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Integrative genomic analysis reveals low T-cell
infiltration as the primary feature of tobacco
use in HPV-positive oropharyngeal cancer

Benjamin M. Wahle,1 Paul Zolkind,1 Ricardo J. Ramirez,1 Zachary L. Skidmore,2 Sydney R. Anderson,2

Angela Mazul,1 D. Neil Hayes,3 Vlad C. Sandulache,4,7,8 Wade L. Thorstad,5 Douglas Adkins,6 Obi L. Griffith,2,6,9

Malachi Griffith,2,6,9 and Jose P. Zevallos1,10,*

SUMMARY

Although tobacco use is an independent adverse prognostic feature in HPV(+)
oropharyngeal squamous cell carcinoma (OPSCC), the biologic features associ-
ated with tobacco use have not been systematically investigated. We character-
ized genomic and immunologic features associated with tobacco use through
whole exome sequencing, mRNA hybridization, and immunohistochemical stain-
ing in 47 HPV(+) OPSCC tumors. Low expression of transcripts in a T cell-inflamed
gene expression profile (TGEP) was associated with tobacco use at diagnosis and
lower overall and disease-free survival. Tobacco use was associated with an
increased proportion of T > C substitutions and a lower proportion of expected
mutational signatures, but not with increases in mutational burden or recurrent
oncogenic mutations. Our findings suggest that rather than increased mutational
burden, tobacco’s primary and clinically relevant association in HPV(+) OPSCC is
immunosuppression of the tumor immune microenvironment. Quantitative as-
says of T cell infiltration merit further study as prognostic markers in HPV(+)
OPSCC.

INTRODUCTION

Oropharyngeal squamous cell carcinoma (OPSCC) is among the most common cancers of the upper aero-

digestive tract. An estimated 60–70% of new OPSCC diagnoses in the United States are attributable to

oncogenic human papillomavirus (HPV) exposure (Chaturvedi et al., 2011). The incidence of HPV(+)

OPSCC is rising, and OPSCC has surpassed cervical cancer as the most common HPV-related malignancy

in the United States (Ang et al., 2010; Chaturvedi et al., 2011; Centers for Disease Control and Prevention,

2019).

HPV(+) OPSCC is bothmolecularly and clinically distinct from the HPV(�) disease, for which tobacco and/or

alcohol use are the key causative exposures. Although HPV(�) OPSCC often portends a grim prognosis,

HPV(+) OPSCC outcomes are comparably favorable, with approximately 75–80% of HPV(+) OPSCC pa-

tients surviving five years after diagnosis (Ang et al., 2010; Sinha et al., 2018). For most patients who respond

to treatment, the morbidity associated with surgery, radiation therapy, and/or platinum-based chemo-

therapy is substantial and often lifelong. It is not clear that HPV(+) OPSCC requires the aggressive treat-

ment approaches used in the HPV(�) disease to produce the favorable oncologic outcomes observed in

the HPV(+) population. For this reason, treatment deintensification for this patient group is a major focus

of recent and ongoing clinical trials in HPV(+) OPSCC (Wahle and Zevallos, 2020). The unique challenges in

the future of HPV(+) OPSCC treatment are reducing iatrogenic morbidity through treatment deintensifica-

tion in low-risk individuals while also improving outcomes in the high-risk patients with an aggressive dis-

ease not cured with the current standard of care therapies. Importantly, both tasks rely on accurately pre-

dicting a high- or low-risk disease.

Tobacco use is well established as an independent adverse prognostic factor in HPV(+) OPSCC (Hafkamp

et al., 2008; Ang et al., 2010; Gillison et al., 2012; Lin et al., 2013; Fakhry et al., 2014; Elhalawani et al.,

2020). Multiple reports have demonstrated that tobacco use is associated with an increased risk of

1Department of
Otolaryngology – Head and
Neck Surgery, Washington
University School of
Medicine, Campus Box 8115,
660 South Euclid Avenue, St.
Louis, MO 63110, USA

2McDonnell Genome
Institute, Washington
University School of
Medicine, St. Louis, MO
63108, USA

3Department of Medicine,
Division of Hematology-
Oncology, University of
Tennessee Health Science
Center, Memphis, TN 38163,
USA

4Bobby R. Alford Department
of Otolaryngology Head and
Neck Surgery, Baylor College
of Medicine, Houston, TX
77030, USA

5Department of Radiation
Oncology, Washington
University School of
Medicine, St Louis, MO
63108, USA

6Department of Medicine,
Division of Oncology,
Washington University
School of Medicine, St. Louis,
MO 63110 USA

7ENT Section, Operative
Care Line, Michael E.
DeBakey Veterans Affairs
Medical Center, Houston, TX
77030

8Center for Translational
Research on Inflammatory
Diseases,Michael E. DeBakey
Veterans Affairs Medical
Center, Houston, TX 77030

9Department of Genetics,
Washington University
School of Medicine, St Louis,
Missouri

10Lead contact

*Correspondence:
jpzevallos@wustl.edu

https://doi.org/10.1016/j.isci.
2022.104216

iScience 25, 104216, May 20, 2022 ª 2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:jpzevallos@wustl.edu
https://doi.org/10.1016/j.isci.2022.104216
https://doi.org/10.1016/j.isci.2022.104216
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104216&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


disease-specific adverse outcomes, suggesting that tobacco users’ attenuated prognosis is not entirely

attributable to competing causes of mortality (Hafkamp et al., 2008; Maxwell et al., 2010; Gillison et al.,

2012; Elhalawani et al., 2020). Tobacco users with HPV(+) OPSCC represent an intermediate prognostic

group, between tobacco-naı̈ve HPV(+) patients with an excellent prognosis and HPV(�) OPSCC patients

whose prognosis is poor (Ang et al., 2010; Gillison et al., 2012; Elhalawani et al., 2020). Despite this, the mo-

lecular features associated with tobacco use in HPV(+) OPSCC are poorly defined. In this study, we hypoth-

esized that tobacco influences two biologic processes that could contribute to more aggressive disease

and worse outcomes in HPV(+) OPSCC. First, tobacco may be associated with increased somatic muta-

tional burden and/or a distinct array of oncogenic mutations, contributing to a more aggressive disease.

Despite tobacco’s canonical role as amutagen in head and neck squamous cell carcinoma (HNSCC), recent

work does not suggest that tobacco exposure is associated with increased mutational burden when HPV is

the causative exposure (Gillison et al., 2018). Second, tobacco exposure may be associated with changes in

the tumor immune microenvironment (TIME) that produce relative immunosuppression and a more

aggressive disease course. This hypothesis is supported by a recent report demonstrating lower CD8+

immunohistochemical (IHC) staining in tobacco-exposed HPV(+) tumors (Kemnade et al., 2020). No prior

investigation has systematically evaluated the molecular features associated with tobacco, comparing

both its mutational and tumor immune effects. Using a multi-omics approach, we tested both of these hy-

potheses in a cohort of HPV(+) OPSCC patients. We evaluated somatic mutational burden with whole

exome sequencing (WES) and investigated the TIME by measuring the expression of immune-related

mRNA transcripts and IHC staining.

