±standard deviation) for the Primary Insomnia and Healthy
Control groups.

Positive Neutral Negative

Valence
PI group 6.72±0.53 5.06±0.22 2.80±0.24
HC group 6.90±0.37 5.05±0.17 2.82±0.22

Arousal
PI group 5.21±0.30 5.18±0.33 5.22±0.32
HC group 5.19±0.27 5.16±0.35 5.23±0.29

PI=Primary Insomnia; HC=Healthy Control.
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3.4. Delayed recognition phase: accuracy rate

A 2 (group)�3 (valence) ANOVA for the emotional accuracy
rate (d0 value) showed a significant main effect of group [F(1,43)
= 29.10, P< .001] and a lower memory recognition ability in the
PI than in the HC group; in addition, there was a significant effect
of valence [F(2,86) = 4.99, P = .008], but no significant
interaction between valence and group [F(2,43) = 2.27, P = .11].
Post-hoc analysis revealed that the PI group performed worse
than the HC group in recognizing positive (P = .001) and neutral
pictures (P < .001). However, there was no significant difference
in d0 values for negative pictures (P = .15) between the 2 groups.
This suggested that the PI group remembered negative pictures
better than positive or neutral pictures (Fig. 1).

3.5. Decision-making in the IGT

Two independent t tests were employed to investigate whether PI
and HC groups differed in terms of the selection of advantageous
cards. We found that the PI group chose significantly fewer
advantageous cards than the HC group (t(43) = 3.17, P= .003)
(Fig. 2). We performed a 2 (group)�5 (block) ANOVA and
considered group (HC or PI) as the between-subjects factor and
the net score in each block (1–5) as the within-subject factor.
There was a significant main effect of group [F(1,43)=20.39,
P< .001], a significant main effect of block [F(4,172) = 2.42,
P= .04], and no significant interaction of group�block [F
(4,43)=1.61, P= .17]. A post-hoc t test revealed that the HC
group selected a greater number of advantageous cards than did
the PI group in block 2 (t(43)=2.09, P= .042), block 3 (t(43)=
2.06, P= .045), block 4 (t(43)=2.28, P= .03), and block 5 (t
(43)=3.47, P= .001), but not in block 1 (t(43)=0.46, P= .65)
(Table 3). The results indicated that, as the IGT progressed,
participants in the HC group gradually shifted their preference
towards advantageous choices (decks 3 or 4) and away from
disadvantageous ones (decks 1 or 2), after block 1, more so than
did patients with PI (Fig. 3).



Figure 1. Performance in the delayed recognition phase. Mean scores (±
standard deviations) indicating the function of recognition accuracy rate (d0

value, hits minus false alarms) of 3 types of valence pictures (positive vs neutral
vs negative) for the PI and HC groups. Patients in the PI group exhibited worse
memory of neutral and positive pictures than subjects in the HC group. Figure 2. Performance in the Iowa Gambling Task (total number of selected

cards). Each bar represents the mean (± standard deviation) of the total
number of cards selected from the advantageous and disadvantageous decks.
Patients with primary insomnia (PI) chose significantly more of the
disadvantageous cards than did the healthy control (HC) group.
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3.6. Correlations of d0 values and decision-making with
background characteristics, PSG sleep parameters, and
neuropsychological indexes in the P and HC groups

Pearson correlations among d0 values, performance on the IGT,
background characteristics, PSG sleep parameters, and neuro-
psychological test scores were computed for the PI group. The
results showed no significant correlation among d0 values and
PSG sleep parameters, background characteristics, or neuropsy-
chological test scores. The number of advantageous choices in the
IGT significantly correlated with BAI scores (r=�0.447,
P= .025); sleep efficiency significantly correlated with the trail-
making test result (part B–part A) (r=�0.49, P= .01); and there
was no correlation between any the neuropsychological indexes
and the other d0 values and IGT results (all P> .05) (Table 4).
Moreover, there were no significant correlations of d0 values and
performance on the IGT with PSG sleep parameters, background
characteristics, and neuropsychological test scores in the HC
group (all P> .05) (Table 5). Considering the impact of
depression and anxiety on participants with PI, we considered
BDI and BAI scores as covariates in statistical analyses. Analysis
of covariance showed that the BDI score had no covariate effect
on the accuracy of d0 values for positive, neutral, or negative
pictures (P= .57, P= .99, and P= .67, respectively) or on the total
number of advantageous choices in the IGT (P= .53) between the
2 groups. Similarly, the BAI score had no covariate effect on the
accuracy of positive, neutral, or negative pictures (P= .81,
P= .89, P= .69, respectively), or on the number of advantageous
choices in the IGT (P= .27) between the 2 groups.
Table 3

