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Abstract: Sustained attention is essential for older adults to maintain an active lifestyle, and the
deficiency of this function is often associated with health-related risks such as falling and frailty. The
present study examined whether the well-established age-effect on reducing mind-wandering, the
drift to internal thoughts that are seen to be detrimental to attentional control, could be replicated by
using a robotic experimenter for older adults who are not as familiar with online technologies. A
total of 28 younger and 22 older adults performed a Sustained Attention to Response Task (SART)
by answering thought probes regarding their attention states and providing confidence ratings for
their own task performances. The indices from the modified SART suggested a well-documented
conservative response strategy endorsed by older adults, which were represented by slower responses
and increased omission errors. Moreover, the slower responses and increased omissions were found
to be associated with less self-reported mind-wandering, thus showing consistency with their higher
subjective ratings of attentional control. Overall, this study demonstrates the potential of constructing
age-related cognitive profiles with attention evaluation instruction based on a social companion robot
for older adults at home.

Keywords: aging; social companion robot; sustained attention; mind-wandering; cognitive evaluation

1. Introduction

With advanced science and technology, the longevity revolution is taking place world-
wide. By 2050, one in six people will be over the age of 65 [1]. As older adults are the main
growing demographic group, technological solutions are urgently required to meet the
constantly increasing demands of care services. In this regard, active aging—the lifestyle
that maintains positive subjective well-being by having good physical, social, and mental
health in old age [2]—is becoming a trend in the era of population aging. Specifically,
active aging is supported by one’s ability to sustain attention for goal-oriented behaviors.
However, there are great variations in sustained attention among older adults; deficiency in
sustained attention, on the other hand, is often associated with detrimental performances
in everyday tasks such as paying bills or driving [3,4]. Early identification of subtle im-
pairments in attention is therefore critical to planning treatment, and so are intervention
strategies before the consequences become detrimental.
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Early disease detection for older adults has also been envisioned as an appealing
option for effective in-home care [5]. For example, algorithms using data from the hospital
and an experiment on predicting regional chronic disease of cerebral infarction have
reached 94.8% accuracy [6]. Although such a detection rate seems optimistic, a significant
obstacle often lies with the data gaining stage, during which sophisticated equipment is
needed for collecting required neurological data. Under these circumstances, participants
are usually tested in venues, such as hospitals or research facilities. However, several
reasons could impede older adults from receiving such assessments in a place outside of
their home environment. One of which is the challenge of traveling between homes and
research facilities for individuals with disabilities, a common problem in aging populations.
In the United States, two in five adults aged 65 years old or above have at least a disability
in hearing, vision, mobility, cognition, self-care, or independent living [7]. Moreover, most
older adults with mild cognitive impairments may lack awareness of their condition, which
often prevents them from accessing appropriate health care [8,9]. Furthermore, the drastic
changes that have been brought by the worldwide pandemic over the past two years,
coronavirus disease (COVID-19), have been declared a global public health emergency.
Governments worldwide have implemented lockdown policies that limit activities or
access to resources and facilities to contain the spread of the virus. This unprecedented
pandemic has forced people to embrace a home-bounded lifestyle and re-envision the
possibilities for many in-home care facilities.

Concerning these issues, services provided by robotic technology have recently added
new perspectives that focus on using social companion robots as a medium for collecting
data on psychological evaluations in home-like environments. Social robots are distinct
from non-robotic digital services by having physical features that enable users to interact
with machines in a manner more closely resembling interactions with humans [10]. For
older adults, assessments mediated by robots with sociability are more enjoyable and acces-
sible than other remote assessment methods [11]. Growing evidence suggests that it is feasi-
ble to implement cognitive assessments (traditionally conducted by human experimenters)
using social robots and to collect data via human-robot interaction (HRI) by targeting older
adults and those with mild cognitive impairment [12] for robot-administered screening for
global cognitive functions [13,14].