RESULTS

Demographic and clinical characteristics of our cohort are displayed in Table 1. Themajority of patients had

a history of tobacco exposure, with 19 (40.4%) being former users and 9 (19.1%) being current users. Consis-

tent with established demographic trends in HPV(+) OPSCC, the median age at diagnosis was 58 years old

(range 45–79) and themajority of patients wereWhitemales. No significant differences in demographic and

American Joint Committee on Cancer (AJCC) 8th edition staging parameters were present based on to-

bacco exposure groups. Our cohort included patients treated with primary surgery (76.6%) and primary

chemoradiation therapy (CRT) (23.4%). The median time to loss of follow-up or death was 1.9 years (range

0.23–7.8 years). Eight patients (17.0%) in the cohort had disease recurrence and six (12.8%) died during the

study period. Overall, survival (OS) and disease-free survival (DFS) were both significantly associated with a

clinical disease stage (Figures S1A and S1B; both Log rank p < 0.001). There were no OS or DFS differences

related to the tobacco use status (Figures S1C and S1D; Log rank p = 0.220 and 0.650, respectively), which is

an expected finding given our cohort’s size.

WES of tumor-normal pairs was performed for all 47 patients in our cohort, with a median depth of

sequencing of 71x for tumor and 95x for normal samples. We identified 12 genes that met the criteria

for statistically significant mutations in our cohort (MuSiC False Discovery Rate (FDR) < 0.1). These included

multiple genes identified in HPV(+) OPSCC in previous publications (Lawrence et al., 2015; Gillison et al.,

2018), including PIK3CA, ZNF750, FGFR3, PTEN, TRAF3, AND FBXW7 (Figure 1; Tables S1A and S1B).

Moreover, this approach identified mutations in genes that have not previously been noted as statistically

significant in HPV(+) OPSCC, including B2M, IFI27, AK5, METTL24, IQCG, and SMARCAL1. Additional

recurrent mutations within functional networks included AKT1, CUX1, FGF2, FGF8, HLA-B, KMT2D,

NRAS, PIK3R1, PLEC, SYNE1, and SYNE2 (MUFFINN probabilistic score >0.5, Table S1C).

Many observed number of alterations (CNAs) were consistent with previous reports and included amplifi-

cations on 1q, 3q, 5p, 8q, 12p, 19q, and 20q and deletions on 3p, 9q, 11q, 14q, and 16q (Figure S2) (Law-

rence et al., 2015; Gillison et al., 2018). Many focal amplifications and deletions not described for HPV(+)

OPSCC in previous publications met the criteria for statistical significance (GISTIC q < 0.01), of which

the most notable were an amplification of 7p22.1, containing RAC1, and a deletion of 13.q14.2, containing

RB1 (Table S1D and S1E).

Tobacco use is associated with differences in single base substitutions, but not mutational

burden or recurrent oncogenic mutations

Because of tobacco’s causative role in HNSCC at multiple sites, we hypothesized that WES would reveal

additional somatic mutational burden in patients with tobacco use history. Despite its wide variability in

the tumor mutational burden (TMB) throughout the cohort, ranging from 0.04 to 30.1 mutations/Mb, there
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were no significant differences in TMB related to the history of tobacco use regardless of how we catego-

rized tobacco use, a finding consistent with prior work (Gillison et al., 2018). We observed no difference in

TMB comparing tobacco-exposed versus never-exposed users (Wilcoxon p = 0.614), current versus former

plus never tobacco users (Wilcoxon p = 0.642) or by comparing current, former, and never tobacco use

groups separately (Figure S3A, Kruskal–Wallis p = 0.655). Moreover, TMB did not significantly differ in

Table 1. Demographic and clinical characteristics of the study cohort

Current Former Never

p value

Total

(N = 9) (N = 19) (N = 19) (N = 47)

Age at diagnosis

Mean (SD) 57.6 (5.22) 61.3 (10.6) 56.9 (9.07) 0.312 58.8 (9.26)

Decade of diagnosis

50–59 6 (66.7%) 7 (36.8%) 7 (36.8%) 0.212 20 (42.6%)

60–69 3 (33.3%) 5 (26.3%) 4 (21.1%) 12 (25.5%)

40–49 0 (0%) 2 (10.5%) 6 (31.6%) 8 (17.0%)

70–79 0 (0%) 5 (26.3%) 2 (10.5%) 7 (14.9%)

Gender

Female 1 (11.1%) 3 (15.8%) 1 (5.3%) 0.828 5 (10.6%)

Male 8 (88.9%) 16 (84.2%) 18 (94.7%) 42 (89.4%)

Race/Ethnicity

Asian 0 (0%) 1 (5.3%) 0 (0%) 1 1 (2.1%)

Caucasian 9 (100%) 18 (94.7%) 19 (100%) 46 (97.9%)

Primary tumor subsite

Base of Tongue 3 (33.3%) 9 (47.4%) 8 (42.1%) 0.838 20 (42.6%)

Tonsil 6 (66.7%) 9 (47.4%) 11 (57.9%) 26 (55.3%)

Overlapping Sites 0 (0%) 1 (5.3%) 0 (0%) 1 (2.1%)

Clinical T stage

T0 1 (11.1%) 2 (10.5%) 0 (0%) 0.462 3 (6.4%)

T1 2 (22.2%) 4 (21.1%) 3 (15.8%) 9 (19.1%)

T2 2 (22.2%) 7 (36.8%) 12 (63.2%) 21 (44.7%)

T3 3 (33.3%) 3 (15.8%) 3 (15.8%) 9 (19.1%)

T4 1 (11.1%) 3 (15.8%) 1 (5.3%) 5 (10.6%)

Clinical N stage

N0 1 (11.1%) 2 (10.5%) 0 (0%) 0.166 3 (6.4%)

N1 4 (44.4%) 5 (26.3%) 10 (52.6%) 19 (40.4%)

N2 3 (33.3%) 12 (63.2%) 7 (36.8%) 22 (46.8%)

N3 1 (11.1%) 0 (0%) 2 (10.5%) 3 (6.4%)

Clinical M stage

M0 9 (100%) 18 (94.7%) 19 (100%) 1 46 (97.9%)

M1 0 (0%) 1 (5.3%) 0 (0%) 1 (2.1%)

Overall clinical stage

I 3 (33.3%) 4 (21.1%) 8 (42.1%) 0.658 15 (31.9%)

II 4 (44.4%) 12 (63.2%) 8 (42.1%) 24 (51.1%)

III 2 (22.2%) 2 (10.5%) 3 (15.8%) 7 (14.9%)

IV 0 (0%) 1 (5.3%) 0 (0%) 1 (2.1%)

All patients were p16(+) and had untreated primary OPSCC.
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patients who had adverse clinical outcomes including death and/or recurrence (Figure S3B, Wilcoxon p =

0.738).