Total number of advantageous cards chosen by the Primary Insomn

Group Block 1 (1–20) Block 2 (21–40)

PI (n = 25) 8.84±1.62 9.12±2.01
HC (n = 20) 8.6±1.88 10.5±2.42
Statistics value t = 0.46 t = 2.09
P value P = .65 P = .042

PI=Primary Insomnia; HC=Healthy Control.
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4. Discussion and conclusions

The aim of the present study was to investigate the effects of PI on
emotional memory and decision-making. As hypothesized, our
results indicated a generalized deleterious effect of PI on
emotional memory, while decision-making ability was also
significantly impaired in patients with PI.
We first assessed the influence of PI on emotional memory.

Patients in the PI group performed well in the emotional picture
evaluation task, but not in the emotional recognition task. These
results are consistentwith previous studies reporting impairment in
emotional memory in patients with sleep deprivation.[21,22,59]

Other studies have indicated that sleepplays akey role in emotional
memory processing.[24,26,27] Cunningham et al[27] reported that
sleep can lead to preferential consolidation of negative emotional
memory. A study byCellini et al[28] indicated that daytime napping
is beneficial for consolidating emotional memory presented before
andafter sleep, irrespective of valence.However, poor sleepquality
has been reported to affect the emotional valence of memory
negatively.[59] Previous studies on the relationship between sleep
and emotionalmemoryhavemostly utilized experimentalmethods
testing sleep deprivation[22,60] or have included only HC
subjects.[61,62]Althoughmany studies have shown that emotion[63]

or memory[18,64] may change in patients with PI, there has been
little research on emotionalmemory in these patients. Our findings
imply that patients with PI have impaired performance on
emotional memory tasks.
ia and Healthy Control groups (mean±standard deviation).

Block 3 (41–60) Block 4 (61–80) Block 5 (81–100)

9.28±2.35 9±2.25 8.92±2.25
10.75±2.40 10.75±2.92 10.95±1.47
t = 2.06 t = 2.28 t = 3.47
P = .045 P = .03 P = .001

http://www.md-journal.com


Figure 3. Performance in the Iowa Gambling Task (net scores and task progression). Net score difference is expressed asmean (± standard error) of the frequency
of advantageous (decks 3 + 4) selections minus that of disadvantageous selections (decks 1 + 2), as a function of 5 blocks (1–20, 21–40, 41–60, 61–80, 81–100).
There was a distinct pattern in decision-making between the 2 groups as the task progressed over the 5 blocks.
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We also found different patterns of alterations in the
recognition of emotional pictures, as a function of their valance.
Specifically, we showed that PI adversely affects recognition of
positive and neutral pictures, but not of negative pictures.
Previous studies have suggested that negative stimuli may be
remembered better than other stimuli.[21,65,66] A study by
Tempesta et al[29] indicated that the accuracy of remembering
negative pictures is more stable than that of remembering neutral
or positive emotional pictures, in subjects with sleep deprivation.
This might be attributed to the facilitating effect of negative
stimuli during the encoding phase,[67] which seems to be
mediated by the amygdala.[68] Moreover, previous studies have
shown that negative stimuli increase activity in the amygdala
during sleep loss.[32,33] This indicates that the greater stability of
negative stimulus memory may be attributed to the increased
reactivity to negative pictures, induced by insomnia,[31] and the
heightened amygdala responses to negative stimuli.[33] Our
results are similar to those of previous studies on individuals with
sleep deprivation.[21,29] Previous studies have suggested that
emotional memory relies on many brain regions, including the
hippocampus, prefrontal cortex, and amygdala,[31,69] and that
sleep loss negatively affects the functionality of these regions.[70]

Structural and functional neuroimaging studies have provided
insight into the alterations of regional brain function in PI. These
studies have shown that gray matter in the orbitofrontal and
cingulate cortex, hippocampus, and middle temporal gyri is
affected by chronic PI.[38,71,72] Changes due to PI include
decreased connectivity in the frontoparietal network[19,43] and
emotional circuits.[73] The deleterious effects of PI on memory
retention of positive and neutral pictures, but not of negative
pictures, may be related to the amplified reactivity of the
amygdala to negative stimuli,[25,74] as well as the decreased
6

functional connectivity of the amygdala with the prefrontal
cortex.[35,75,76]