The tests mentioned above are standard screening measures in clinical and research
settings that often involve data gathered through verbal communication. However, au-
tonomous operation for fluent verbal communication is still a substantial challenge in
robotics, and many socially assistive robots still adopt teleoperated control methods [15].
Yet, for older adults, verbal capacity is deemed the most practical yet least reliable feature
on a socially assistive robot [16]. Hence, the technical limitations of verbal communica-
tion in robots could reduce the ecological validity of robot-mediated assessments in older
adults [17]. Additionally, a recent study has developed a framework in which social robots
could conduct regular clinical screening interviews in geriatric care. The study suggested
that it is essential to incorporate multimedia touch screen systems, besides the robot itself,
to enable interactions with visual stimuli [18]. This is especially important for older adults
with difficulties in technological proficiency. Thus, a touch device that incorporates more
intuitive interactive features is essential to facilitate cognitive assessments with HRI ap-
proaches. In order to increase the accessibility for home-based robot-mediated cognitive
assessments, here we propose a promising alternative to capture the subtle but noteworthy
cognitive and functional changes in aging with a behavioral paradigm presented by a touch
screen tablet with a social robot experimenter.

Evidence from clinical neuropsychology has shown the potential of using sustained
attentional tasks to detect subtle impairments in attentional control [19] and of rehabilitating
neurological conditions [20]. Moreover, the individuals’ sensory-motor responses assessed
through such behavioral paradigms were sensitive to various age-related risks, including
falling and physical frailty [21], hearing loss [22], and metabolic risks [23]. All these findings
suggest that the behavioral paradigm test for attentional control is a good candidate
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for developing an age-related health risk detection system in the home environment.
Furthermore, robot performances should be less susceptible to verbal-related mistakes
since the behavioral features during attentional control are accessed using a standardized
task format with brief and easy instructions.

Sustained attention is defined as the ability to maintain endogenous attention over an
extended period [24], and it can be assessed using the Sustained Attention to Response Task
(SART, [25]). In the SART, a variant of GO/NO-GO tasks, participants are instructed to
respond to the non-targets by pressing a key (the GO trials) and to withhold their response
to the targets (the NO-GO trials). With a higher proportion of GO trials and a relatively
low proportion of NO-GO trials, automatic responses to GO trials are supposed to be
dominated during the task. Failing to withhold a response to the NO-GO trials (i.e., the
targets), referring to an error of commission (EoC), is indicative to a transient attentional
lapse. Importantly, older adults tend to show longer reaction times (RTs) preceding EoC,
whereas longer RTs are associated with reduced EoC in older adults’ performances [26–29].
By contrast, omission errors, referring to the failure to respond to the GO non-targets,
are greater in older adults than younger adults [30]. In terms of the subjective aspect of
attentional states, studies have shown that older adults are more capable of inhibiting
mind-wandering (MW, referring to the phenomenon of attentional shift from the current task
to task-unrelated thoughts) than younger adults [30–33]. In contrast, compared to younger
adults, older adults tend to report more task-related thoughts, which involve thoughts
about one’s performance of the ongoing task [27,30,32].

The trend of longer RTs with fewer EoC in older adults has suggested an age-
related speed-accuracy trade-off in the SART. This effect has also been evident in other
studies [34–37] and has been interpreted as an endorsement of a more conservative strategy
to maintain attentional control as people age [38]. The increased EoC is also reflective of
an automatic state of behavioral control associated with an increased frequency of task-
unrelated MW (e.g., [39–41]). Consistently, the less frequent MW in older adults could
partially explain the minimal age differences in the sensitivity of identifying the NO-GO
targets in the SART [42], indicating the reduction of MW as a compensatory strategy in
older adults. In parallel, more frequent task-related thoughts in older adults also suggest
that they deploy more time in the attentional state towards the external task and, thus,
are less consciously aware of their internal state [41]. According to Cheyne et al. [43], this
reflective state for past performances can be observed by increased omission errors. In
older adults, increased omissions have been found to be particularly prominent in those
who reported more task-related thoughts [30].

Task difficulty has been recognized as a critical factor in modulating the degree of
EoC and omissions. Specifically, as task difficulty increases, the leverage between the
two types of errors (i.e., EoC and omissions) tend to skew to the salient perceptual cues,
such that individuals deliberatively slow their responses in preparation for targets, thus
reducing the EoC, but inevitably producing more omissions [44]. These results align with
the evidence that older adults tend to engage a greater top-down cognitive control to
perform at the same proactive error (i.e., EoC) rate as younger individuals [34,36]. While
performing a GO/NO-GO task, an increased activation level in the anterior cingulate cortex
was found in older adults, relative to younger adults [45], suggesting higher cognitive
control involvement for older adults. In summary, evidence from the SART indicates a
stronger engagement of top-down cognitive control in older adults that contributes to
specific consequences of having better response selection (i.e., fewer NO-GO errors) and
fewer self-generated distractions (i.e., MW). Yet, there is a greater chance of missing the
timing of action (i.e., more omissions) as well as engaging more performance reflection (i.e.,
task-related thoughts).