We sought to identify differences in mutational profiles based on tobacco exposure. In a subset of patients

with sufficiently high mutational burden (total nonsynonymous SNVs >45,N = 39 patients, 83.0% of cohort),

we examined the rate of single nucleotide substitutions and their trinucleotide contexts. Consistent with

previous reports of HPV(+) OPSCC, tumors were dominated by C > T transitions and C > G transversions

(Figure 2A) (Gillison et al., 2018) Tobacco-exposed tumors had a 2.3-fold greater median proportion of

T > C transitions in any trinucleotide context compared to tumors of never tobacco users (Figure 2F, Wil-

coxon p = 0.015, FDR = 0.088). Tobacco exposure was not associated with significant differences in the re-

maining substitution classes (Figures 2B–2E and 2G).
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Single base substitution signatures were determined for each sample and compared based on tobacco use

status (Alexandrov et al., 2013). Consistent with prior reports, three mutational signatures were dominant

(Figure 3A). Signature #1 was present in 92.3% of samples and reflects spontaneous 5-methylcytosine

deamination associated with aging. Signatures #2 and #13, which reflect mutations attributable to apolipo-

protein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) activity, were present in 74.3% of pa-

tients. The median proportion of mutations accounted for by signatures #1, #2, and #13 combined was

66.8% (range 9.2–91.7%). Together, these dominant signatures accounted for a significantly higher propor-

tion of mutations in tumors of never tobacco users when compared with tobacco-exposed tumors (Fig-

ure 3B, Wilcoxon p = 0.026).

Tobacco-related mutational signatures were largely absent within our cohort. Signature #4, which is asso-

ciated with tobacco and common in HNSCC (Alexandrov et al., 2013), was not responsible for any propor-

tion of mutations in our study population. Signature #29, associated with chewing tobacco use, was present

in one patient accounting for 8.2% of mutations in this individual. Signature #16 mutations have been pre-

viously correlated with tobacco exposure in HPV(�) disease (Gillison et al., 2018) but, as expected, these

were not significantly associated with tobacco use (Wilcoxon p = 0.418) in this study’s HPV(+) OPSCC

cohort. We also considered the proportion of mutations that could not be categorized into one of the
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Figure 3. Aging and APOBEC-related mutational signatures are dominant in HPV(+) OPSCC but account for a lower proportion of mutations in

tobacco users

(A) Heatmap of mutational signatures demonstrates the dominance of signatures #1 (Aging-related), #2 and 13 (both APOBEC-related) in HPV(+) OPSCC.

Despite high reported rates of tobacco use in the cohort, mutations attributable to tobacco-related signatures #4 and #29 were absent.

(B) The proportion of signature #1, #2, and #13 mutations is significantly greater in never tobacco users, whereas (C) the proportion of uncategorized

mutations is significantly greater in those reporting current or former tobacco use (* Wilcoxon p < 0.05).
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30 mutational signatures. Uncategorized mutations were present in 94.9% of samples and accounted for a

minority of mutations in most patients (median 6.0% of mutations, range 0–20.6%). Uncategorized muta-

tions accounted for a significantly greater proportion of mutations in tobacco-exposed tumors (Figure 3C,

Wilcoxon p = 0.017). This difference approached a statistical significance with current, former, and never

tobacco users compared separately (Kruskal–Wallis p = 0.052).

In an exploratory analysis, we compared the frequency of recurrent somatic mutations in the whole cohort

by tobacco use groups. There were no significant differences in the occurrence of any single mutated gene

based on tobacco use groups (Table S1F). We hypothesized that mutations typically observed in HPV(�)

HNSCC may be induced by tobacco use. To test this, we examined the rate of canonical HPV(�) HNSCC

mutations that were significantly mutated in TCGA(Table S1G) (Lawrence et al., 2015). These mutations

individually occurred at a low rate in our cohort with no single gene having more than an 8.5% mutation

rate. Collectively, canonical HPV(�) mutations occurred at a rate of 32.1% of those with a history of tobacco

use compared with 15.8% of those with no tobacco history (Fisher’s Exact p = 0.31).

Targeted gene expression profiling reveals that T cell-inflamed TIME is inversely associated

with current tobacco use

Given the lack of significant differences in tumor-associated variants by the tobacco use status, we then hy-

pothesized that tobacco use would be associated with discernible differences in the TIME. We utilized a

760-gene Nanostring immuno-oncology panel to measure expression of immune-cell related transcripts.

Of the 47 tumors available for analysis, three samples were excluded because they did not pass quality con-

trol review owing to low binding density and/or low efficiency hybridization.

We performed unsupervised hierarchical clustering of the 760 transcripts for all patients. This approach

divided patients into two clusters which differed by disease-free survival (Figure 4). A cluster of 10 low-

risk patients was identified, none of which had death or recurrence, with all adverse events concentrated
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Figure 4. Unsupervised clustering of 760 transcripts reveals a low-risk patient group with a high expression of T cell-related transcripts

Heatmap of gene expression displays a high expression of transcripts in column cluster 4 in a subset of patients without death and/or recurrence. ORA of

transcripts in this cluster revealed that cluster 4 was significantly enriched for multiple biological processes related to adaptive immunity. Patients in the high-

risk patient cluster who had a lower expression of cluster 4 transcripts displayed an increased risk of death and/or recurrence (HR = 3.703, 95% CI 0.905–15.15,

Log rank p = 0.069).
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in the remaining 34 patients (Log rank p = 0.069, HR = 3.703, 95% CI 0.905–15.15). We observed that the

10-patient low-risk cluster was enriched for a cluster of 202 genes containing T cell-related transcripts (Fig-

ure 4, column cluster 4), including T cell-related cell surface markers, members of the T cell receptor com-

plex, granzymes, and IFN-l and JAK-STAT pathway members (Table S2D). Over representation analysis

(ORA) revealed that relative to all transcripts in the panel, this cluster was significantly enriched for multiple

biological processes related to adaptive immunity. Importantly, adaptive-immune related processes were

identified in all functional databases we queried (Table S2D). To validate these findings, IHC staining of pri-

mary tumors was performed using anti-CD3, CD4, and CD8 antibodies. The 10-patient low-risk cluster had

a significantly greater degree of T cell infiltration (Figures S4A–S4C, all Wilcoxon FDR <0.01), confirming

that the enrichment for adaptive immune-related transcripts in this cluster correlates with protein expres-

sion of T cell surface markers. ORA provided relatively less support for biological processes identified in

clusters #1–3, with only clusters #2 and #3 having significant biological processes identified, and only in

one of the databases queried. Full gene lists and ORA results are available in Tables S2A–S2C.

To further characterize and expand on the functional significance of T cell related differences suggested by

unsupervised clustering, we utilized a previously published and validated 18-gene T cell-inflamed gene

expression profile (TGEP) score (Ayers et al., 2017; Cristescu et al., 2018). A high score reflects existing cyto-

toxic activity in the TIME and has been validated in multiple tumor types, including large cohorts of HNSCC

patients, as a predictor of response to PD-1 inhibitors (Ayers et al., 2017). Figure 5C displays the spectrum

of transcript expression contributing to TGEP scores in our cohort. TGEP scores showed significant positive

correlations with the IHC expression of CD3+, CD4+ and PD-L1 (Figures S5A–S5C, all Spearman correlation

FDR <0.1); the strongest and most significant correlation was with CD8+ cells (Figure 5B, Spearman Rho =

0.728, FDR <0.001), suggesting that TGEP scores serve as a reliable indicator of a CD8+ T cell-inflamed

TIME.