The second aim of the present study was to assess the social
decision-making ability in patients with PI. Patients with PI had
significantly impaired performance in the IGT. In this task, the PI
group more often selected disadvantageous cards and placed
higher bets, based on simple probabilistic decisions. In the first
block, participants in both the PI and HC groups tended to select
more disadvantageous cards. This result suggests that the 2
groups were unaware of the rule at the beginning. However,
analyses showed that the HC group improved significantly by
making advantageous choices in the test phases over the PI group.
The results indicated that the participants in the HC group could
gradually shift their more disadvantageous card selections
toward the advantageous decks after the first learning phase,
but the PI group did not show this beneficial behavior pattern and
failed to learn the rules to select cards from advantageous decks.
Two studies from Killgore et al[46,77] also showed that, after sleep
deprivation, volunteers tended to choose from the disadvanta-
geous high-risk deck more frequently. An event-related potential
study showed that the N250–400 amplitude was smaller after
sleep deprivation in the feedback stage of the IGT.[50] The results
suggested that sleep loss affects risk-taking behavior due to
reduced individual responses to negative feedback stimuli. Both
Pace-Schott et al[78] and Seeley et al[48] provided new evidence
that sufficient sleep can improve understanding of decision-
making rules, as well as behavioral outcomes. Decision-making
ability under conditions of uncertainty, as assessed using the IGT
task, has been proven to be sensitive to abnormal functioning of
the orbitofrontal cortex (OFC) and ventromedial prefrontal
cortex.[79–81] Several functional brain imaging studies have also
demonstrated that the medial frontal cortex is activated when
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subjects perform decision-making tasks under uncertainty.[82–84]

Moreover, patients with dysfunction in the ventromedial
prefrontal cortex, including regions of the OFC, fail to develop
anticipatory electrodermal responses before making a choice.
This, in turn, disrupts the ability to utilize emotional signals to
guide decision-making, to learn from past experiences, and to
avoid adverse choices.[85,86] Functional imaging studies have
confirmed that PI can lead to structural changes in the prefrontal
cortex,[38,71] decreased low-frequency fluctuations in the bilateral
OFC,[87] and reduced functional connectivity to emotional
circuits.[73,88] Our data suggested that participants with PI have
similar deficits as patients with damage to the OFC. Although
patients with PI show fewer global impairments than do patients
with brain injuries, as seen in a clinical setting, they exhibit
similar performance patterns as patients with OFC lesions.[85]

This suggests that the functioning of similar prefrontal cortical
regions may be adversely affected by PI; however, in the present
study, we did not provide evidence for a direct reduction in
prefrontal activity in the PI group during the IGT.
Apart from deficits in emotional memory and decision-making,

we found that patients with PI exhibited widespread basic
cognitive impairments, including deficits in working memory,
and executive function. These results are in line with those of
previous studies.[42,89] By using Pearson’s correlation analysis,
we also showed that sleep efficiency correlated with the results of
the trail-making test, consistent with the results of a previous
study that indicated that poorer sleep quality is associated with
poorer executive function.[90] Moreover, the number of advan-
tageous choices in the IGT correlated significantly with the BAI
score. Previous studies have shown that patients with trait
anxiety show a choice preference for deck 1 or 2 in the IGT,[91]

suggesting that deficits in social decision-making ability may be
due to exaggeration of emotional feelings or emotion regulation
deficits.[92,93] Emotional changes are associated with punishment
or reward signals for the past and potential occurrence of an
outcome, thus guiding long-term behavior according to the
“somatic-marker hypothesis”.[85] In line with previous research
reports,[94] our findings suggest that anxiety, caused by PI, can
lead to impaired decision-making in terms of risk under
ambiguous conditions.
This study had some limitations. In the absence of functional

brain imaging data, we could not provide direct evidence to
demonstrate whether deficits in emotional memory and decision-
making in patients with PI are due to functional changes in the
amygdala and prefrontal cortex. The PI andHC patients were not
adequately matched at baseline, especially in terms of the
psychological state of both groups, although analysis of
covariance showed that the BDI and BAI score had no covariate
effect on the accuracy (d0 values) for positive, neutral, or negative
pictures or on the total number of advantageous choices in the
IGT. Therefore, further neuropsychological and functional brain
imaging studies are required to confirm the neural mechanisms
underlying emotional memory and decision-making impairments
in patients with PI.
Our findings suggest that insomnia had different effects on

memory, depending on the emotional valence of the memory.
Specifically, there was memory performance impairment for
positive and neutral items, but the recognition of negative stimuli
seemed to be more resistant to the effects of insomnia. Our results
also suggested that decision-making, including decision-making
under conditions of uncertainty, may be vulnerable to PI.
However, elucidating the relationship between emotional
8

memory and decision-making impairment in patients with PI
and changes in prefrontal lobe function will require further
functional brain imaging studies.
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