It is well established that there is a degradation in multisensory integration, response
inhibition, and selective attention [46–49] as a consequence of aging. As a result, it can be
challenging for older adults to maintain daily functioning (e.g., navigating safely and driv-
ing). A compensatory mechanism featuring a conservative response pattern is indicated to
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contribute to a relatively preserved sustained attention in older adults in response to these
age-related cognitive changes. Therefore, the SART, and its consistent age-related pattern,
could be applied in identifying individuals with sustained attentional failures and early
detection of various age-related health risks. Specifically, individual performances outside
the expected norm for their age group could be a potential marker for age-related risk of
cognitive decline [24]. Moreover, the SART has been widely applied and studied with a
website version [38], making it an ideal candidate for evaluating the feasibility of in-home
cognitive assessments of older adults.

Therefore, in this present study, we examine whether the well-established age effect
on sustained attention can be observed via a social robot cognitive assessment framework
in a home-like environment. We expected to see that, compared to younger adults, healthy
older adults would exhibit (1) lower NO-GO error rates (EoC) and increased omission
errors. Also, a slower and more cautious response pattern was anticipated for older adults,
which is characterized by (2) a longer RT and a lower response tendency towards the GO
stimuli. In addition, we introduced two probe questions during the SART to examine the
subjective evaluation of attentional states. For these attentional probes, we anticipated
(3) an age-related reduction of self-reported MW in older adults. We also hypothesized
(4) self-rated performances would be higher in older adults, who enact more top-down
control to sustain attention. Finally, to replicate the findings that suggest the two error types
correspond to different subjective attentive states [43], we expected to observe (5) a positive
correlation between EoC and MW, as well as between omission and task-related thoughts.

2. Materials and Methods
2.1. Participants

The older adults’ ages ranged from 60–80 years old, and the younger adults’ ages
ranged from 18–30 years old. There were 22 older adults (11 females; age = 71.74 ± 4.28)
and 28 younger adults (14 females; age = 21.8 ± 2.36). There was no significant group
difference in the educational level (years) of the two groups, suggesting a matched level of
education, t(40) = 1.12, p = 0.27 (old = 13.8 ± 4.54; young = 14.96 ± 1.43), who enrolled in
the study and provided signed informed consent for participating in the experiment. All
participants had normal or corrected to normal visual acuity. None of them had any history
of neurological or psychiatric disorders or any severe hearing or visual impairments. They
were all recruited from local communities with a Mini-Mental State Examination (MMSE)
score ≥ 24. This study was approved by the Research Ethics Committee at National Taiwan
University (NTU REC: 201803HS017) and was implemented accordingly.

2.2. Social Robot

We used a programmable humanoid robot RoBoHoN (Sharp Co., Ltd. Osaka, Japan),
a hybrid of robot and mobile phone telephony. It is a small (with a height of 19.5 cm
while standing) and easily portable robot-shaped smartphone, with all the basic mobile
phone functions, such as phone, camera, and a range of services accessed through Apps.
RoBoHoN uses the Android 5.0 operating system, which is accessed using the 2-inch
touchscreen on the back. It has built-in speech-to-text and text-to-speech engines that
support speech recognition and production. To accurately detect sentence endpoints in
participants’ speech and to manage relevant conversational contingencies such as speech
pauses, repetitions, and queries that could arise during the task session, the RoBoHoN
was controlled by a human operator. Unknown to the participants, the human operator
was seated in an observation room and could over-write irrelevant verbal responses from
the RoBoHon due to the inaccurate speech recognition. The RoBoHon was introduced as
a playmate and guided the participants to finish a series of interactive tasks with verbal
instructions (see ‘procedures’ for details). Although RoBoHon has a touch screen, it is
located on the robot’s back and is too small to present stimuli. Hence, in the SART session,
a tablet computer was implemented for task presentation. The RoBoHoN was placed on
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a table with a standing posture beside the tablet computer, and both devices faced the
seated participant.