TGEP scores significantly differed based on the current, former, or never tobacco use groups (Figure 5C,

Kruskal–Wallis p = 0.029), with current tobacco users having lower scores than never or former users (Dunn’s
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Figure 5. Tobacco use at the time of diagnosis is associated with decreased T cell infiltration of the primary TIME

(A) Heatmap displaying the TGEP transcript expression for each patient. Patients are ranked from high (top) to low (bottom) based on their TGEP scores.

(B) TGEP scores were significantly associated with CD8+ IHC staining (Spearman Rho = 0.728, p < 0.001).

(C) TGEP scores differ significantly by tobacco use, with current tobacco users having the lowest scores (* Kruskal–Wallis p < 0.05).

(D) Tobacco history reveals differences in TGEP scores (high vs. low) and mutational frequency (high vs. low) by tobacco use groups (Fisher’s exact p < 0.05).

(E) In never tobacco users, there was a significant positive correlation between TGEP scores and mutational frequency. This correlation was not present in

current or former tobacco users (** Spearman p < 0.01).
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test, p = 0.028 and 0.085, respectively). Tobacco’s effect on the TIME was also evident when TGEP scores

were analyzed in combination with tumor mutational frequency as has been previously described (Cristescu

et al., 2018). We used previously published thresholds for TGEP (score greater than�0.318) and mutational

frequency (greater than 86 somatic, non-synonymous variants per sample) that have been previously shown

to predict response to PD-1 inhibition in HNSCC alone or in combination with TGEP scores (Cristescu et al.,

2018). These thresholds divided patients into four groups based on high and low TGEP score and muta-

tional frequency values. Compared with former or never tobacco users, current tobacco users dispropor-

tionately distributed into groups where one or both of TGEP scores or mutational frequency were low (Fig-

ure 5D, Fisher’s exact p = 0.018). Although current tobacco users had significantly lower TGEP scores,

Figures 5A, 5C, and 5D demonstrate that low TGEP scores were not exclusive to current tobacco users.

Never tobacco users demonstrated a significant positive correlation between the TGEP score and muta-

tional frequency (Figure 5E, Spearman Rho = 0.612, p = 0.006). This positive correlation was not present

in former users (Figure 5E, Spearman Rho = 0.010, p = 0.974) and or current tobacco users (Figure 5E,

Spearman Rho = �0.524, p = 0.197). Taken together, our results suggest that varying degrees of T cell-

related mRNA and protein expression are present within HPV(+) OPSCC primary tumors, and that the

low expression of these markers is associated with tobacco use at diagnosis.

T cell-inflamed TIME is associated with survival and treatment response

Similar to our unsupervised clustering results, associations between T cell inflammation and treatment out-

comes were observed using TGEP scores. A single patient with distant metastases at diagnosis was

removed from survival analyses. We performed cut point analysis, which revealed that at a TGEP score

threshold of �0.235, high TGEP scores were significantly associated with improved OS and DFS

(Figures 6A and 6B; Log rank p = 0.004 and 0.025, respectively). 60.5% of the cohort had TGEP scores above

this threshold. Among the 39.5% of the cohort with scores below this threshold, 6 (35.2%) were current to-

bacco users, 5 (29.5%) were former users, and 6 (35.2%) were never users. The expressions of CD3, CD4,

CD8, and PD-L1 were all significantly greater in samples with TGEP scores above this threshold

(Figures 6C–6F, all Wilcoxon FDR <0.1). In a multivariate analysis adjusting for the patient age and disease

stage at diagnosis, DFS was independently associated with the TGEP score (Table S2, Cox proportional

hazards, HR 4.52, 95% CI 1.04–19.7, p = 0.04), whereas neither stage nor age were significant in this model.

Multivariate analysis was not performed using OS because all mortalities occurred in patients with

TGEP < �0.235.

To ensure tissue specimen sources did not represent a source of bias in these results, we compared sam-

ples by primary treatment modality. We did not identify differences in TGEP scores (Figure S5D, Welch’s T

test, p = 0.19, mean difference 0.13, 95% CI –0.07 to 0.33), nor did we identify categorical differences using

the �0.235 TGEP score threshold (Fisher’s exact p = 0.31). We sought to determine if our observed trends

related to tobacco and clinical outcomes were present in an independent cohort. We examined expression

of the 18 transcripts in the TGEP score in p16-positive OPSCC patients from The Cancer Genome Atlas

(TCGA) using normalized RNA sequencing data. In this cross-platform analysis, unsupervised clustering

of the TGEP transcript expression revealed that current tobacco users and patients with death and/or

recurrence were similarly concentrated among patients with a low expression of TGEP transcripts in

both our study cohort and a TCGA cohort with the same inclusion criteria (Figures S6A and S6B,

respectively).

DISCUSSION

This study represents themost comprehensive investigation to date of the biology associated with tobacco

use in HPV(+) OPSCC, a disease for which tobacco use represents a strong, independent, adverse prog-

nostic factor (Ang et al., 2010). Using an integrative genomic approach, we have identifiedmultiple biologic

differences present in primary HPV(+) OPSCC tumors related to tobacco exposure. Most importantly, we

demonstrate that current tobacco use is associated with decreased T cell infiltration of HPV(+) OPSCC tu-

mors. OurWES results suggest this effect is present despite a lack of significant differences in TMB or recur-

rent oncogenic mutations associated with tobacco use. Further, low T cell infiltration was associated with

decreased OS and DFS, regardless of tobacco use. Taken together, our results suggest that the primary

and clinically relevant feature associated with tobacco use in HPV(+) OPSCC is decreased T cell infiltration

of the primary TIME. These findings may have important implications for treatment stratification in HPV(+)

OPSCC, particularly in the era of treatment deintensification.
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The immunosuppressive molecular effects of tobacco exposure have been previously demonstrated using

a variety of experimental methods. In case-control studies and experimental work using human PBMCs, to-

bacco exposure has been associated with cytokine alterations with particular relevance to both antiviral

and antitumor immune responses, including decreases in IFN-y, IL-2, TNF, IL-15, and IL-16(van Dijk

et al., 1998; Mian et al., 2009b; Mian et al., 2009a; Maet al., 2010; Shiels et al., 2014; Liu et al., 2019). Exper-

imental evidence using animal models exposed to tobacco smoke also support this hypothesis, with mul-

tiple studies showing that tobacco exposure results in systemic T cell anergy and impaired immune re-

sponses to a variety of challenges, including viruses (Geng et al., 1995, 1996; Kalra et al., 2000; Feng

et al., 2011; Schierl et al., 2014). Other groups have demonstrated impairment of NK and dendritic cells

in response to tobacco exposure (Vassallo et al., 2005; Lu et al., 2007; Hao et al., 2013; Alkhattabi et al.,

2018). These studies provide biological rationale for the association between tobacco and poor immune

infiltrate identified in our study.

The effect of tobacco exposure on the TIME has been investigated in multiple human malignancies, with

varying results related to cancer histologic classification and tumor site. Multiple groups have described a

similar inverse relationship between tobacco exposure and immune infiltration in HPV(�) HSNCC (Foy

et al., 2017; Desrichard et al., 2018; Iglesia et al., 2020). In particular, Iglesia et al. demonstrated that current

tobacco use was associated with decreased T cell infiltration and IFN signaling in HPV(�) HNSCC tumors.

Conversely, the effect of tobacco has been associated with an inflamed TIME in lung SCC (Desrichard et al.,

2018). This difference in lung SCC may be related to tobacco-induced pulmonary inflammation that has

been demonstrated outside of the context of cancer (Hodge et al., 2007). There is a paucity of data on

the effect of tobacco exposure on HPV(+) OPSCC, with a single recent report demonstrating decreased

CD8+ IHC staining in tobacco-exposed primary HPV(+) OPSCC tumors (Kemnade et al., 2020). Our findings
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Figure 6. TGEP scores are significantly associated with clinical outcomes

(A) OS was significantly reduced in patients with a TGEP < �0.235 (Log rank p < 0.01).

(B–F) (B) DFS was significantly reduced in patients with a TGEP < �0.235.(Log rank p < 0.05). IHC staining was significantly lower for patients with TGEP

scores < �0.235 compared with those with scores > �0.235 for the following markers: (C) CD3, (D) CD4, (E) CD8, and (F) PD-L1 (Wilcoxon *p < 0.05,

***p < 0.001, all FDR <0.1).
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are consistent with this previous study and elucidate the immunosuppressive effect of tobacco exposure on

HPV(+) OPSCC phenomenon in greater biologic detail using multiple mRNA hybridization probes, vali-

dating in IHC, and controlling for mutational burden using our WES data. Our results, along with another

recent study in HPV(�) HNSCC, suggest that the immunosuppressive effect of tobacco use at the time of

diagnosis may be a feature shared by HNSCC tumors regardless of HPV status (Iglesia et al., 2020). Beyond

SCC, tobacco has been associated with immunosuppression in primary colorectal carcinoma, another

highly immunogenic tumor (Hamada et al., 2018; Fujiyoshi et al., 2020).

Further, tobacco exposure influences HPV-specific immune responses. Multiple groups have demon-

strated that tobacco use is associated with impaired immune responses and clearance of oncogenic

HPV infections in human female genital infections (Giuliano et al., 2002; Koshiol et al., 2006; Simen-Kapeu

et al., 2008). In the oropharynx specifically, the current tobacco use is strongly associated with an increased

incidence of oral HPV16 infections (Fakhry et al., 2014b). These findings are important given the putative

oncologic benefits of HPV in the context of HNSCC. HPV(+) OPSCC tumors display greater T cell infiltration

compared with HPV(�) HNSCC, a finding that may contribute to superior oncologic outcomes in HPV(+)

disease (Jung et al., 2013; Mandal et al., 2016; Masterson et al., 2016). The results of the present study

are important, given clinical evidence demonstrating that tobacco users with HPV(+) OPSCC have an atten-

uated oncologic prognosis compared with non-tobacco users (Hafkamp et al., 2008; Ang et al., 2010; Lin

et al., 2013; Fakhry et al., 2014a; Chen et al., 2020). Based on our results, we speculate that this attenuated

prognosis is related to tobacco-induced immunosuppression, which diminishes the immunologic benefit

of having an HPV(+) tumor, forcing HPV(+) OPSCC tobacco users into an intermediate prognostic group

in between tobacco-naı̈ve HPV(+) OPSCC and HPV(�) OPSCC. Prospective studies are needed to precisely

define the systemic and local immunologic features associated with tobacco use in HPV(+) OPSCC and how

these features intersect with oncologic outcomes.

The TGEP score used in this study provided a useful method to quantitatively describe the spectrum of

T cell-inflammation in our cohort. This score has been validated in large patient cohorts as a predictor

of response to PD-1 inhibitors, is agnostic to tumor-type, and was developed on the same NanoString

RNA hybridization platform used in this study (Ayers et al., 2017; Cristescu et al., 2018). Its utility in strati-

fying patients by response to PD-1 inhibitors likely lies in its ability to identify which patients generated

an initial antitumor immune response (Ayers et al., 2017). The transcripts present in the TGEP characterize

different components of this response: neoantigen presentation, chemoattraction, and infiltration of cyto-

toxic T cells and professional antigen-presenting cells, IFN-l signaling, and the resulting upregulation of

immune checkpoints (Ayers et al., 2017; Spranger and Gajewski, 2018). We demonstrated robust correla-

tions between TGEP scores and T cell infiltration as measured by IHC staining. Like IHC staining, TGEP

scores may be derived from formalin fixed paraffin embedded samples. However, when compared with

IHC, TGEP scores are quantitative, operator-independent, and reliant on hybridization of numerous probes

rather than the binding of a single antibody.

An important finding from our investigation is that overlap between low TGEP scores and tobacco use was

incomplete, with a subset of former or never tobacco users also having low TGEP scores. These results sug-

gest that current tobacco use is not required to achieve this high-risk phenotype. In our cohort, low TGEP

scores were associated with lower overall and disease-free survival, including when adjusting for the age

and disease stage. We speculate that gene expression profiles like TGEP, which provide quantitative mea-

sures of TIME inflammation, may provide useful objective data for risk stratification in clinical trials aimed at

HPV(+) OPSCC treatment deintensification and/or candidacy for immunotherapeutics. The results of this

study merit further investigation in a larger cohort where the prognostic contributions of tobacco and

TGEP can be more accurately quantified and compared.

OurWES data also provide important insights related to tobacco exposure in HPV(+) OPSCC. The results of

this study were consistent with the largest genomics study to date of HPV(+) OPSCC patients, which

demonstrated that although mutational burden increased with heavy tobacco exposure in HPV(�) tumors,

there was no difference in mutational burden in HPV(+) OPSCC on the basis of tobacco exposure (Gillison

et al., 2018). Similarly, we were unable to identify a higher rate of any particular mutation in tobacco users,

including canonical HPV(�) mutations (Gillison et al., 2018). We acknowledge that we were not powered to

detect small effect sizes and that a much larger sequencing cohort of HPV(+) OPSCC patients will be

needed to definitively determine if mutational profiles differ on the basis of tobacco use.
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Wedid identify mutational differences related to tobacco use in our cohort in other analyses.We found that

tobacco exposed tumors had higher rates of T > C substitutions, lower rates of APOBEC and aging-related

mutational signatures, and a greater share of mutations that could not be classified into a COSMIC signa-

ture. Importantly, these effects were observed in both current and former tobacco users, whereas tobacco’s

associations with the TIME were observed predominately in current tobacco users. The finding that our

cohort totally lacked mutational signature 4, which is associated with tobacco use, is not unexpected.