2.3. Modified Sustained Attention to Response Task

The Sustained Attention to Response Task (SART) was programmed with jsPsych on
a web interface and integrated into an Android native App with Apache Cordova installed
on an Asus ZenPad 3S 10 (Z500M). During the experiment, the ZenPad was placed on the
table facing the participants’ eyes (with 25 cm distance), and no restrictions were made
on the participants’ movements. The participants tapped the surface to perform the task
(including pressing the response button and selecting probe questions). A digit selected
from 0–9 was presented at the center of the screen for 2000 ms in each trial. Participants
were instructed to press a button underneath the stimulus as soon as they saw a GO
stimulus (digits from “0–9” except the digit “3”). If the stimulus was a NO-GO target (digit
“3”), participants were required to withhold his or her response until the digit disappeared;
the trial ended once the button was pressed or no response was given after 2000 ms
(Figure 1a). A blank screen would appear between each trial for 500 ms. There were
18 GO trials and 2 NO-GO target trials (10%) presented randomly within each block and
30 blocks in total (20 trials per block).
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button pressing response. (b) Illustrates the two probe questions that appeared at the end of each error block whenever any
response error had been detected.

If any error was detected within the 20 trials of a given block, the block would be de-
fined as an error block and would trigger the following two probe questions
(Figure 1b). The first probe question instructed participants to self-report their thoughts
during the past 15 s. We used 15 s but not the whole block because there was no par-
ticular structure of blocks from the participants’ perspective, and a period of 15 s was
within the range that participants could estimate their own state of attention and respond
truthfully from a pilot study. Participants were instructed to choose the closest statement
among the following options: “Focusing on the task, which includes the task-related
thoughts about the performances”, “Distracted by the external environment”, or “Think-
ing about something unrelated to the task”. Options displayed on the screen include a
statement about on-task, external distraction, or task-unrelated MW. The second probe
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question was, “How well would you rate your performance on the task in the past 15 s?”,
and this question was rated on a 7-point scale, where a higher score indicated a better
self-reported performance.

The self-aware attentiveness rate was calculated by dividing the occurrence of each at-
tentional state by the number of error blocks. Likewise, the mean self-reported performance
was calculated by dividing rating scores by the number of error blocks. If no errors were
detected within the given block, there would be no probe questions at the end of the block,
and the next block would begin seamlessly. This latent block design kept participants from
becoming familiar with the task structure, allowing their attention to fluctuate naturally
without being interrupted by preparing for a sure-to-come NO-GO target.

2.4. Questionnaires

Two neuropsychological questionnaires (Chinese version) were implemented, the Pitts-
burgh Sleep Quality Index (PSQI) and the Mindful Attention Awareness Scale (MAAS). The
PSQI, embedded with 19 self-report items that included seven components (subjective sleep
quality, sleep duration, sleep latency, sleep disturbance, sleep efficiency, daytime sleepiness,
and medication use), was adopted to measure the quality and patterns of sleep [50]. The
MAAS, a 6-point Likert scale with 15 items, was used to measure participants’ trait of
mindfulness [51]. It took around 20 to 30 min to complete both questionnaires.

2.5. Procedure

The study was conducted in an observation room equipped with furniture that resem-
bles a residential environment. Participants were told that a human experimenter would
stay at the corner of the room, but she would not intervene in the human-robot interaction
unless any technical problems occurred with the robot. After receiving the written consent
form from the participants, a humanoid robot, RoBoHoN, stood on the table and began to
introduce itself as the opening of this experiment. This experiment constituted of a series of
tasks, including the robot-administered cognitive testing, robot-accompanied toy-playing,
and the modified SART, with several brief human-robot conversations interspersed in
between. The whole experiment was bundled with the three tasks in order to mimic a
scenario of using social robots in a home-like environment. The cognitive testing included
assessments with cognitive functioning in verbal fluency, episodic memory, prospective
memory, and aspects of executive function. The toy-playing session was designed for the
RoBoHoN to learn the toy preference of each participant, who were each given one minute
to play with each of our three toys, before a five-minute free play with all the three toys.
The data obtained from the cognitive testing were analyzed and reported elsewhere [12].
Those data were not included in the current study.