Compared with tobacco-naı̈ve tumors, signature 4 is significantly increased in tobacco exposed lung

SCC, lung adenocarcinoma, and larynx SCC, but remains largely absent in oral cavity, pharynx, and esoph-

ageal SCC as well as bladder cancer (Alexandrov et al., 2016). Among cancers without signature 4, signif-

icant increases T > C substitutions have been observed in tobacco-exposed oral cavity and bladder tumors

(Alexandrov et al., 2016). Based on our findings and previous genomic studies, we conclude that while to-

bacco exposure in HPV(+) OPSCC is associated with discernible differences in somatic mutations, there re-

mains no clear evidence that this affects genomic features such as mutational burden or recurrent onco-

genic mutations. Although they have an intermediate prognosis, available evidence does not support

the hypothesis that tobacco-exposed HPV(+) tumors represent a mutational intermediary between to-

bacco naive HPV(+) OPSCC and HPV(�) OPSCC.

We identified multiple genes that have yet to be described as significantly mutated in HPV(+) OPSCC.

B2M variants were previously noted for HNSCC and HPV(+) OPSCC specifically in TCGA, although

criteria for statistical significance were not met (Lawrence et al., 2015). B2M was identified using both

of our computational tools for assessing mutational significance. B2M is a component of the MHC-I com-

plex and serves an indispensable role in antigen presentation (D’Urso et al., 1991). Another identified

novel mutated gene with potential biologic relevance was SMARCAL1, which codes for an annealing

helicase that limits genomic damage at stalled replication forks (Bansbach et al., 2009). Like p53,

SMARCAL1 is also phosphorylated by ATM serine/threonine kinase, whose gene is deleted in recurrent

11q22 number of losses in HPV(+) OPSCC (Lawrence et al., 2015). Unlike B2M, SMARCAL1 was only

called a significant variant by one computational tool. Further work is needed to clarify the role of

SMARCAL1 relative to other known sources of genomic instability in HPV(+) OPSCC. The biological rele-

vance of the other identified mutations AK5, IFI27, IQGC, and METTL24 in HPV(+) OPSCC is not clear

and will also require further investigation.

In summary, we have shown that current tobacco use is associated with decreased immune infiltration in

HPV(+) OPSCC and not with significant mutational differences by tobacco exposure status. Although we

identified tobacco-associated differences in single base substitutions and mutational signatures, tobacco

was not associated with increased TMB or differences in recurrent oncogenic mutations. TGEP scores are

associated with OS and DFS in HPV(+) OPSCC and may represent a quantitative clinical assay for use in

future risk stratification efforts. We conclude that in HPV(+) OPSCC, the primary and clinically relevant

association with tobacco use is decreased T cell infiltration of the TIME. This works suggests that immu-

nosuppression may account for the increased oncologic risk observed in tobacco users with HPV(+)

OPSCC.

Limitations of the study

The present study has several limitations not previously mentioned. Our study’s most significant limitation

was that we relied on a retrospective review of the medical record to determine tobacco exposure.

Although we confidently classified all patients into current, former, or never tobacco status in all patients,

determining pack years was not possible in many cases. This limitation may be avoided in future studies

through administration of a tobacco survey at the time of enrollment. Even with these measures in place,

biases associated with patient-reported tobacco use are never entirely avoided, a fact that underscores the

importance of identifying objective biomarkers of high-risk disease that do not rely on patient-reported

behavioral data. We acknowledge that although our patients’ tumors were well characterized using multi-

ple modalities, our cohort’s size represents a limitation. To address this, we demonstrated that p16(+)

OPSCC current smokers in TCGA had a similarly low expression of TGEP transcripts. We acknowledge

that larger studies are needed to precisely quantify the risk associated with low tumor T cell infiltration

in this disease. We also acknowledge that although the mRNA hybridization panel provides a platform

that is more readily converted into a clinical assay, it is targeted toward certain biological processes,

including immunity, making its value for discovery limited when compared with unbiased approaches

such as RNA sequencing. Although the TGEP score we used has had extensive prior validation and
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correlated well with IHC staining in our cohort, other experimental approaches will be needed to better

define the mechanisms associated with smoking-related immunosuppression in HPV(+) OPSCC.
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Y., and Stämpfli, M.R. (2007). Cigarette smoke
impairs NK cell-dependent tumor immune
surveillance. J. Immunol. 178, 936–943. https://
doi.org/10.4049/jimmunol.178.2.936.

Modestou, M.A., Manzel, L.J., El-Mahdy, S., and
Look, D.C. (2010). Inhibition of IFN-gamma-
dependent antiviral airway epithelial defense by
cigarette smoke. Respir. Res. 11, 64. https://doi.
org/10.1186/1465-9921-11-64.

Mandal, R., Sxenbabao�glu, Y., Desrichard, A.,
Havel, J.J., Dalin, M.G., Riaz, N., Lee, K.W., Ganly,
I., Hakimi, A.A., Chan, T.A., and Morris, L.G.
(2016). The head and neck cancer immune
landscape and its immunotherapeutic
implications. JCI Insight. 1, e89829. https://doi.
org/10.1172/jci.insight.89829.

Masterson, L., Lechner, M., Loewenbein, S.,
Mohammed, H., Davies-Husband, C., Fenton, T.,
and Sterling, J. (2016). CD8+ T cell response to
human papillomavirus 16 E7 is able to predict
survival outcome in oropharyngeal cancer. Eur J
Cancer. 67, 141–151. https://doi.org/10.1016/j.
ejca.2016.08.012.

Maxwell, J.H., Kumar, B., Feng, F.Y., Worden,
F.P., Lee, J.S., Eisbruch, A., Wolf, G.T., Prince,
M.E., Moyer, J.S., Teknos, T.N., et al. (2010).
Tobacco use in human papillomavirus-positive
advanced oropharynx cancer patients related to
increased risk of distant metastases and tumor
recurrence. Clin. Cancer Res. 16, 1226–1235.
https://doi.org/10.1158/1078-0432.CCR-09-2350.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie,
G.R., Thormann, A., Flicek, P., and Cunningham,
F. (2016). The ensembl variant effect predictor.
Genome Biol. 17, 122. https://doi.org/10.1186/
s13059-016-0974-4.