In the SART session, the RoBoHoN verbally instructed the participants to direct
their attention to the experimental pad on the desk, where the instruction of the SART
was presented. After confirming that participants had no further questions about the
instructions and completed the SART practice session with 20 trials, the participants were
instructed to rate their current sleepiness level (pre-task sleepiness) ranging from 0–4
before the formal session of the SART. After the participants finished 15 blocks, they could
decide to rest for 5 to 10 min or go straight to finish the rest 15 blocks. Overall, it took
approximately 30 min to finish the SART and 1.5–2 h to finish the whole experiment,
including the other sessions.

2.6. Statistical Analyses

Data were analyzed using SPSS version 20 (IBM Corp., 2013). We investigated four
objective attentional indexes collected during SART, which were (1) EoC, the ratio of failing
to withhold a keypress response when presented with the NO-GO target (digit “3”) to the
total block number, (2) omission, the ratio of missing a keypress when presented with GO
stimuli to the total block number, and (3) mean RTs of responding correctly to GO stimuli.



Sensors 2021, 21, 7142 7 of 17

Correspondingly, by taking a signal detection approach with the hit rate (PHit: correctly
withhold the response to NO-GO target), false alarm rate (PFA: missing response to GO
stimuli), and correct rejection rate (PCR: correctly respond to GO stimuli), we calculated
response bias (β: the inclination of responding to GO stimuli under uncertainty) with the
following equation:

β =
fSN(c)
fN(c)

=
f (zHit)

f (zCR)
(1)

In the signal detection theory [52], both the signal and the noise distributions can be
estimated based on the standard deviation (i.e., the z-score) of the probabilities associated
with each distribution. Individuals make their decision relative to the threshold c, where a
signal will be reported as present when the internal signal is above c and absent when the
internal signal is below c. The z-value associated with the probability of a hit (PHit) will
reflect where c is positioned relative to the signal distribution ( fSN). Similarly, the z-value
associated with the probability of a CR (PCR) will reflect the position of c relative to the
noise distribution ( fN). Response bias (β) can be calculated as the ratio of the height of fSN
to fN at the given threshold c. By assuming that both the fSN and the fN follow a Gaussian
distribution ( f (x) with mean = 0 and standard deviation = 1), the bias β can be computed
by the ratio of the function values of zHit to zCR. The zHit and zCR are calculated by the
z-transformed value of PHit and PCR, respectively.

For extreme cases, such as PHit = 100% or PFA = 0%, the standard procedures proposed
by Snodgrass and Corwin [53] were applied with this equation:
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age = 71.89 ± 4.46) and 23 younger adults (14 females; age = 21 ± 1.31) were included in 
further data analyses. The demographic information is shown in Table 1. 

  

(2)

It is not possible for humans to make no mistake, and the extreme values for PHit or
PFA. are caused by the limited number of trials. In the cases of extreme values, P̂Hit and
P̂FA would be applied to estimate the hit and FA under sufficient trials. In Equation (2), the
yHit and yFA represent the number of trials that were classified as hit and false alarm, and
NNG and NG denote the number of NO-GO and GO trials.

In addition, two subjective ratings, including the (1) self-aware attentiveness (on-task,
distracted, or MW) and (2) self-performance assessed during the end of each error block,
were also compared across the two age groups.

Task outliers were identified if the data lay three standard deviations (SD) away from
the group mean within each group. According to this criterion, three older adults (EoC
outliers) and five younger adults (one omission outlier, two EoC outliers, and two RT
outliers) were excluded from further analyses. Subsequently, 19 older adults (11 females;
age = 71.89 ± 4.46) and 23 younger adults (14 females; age = 21 ± 1.31) were included in
further data analyses. The demographic information is shown in Table 1.

We examined the age effect in sustained attention performance by controlling potential
confounding factors with one-way analyses of covariance, ANCOVAs, with the α level
of 0.05. The controlled variables were (1) MAAS, which is inversely associated with MW
propensity during sustained attention [31]; (2) scales related to daytime sleepiness, the
PSQI, which correlates with reduced attentional control [54]; and (3) the sleepiness-before-
task, as the control variables to eliminate possible confounds in the age effect. Additionally,
we calculated Pearson correlation coefficients between the attentional indices and self-rated
evaluations (attentiveness and performance) to validate the relationships between the
objective measures and subjective attentional control ratings.
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Table 1. Demographic information of participants.

Older Adults Younger Adults
Range Mean SD Range Mean SD

Age (years old) 65–80 71.89 4.46 19–24 21.00 1.31
Education (years) 1–21 13.84 4.54 12–17 14.96 1.43

MMAS 46–87 66.53 10.23 41–85 59.61 10.04
PSQI 1–14 4.89 2.71 4–13 6.96 2.62

Pre-task sleepiness 0–1 0.32 0.48 0–2 0.83 0.65
Note. SD standard deviation; MAAS: Mindful Attention Awareness Scale; PSQI: Pittsburgh Sleep Quality Index.

3. Results
3.1. SART Performance

There was a significant age effect on EoC, omission, RT, and β (Table 2). Compared
to younger adults, older adults had fewer EoCs, more omission errors, longer RTs, and
lower βs (Figure 2). That is, when seeing a NO-GO target (the target “3”), older partici-
pants exhibited a stronger tendency, compared to their younger counterparts, to withhold
pressing keys (no-response), which helped them make fewer commission errors and yet
more omission failures when seeing a GO stimulus. The longer response latency and
lower response bias also support the conclusion that older adults tend to engage in a
slow and cautious response strategy (i.e., a more conservative response tendency) to avoid
inhibition failures.

Table 2. The age effect on SART performances.

SART Indices Younger Adults
Mean (SD)

Older Adults
Mean (SD) Statistics

EoC (rate) 0.21 (0.12) 0.09 (0.09) F(1,37) = 10.06, p = 0.003,
ηp2 = 0.21

Omission (rate) 0.002 (0.003) 0.05 (0.06) F(1,37) = 12.27, p = 0.003,
ηp2 = 0.25

RT (ms) 473.99 (49.20) 685.51 (97.42) F(1,37) = 51.41, p < 0.00,
ηp2 = 0.58

β 62.79 (42.40) 6.76 (14.10) F(1,37) = 19.51, p < 0.00,
ηp2 = 0.35

Note. SD: standard deviation.

3.2. Self-Reported Attentional Control

The results of one-way ANCOVAs demonstrated that age had an effect on both on-task
and MW, but not on distracted attentional state (Table 3). Older adults reported more
focused attention than younger adults and rated themselves as less MW. They also rated
themselves with higher scores in the self-rated performance (Figure 3). That is, older adults
reported more on-task thoughts and less MW than younger adults, which was consistent
with their higher self-rated attentional control.

3.3. Relationships between Objective and Subjective Performances of Sustained Attention

Pearson product-moment correlation coefficients were computed to assess the rela-
tionships between objective and subjective indices of SART performance, combining the
data of older adults and younger adults. As shown in Table 4, a greater EoC rate was
associated with a lower self-rated performance, r = −0.49, p = 0.001, and more omission
errors were correlated with more frequently reported on-task thoughts, r = 0.32, p = 0.04,
less MW rate, r = −0.31, p = 0.04, and higher self-rated performance, r = 0.40, p = 0.008. In
parallel, RTs showed a similar pattern with subjective indices: longer RTs were correlated
with more frequently reported on-task thoughts, r = 0.30, p = 0.05, lower MW, r = −0.37,
p = 0.016, and higher self-rated performance, r = 0.51, p = 0.001. Furthermore, a lower
response bias to GO targets was associated with a better self-rated performance, r = −0.39,
p = 0.01.
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Table 3. The age effect on self-reported attentional control.

Thought Probes Younger Adults
Mean (SD)

Older Adults
Mean (SD) Statistics

On-task (rate) 0.59 (0.26) 0.85 (0.20) F(1,37) = 9.57, p = 0.004,
ηp2 = 0.21

Distracted (rate) 0.16 (0.16) 0.10 (0.17) F(1,37) = 0.79, p = 0.38,
ηp2 = 0.02

MW (rate) 0.24 (0.19) 0.04 (0.12) F(1,37) = 12.56, p = 0.001,
ηp2 = 0.25

Self-rated
performance 3.34 (1.0) 4.73 (1.13) F(1,37) = 10.81, p = 0.002,

ηp2 = 0.23
Note. SD standard deviation.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 2. Age differences in types of errors committed and response patterns. (a) The propensity to commit EoC was 
higher for younger adults, while (b) omission was higher for older adults. (c) Mean RT was higher for older adults. (d) 
Response bias was greater for younger adults, indicating a stronger inclination in responding to GO targets. Error bars 
represent one standard error from the mean. YA: younger adults; OA: older adults; ** p < 0.01, *** p < 0.001. 