Mermel, C.H., Schumacher, S.E., Hill, B.,
Meyerson, M.L., Beroukhim, R., and Getz, G.

ll
OPEN ACCESS

iScience 25, 104216, May 20, 2022 15

iScience
Article

https://doi.org/10.1200/JCO.2014.55.1937
https://doi.org/10.1200/JCO.2014.55.1937
https://doi.org/10.1001/jama.2014.13183
https://doi.org/10.1001/jama.2014.13183
https://doi.org/10.1128/IAI.00709-10
https://doi.org/10.1128/IAI.00709-10
https://doi.org/10.1093/annonc/mdx210
https://doi.org/10.1093/jncics/pkaa040
https://doi.org/10.1093/jncics/pkaa040
https://doi.org/10.1006/taap.1995.1233
https://doi.org/10.1006/taap.1995.1233
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref28
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref28
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref28
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref28
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref28
https://doi.org/10.1200/JCO.2011.38.4099
https://doi.org/10.1200/JCO.2011.38.4099
https://doi.org/10.1101/gr.241141.118
https://doi.org/10.1101/gr.241141.118
https://doi.org/10.1023/a:1020668232219
https://doi.org/10.1023/a:1020668232219
https://doi.org/10.1371/journal.pcbi.1004274
https://doi.org/10.1371/journal.pcbi.1004274
https://doi.org/10.1002/ijc.23458
https://doi.org/10.1093/jnci/djy137
https://doi.org/10.1371/journal.pone.0057495
https://doi.org/10.1111/j.1365-2249.2007.03451.x
https://doi.org/10.1111/j.1365-2249.2007.03451.x
https://doi.org/10.1158/1078-0432.CCR-19-1769
https://doi.org/10.1158/1078-0432.CCR-19-1769
https://doi.org/10.1002/ijc.27776
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
http://refhub.elsevier.com/S2589-0042(22)00486-2/sref39
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41598-019-57111-5
https://doi.org/10.1002/0471250953.bi1504s44
https://doi.org/10.1002/0471250953.bi1504s44
https://doi.org/10.1093/aje/kwj165
https://doi.org/10.1038/nature14129
https://doi.org/10.1038/nature14129
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1002/cncr.28250
https://doi.org/10.1002/cncr.28250
https://doi.org/10.1038/s41598-019-48822-w
https://doi.org/10.1038/s41598-019-48822-w
https://doi.org/10.4049/jimmunol.178.2.936
https://doi.org/10.4049/jimmunol.178.2.936
https://doi.org/10.1186/1465-9921-11-64
https://doi.org/10.1186/1465-9921-11-64
https://doi.org/10.1172/jci.insight.89829
https://doi.org/10.1172/jci.insight.89829
https://doi.org/10.1016/j.ejca.2016.08.012
https://doi.org/10.1016/j.ejca.2016.08.012
https://doi.org/10.1158/1078-0432.CCR-09-2350
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4


(2011). GISTIC2.0 facilitates sensitive and
confident localization of the targets of focal
somatic copy-number alteration in human
cancers. Genome Biol. 12, R41. https://doi.org/
10.1186/gb-2011-12-4-r41.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD3 Ventana Clone 2GV6; RRID:AB_2335978

Anti-CD4 Ventana Clone SP35; RRID:AB_2335982

Anti-CD8 Ventana Clone SP57; RRID:AB_2335985

Anti-PD-L1 Ventana Clone SP263; RRID:AB_2819099

Biological samples

Primary, p16(+) OPSCC tumor tissue and

derived DNA and RNA

Institutional Tissue Acquisition

Primary, p16(+) OPSCC tumor RNA –

normalized transcript reads

HNSC-TCGA (Lawrence et al., 2015)

Deposited data

Whole exome sequencing data This paper NIH dbGaP Accession: phs002768.v1.p1

NanoString mRNA hybridization data This paper NIH GEO Accession: GSE199029

Software and algorithms

R R Core Team https://www.r-project.org/

Survival R package https://github.com/therneau/survival

Survminer R package https://github.com/kassambara/survminer

somatic_exome McDonnell Genome Institute https://github.com/genome/analysis-

workflows

GATK Auwera et al.(Auwera et al., 2013) https://gatk.broadinstitute.org/hc/en-us

Strelka Saunders et al.(Saunders et al., 2012) https://github.com/Illumina/strelka

MuTect Cibulskis et al.(Cibulskis et al., 2013) https://software.broadinstitute.org/cancer/

cga/mutect

VarScan Koboldt et al.(Koboldt et al., 2013) http://dkoboldt.github.io/varscan/

Pindel Ye et al.(Ye et al., 2009) http://gmt.genome.wustl.edu/packages/

pindel/

Ensembl Variant Effect Predictor McLaren et al.(McLaren et al., 2016) https://github.com/Ensembl/ensembl-vep

DeepSVR Ainscough et al.(Ainscough et al., 2018) https://github.com/griffithlab/DeepSVR

gnomAD Karczewski et al.(Karczewski et al., 2020) https://gnomad.broadinstitute.org/

MuSiC Dees et al.(Dees et al., 2012) https://github.com/ding-lab/MuSiC2

MUFFINN Cho et al.(Cho et al., 2016) https://www.inetbio.org/muffinn/

deconstructSigs Rosenthal et al.(Rosenthal et al., 2016) https://github.com/raerose01/

deconstructSigs

CNVkit Talevich et al.(Talevich et al., 2016) https://github.com/etal/cnvkit

GenVisR Skidmore et al.(Skidmore et al., 2016) https://github.com/griffithlab/GenVisR

GISTIC2.0 Mermel et al.(Mermel et al., 2011) https://github.com/broadinstitute/gistic2

WebGestalt Liao et al.(Liao et al., 2019) http://www.webgestalt.org/

Visiopharm https://visiopharm.com/

nSolver NanoString https://www.nanostring.com/

GraphPad Prism https://www.graphpad.com/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jose Zevallos (jpzevallos@wustl.edu).

Materials availability

This study did not generate unique reagents.

Data and code availability

Whole exome sequencing data have been deposited at the National Institute of Health (NIH) database of

Genotypes and Phenotypes (dbGaP) and are publicly available as of the date of publication. NanoString

data have been deposited at the NIH Gene Expression Omnibus (GEO) and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table.

No original code was written in preparation of this publication. Existing R packages used in this work are

listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient characteristics and sample acquisition

All patients were treated at theWashington University Siteman Cancer Center. After informed consent, pri-

mary tumor samples were collected prospectively from patients with newly diagnosed, biopsy proven, p16-

positive OPSCC as part of the Washington University tumor banking protocol. The tumor acquisition

protocol and correlative studies were approved by the Washington University Human Research Protection

Office. A total of 47 patients were included in the study. Patient characteristics are summarized in Table 1.

METHOD DETAILS

Clinical data acquisition

Demographic and clinical data were collected from medical records. Tobacco use information was avail-

able for all patients such that they could be assigned to one of three tobacco use categories: current to-

bacco users were those using tobacco at the time of their cancer diagnosis, former users were those

who previously used tobacco but quit using tobacco prior to diagnosis, and never users were those who

denied ever using tobacco. Dates of diagnosis, death, or recurrence (local, regional, or distant) were re-

corded for each patient and used to calculate overall and disease-free survival (OS and DFS, respectively).

Whole exome sequencing

Sample preparation

Genomic DNA was isolated from 47 paired tumor/normal samples using Qiagen DNeasy Blood and Tissue

Kits. Genomic DNA was fragmented to 100-300bp and libraries were constructed using the KAPA HTP Li-

brary Kits (KAPA Biosystems). A single low input sample used the Swift Accel-NGS 2S DNA Library Kit (Swift

BioSciences) for library construction. Samples were then sequenced to a target depth of 120x per sample

on the Illumina NovaSeq platform (S4, 2 x 151 bp reads).