3.2. Self-Reported Attentional Control 

The results of one-way ANCOVAs demonstrated that age had an effect on both on-
task and MW, but not on distracted attentional state (Table 3). Older adults reported more 
focused attention than younger adults and rated themselves as less MW. They also rated 
themselves with higher scores in the self-rated performance (Figure 3). That is, older 
adults reported more on-task thoughts and less MW than younger adults, which was con-
sistent with their higher self-rated attentional control. 

Table 3. The age effect on self-reported attentional control. 

Thought Probes Younger Adults 
Mean (SD) 

Older Adults 
Mean (SD) 

Statistics 

On-task (rate) 0.59 (0.26) 0.85 (0.20) F(1,37) = 9.57, p = 0.004, ηp² = 0.21 
Distracted (rate) 0.16 (0.16) 0.10 (0.17) F(1,37) = 0.79, p = 0.38, ηp² = 0.02 

MW (rate) 0.24 (0.19) 0.04 (0.12) F(1,37) = 12.56, p = 0.001, ηp² = 0.25 
Self-rated performance 3.34 (1.0) 4.73 (1.13) F(1,37) = 10.81, p = 0.002, ηp² = 0.23 

Note. SD standard deviation. 

Figure 2. Age differences in types of errors committed and response patterns. (a) The propensity to commit EoC was higher
for younger adults, while (b) omission was higher for older adults. (c) Mean RT was higher for older adults. (d) Response
bias was greater for younger adults, indicating a stronger inclination in responding to GO targets. Error bars represent one
standard error from the mean. YA: younger adults; OA: older adults; ** p < 0.01, *** p < 0.001.



Sensors 2021, 21, 7142 10 of 17
Sensors 2021, 21, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. Age differences in self-aware attentiveness and performance. Results are shown separately for self-reported 
thought probes and performance. The frequency of reporting on-task and being MW significantly differed among age 
groups. In terms of self-rated performance, older adults tended to rate higher about their performance. Error bars repre-
sent one standard error from the mean. ** p < 0.01 

3.3. Relationships between Objective and Subjective Performances of Sustained Attention 
Pearson product-moment correlation coefficients were computed to assess the rela-

tionships between objective and subjective indices of SART performance, combining the 
data of older adults and younger adults. As shown in Table 4, a greater EoC rate was 
associated with a lower self-rated performance, r = −0.49, p = 0.001, and more omission 
errors were correlated with more frequently reported on-task thoughts, r = 0.32, p = 0.04, 
less MW rate, r = −0.31, p = 0.04, and higher self-rated performance, r = 0.40, p = 0.008. In 
parallel, RTs showed a similar pattern with subjective indices: longer RTs were correlated 
with more frequently reported on-task thoughts, r = 0.30, p = 0.05, lower MW, r = −0.37, p 
= 0.016, and higher self-rated performance, r = 0.51, p = 0.001. Furthermore, a lower re-
sponse bias to GO targets was associated with a better self-rated performance, r = −0.39, p 
= 0.01. 

Table 4. Bivariate correlation between SART performances and subjective ratings of attentiveness. 

 On-Task Distracted Mind-Wandering Self-Rated Performance 
EoC 0.01 −0.13 0.10 −0.49 ** 

Omission 0.32 * −0.15 −0.31 * 0.40 ** 
RT 0.30 * −0.06 −0.37 * 0.51 ** 
β −0.11 −0.03 0.18 −0.39 * 

Note. * p < 0.05, ** p < 0.01. 