Sequence alignment, somatic variant calling, filtering, and significance

Exome sequencing data was processed with the February 2019 version of the common workflow language

somatic_exome pipeline developed at the McDonnell Genome Institute (https://github.com/genome/

analysis-workflows). Pipeline execution was performed using Cromwell. Tracking of sample metadata

and analysis results was performed using the McDonnell Genome Institute’s Genome Modeling System

(Griffith et al., 2015). Briefly, reads were aligned with bwa-mem (0.7.15) to version GRCh38 of the human

genome reference supplemented with HLA decoy sequences (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/GRCh38_reference_genome/). Duplicate reads were marked with picard (2.18.1) and

a base quality score recalibration applied with GATK (3.6) (Auwera et al., 2013). Variant calling was per-

formed using the union of calls from Strelka (2.9.9) (Saunders et al., 2012), MuTect (3.6) (Cibulskis et al.,

2013), VarScan (2.4.2) (Koboldt et al., 2013) and Pindel (0.2.5b8) (Ye et al., 2009) and variants were annotated
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with the Variant Effect Predictor (Ensembl 93) (McLaren et al., 2016). Read counting of variants was per-

formed via bam-readcount (0.7).

In order to obtain a final variant list, pipeline variants were further refined as follows. The variant list was

filtered in R such that a candidate variant must have had > 4 variant supporting reads in the tumor sample,

tumor variant allele frequency > 0.05, normal read depth > 20, and normal variant allele frequency <= 0.05.

Non-coding and synonymous variants were removed from the candidate variant list. Using features

described in deepSVR (Ainscough et al., 2018), variants were then classified as ‘‘Somatic’’ or ‘‘Failed’’ using

an Extreme Gradient Boosting classifier via the XGB (booster = "gbtree", eta = 0.1, min_child_weight=1,

max_depth = 8, gamma=0, subsample=1, scale_pos_weight=1, eval_metric = "auc") R library with a binary

logistic classification objective. The classifier was trained on a subset of manually reviewed variants from the

cohort. Five-fold cross validation of the model yielded an AUC of 0.85. Variants with a binary logistic prob-

ability between 0.35 and 0.65 were further refined via manual review (Barnell et al., 2019). Finally, variants

within TTN or Mucin genes or variants exhibiting a gnomAD (Karczewski et al., 2020) minor allele fre-

quency > 0.10 were removed.

Mutational significance was determined usingMuSiC (Dees et al., 2012) with default settings on the filtered

variant list. Potential cancer genes were prioritized via MUFFINN (Cho et al., 2016) using the HumanNet V1

network and the ndmax method. Genes with a probabilistic score > 0.5 were selected as candidate cancer

genes of interest.

DNA mutational signatures

The R library deconstructSigs (Rosenthal et al., 2016) was used to identify patterns in the somatic variants

and their surrounding nucleotide context that support specific DNA mutational signatures in each sample.

The somatic variants of each sample were compared to version 2 of the COSMIC mutational signature

reference, which contains 30 unique signatures (Alexandrov et al., 2013). Briefly, a final variant list was con-

structed as described above except the gnomAD allele frequency filter was not applied and synonymous

variants were included in the final variant list for this analysis. Samples with less than 45 total nonsynony-

mous SNVs (N=8) were omitted from the analysis. The ‘‘exome2genome’’ normalization method within de-

constructSigs was used to obtain COSMIC signature weights for each sample.

Copy number variant calling

Tumor ploidy aberrations were identified via CNVkit (0.9.6) (Talevich et al., 2016), from the somatic_exome

pipeline described above. A somatic amplification or deletion was defined from the segmented log2 tu-

mor/normal ratio output from cnvkit as +/- 0.5. Copy number plots were made with the R library

GenVisR (1.18.1)(Skidmore et al., 2016). Significant amplified or deleted regions were identified with

GISTIC (2.0.23)(Mermel et al., 2011) using default parameters.

Nanostring mRNA hybridization

RNA was isolated from 47 tumor samples using QIAGEN RNeasy kits. Transcripts were hybridized to a

panel of 770 probes (Nanostring IO360). Hybridized transcripts were purified and immobilized on a sample

cartridge. Counts of hybridized transcripts were read using the nCounter platform. Raw counts were

normalized with the nSolver software (4.0) package using the geometric mean of both positive control

probes and housekeeping probes. A background threshold count was set to 20. Normalized data was

used for hierarchical clustering. Over representation analysis (ORA) was performed using WebGestalt

(Liao et al., 2019). TGEP scores were calculated separately by renormalizing using available housekeeping

probes and weighting transcript values as previously described (Ayers et al., 2017; Cristescu et al., 2018).

Validation of TGEP score findings was performed by identifying p16(+) OPSCC cases from The Tumor

GenomeAtlas with available normalized RNAseq data (Lawrence et al., 2015). For a cross-platform compar-

ison, z-scores were calculated for each of the 18 genes and unsupervised clustering was performed, fol-

lowed by annotation with clinical data.

IHC

Tumor microarrays were assembled from formalin-fixed paraffin-embedded primary tumors. A clinical

pathologist reviewed slides and selected areas containing tumor for inclusion in cores. Slides of

5-micron thickness were made and stained with Ventana antibodies for CD3 (2GV6), CD4 (SP35),
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CD8(SP57), and PD-L1(SP263) with hematoxylin counterstaining. A high-resolution digital scanner (Nano-

Zoomer; Hamamatsu Photonics, Welwyn Garden City, UK) was used to create digitized bright field images

from the slides at 20x magnification. Cores were not included in analyses if >30% of the core was missing or

damaged during sectioning. The images were evaluated using digital analysis software (Visiopharm; Hoer-

sholm, Denmark), which has been used previously for identifying T cells in the HNSCC TIME (Amin et al.,

2020). Red-Blue-Green color filters were set which reliably distinguished 3,30-diaminobenzidine (DAB)

stained and hematoxylin stained cells without detecting unstained negative space. The total area stained

by DAB or hematoxylin was calculated per core. Positive staining for each core was quantified and reported

as the total DAB[+] area divided by the total cellular area (DAB[+] plus hematoxylin[+]). Example images are

shown for anti-CD8 stained tumors in Figure S7.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R (3.6.1) or GraphPad Prism (8.1.2). Additional R packages are

detailed in the key resources table. Details of individual statistical tests are presented in the results section

of this report. Shapiro Wilk tests were used to determine normality of distributions. Normally distributed

continuous variables were compared using two-sided T-tests withWelch’s correction. Continuous variables

without normal distributions were compared with two-sided Wilcoxon or Kruskal Wallis tests with Dunn’s

multiple comparison tests. Spearman’s rank correlation coefficients were computed to determine degrees

of correlation. Contingency testing was performed using Fisher’s exact tests. Univariate survival analyses

were performed using Log-rank tests. Multivariate survival analysis was performed using Cox proportional

hazards. False Discovery Rates were computed when multiple comparisons were performed together. Cut

point analysis was performed using the R package survminer (0.4.2). Hierarchical clustering was performed

using Euclidian distance with Ward’s linkage method.
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