4. Discussion 
4.1. Strategic Shift in Sustained Attention by Older Adults 

The present study demonstrated the effect that age has on sustained attention 
through assessment with the modified SART. Critically, this effect could be replicated us-
ing a tablet with the HRI approach in a home-like environment. Our main results revealed 
a well-documented, age-related strategic shift. Consistent with the existing literature, 
older adults tended to adopt a conservative strategy and thus showed fewer EoC. Most 
have considered that this speed-accuracy trade-off in older adults is tactically driven 
[26,45,55]. The adoption of a speed-accuracy trade-off in SART performance is associated 
with various aspects of functioning among community-dwelling seniors. Specifically, 
longer RTs might reflect the greater engagement of compensatory mechanisms to main-
tain the accuracy level for the NO-GO target (i.e., reduced EoC). Presumably, older indi-
viduals who suffer from more executive declines exhibit greater reliance on this compen-
satory strategy than those who do not. This view is evident by findings showing that older 

Figure 3. Age differences in self-aware attentiveness and performance. Results are shown separately for self-reported
thought probes and performance. The frequency of reporting on-task and being MW significantly differed among age
groups. In terms of self-rated performance, older adults tended to rate higher about their performance. Error bars represent
one standard error from the mean. ** p < 0.01.

Table 4. Bivariate correlation between SART performances and subjective ratings of attentiveness.

On-Task Distracted Mind-Wandering Self-Rated Performance

EoC 0.01 −0.13 0.10 −0.49 **
Omission 0.32 * −0.15 −0.31 * 0.40 **

RT 0.30 * −0.06 −0.37 * 0.51 **
β −0.11 −0.03 0.18 −0.39 *

Note. * p < 0.05, ** p < 0.01.

4. Discussion
4.1. Strategic Shift in Sustained Attention by Older Adults

The present study demonstrated the effect that age has on sustained attention through
assessment with the modified SART. Critically, this effect could be replicated using a
tablet with the HRI approach in a home-like environment. Our main results revealed a
well-documented, age-related strategic shift. Consistent with the existing literature, older
adults tended to adopt a conservative strategy and thus showed fewer EoC. Most have
considered that this speed-accuracy trade-off in older adults is tactically driven [26,45,55].
The adoption of a speed-accuracy trade-off in SART performance is associated with various
aspects of functioning among community-dwelling seniors. Specifically, longer RTs might
reflect the greater engagement of compensatory mechanisms to maintain the accuracy level
for the NO-GO target (i.e., reduced EoC). Presumably, older individuals who suffer from
more executive declines exhibit greater reliance on this compensatory strategy than those
who do not. This view is evident by findings showing that older adults who evince longer
RTs in sustained attentional tasks are more likely to have a history of falling [21], which is
usually accompanied by impaired executive functioning [47].

Notably, unlike EoC that signifies inhibition failures in older adults when adopting
a more cautious strategy, increased omission errors were found despite more self-aware
attentional resources being applied in the task. This phenomenon could be explained by
the association between omissions and the task-driven attentional state—the task-related
thoughts [43], which are not often consciously made aware by the participants [41]. Our
finding supports this explanation by showing increased omissions associated with more
task-relevant thoughts and higher self-reported performances, suggesting such errors
were made unconsciously and therefore were excluded from self-rated capacity under
attentional control. Interestingly, aging is not always associated with more omission errors.
For example, according to Zavagnin et al. [30], among older individuals, only those with
an average age of 80 years old (age range: 75–85) produce significantly more omissions
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than younger adults, but not those with an average age of 69 years (age range of 65–74).
Specifically, age was only associated with increased omissions when targets were presented
under high uncertainty (i.e., noisy conditions, [56]). Therefore, a possible explanation is
that the design of the latent blocks (i.e., no apparent block structure for the participants)
in our modified SART reduced the possibility for participants to predict and prepare for
the NO-GO target in each block. Compared to the traditional paradigm, our study’s
increased temporal uncertainty can be considered as a more difficult condition and is used
to avoid the ceiling effect in most studies (e.g., [31,57]). Hence, it seems that only when
the task becomes demanding do the task-related thoughts result in observable age-related
differences in omission errors.

Aligned with the current evidence, a decrease in overall MW and increased on-
task states were reported by older adults. Critically, patients with Alzheimer’s disease
(AD) at early stages have been observed to have reduced MW during the SART [58].
Nonetheless, by taking into account the SART performances, the study revealed that
patients with AD were more dependent upon the speed-accuracy trade-off than healthy
older adults. These findings indicated that solely the self-reported thought probes are not
adequate enough to reflect the actual subjective experiences in individuals with early-stage
cognitive impairments. Hence, in addition to the increased MW, the behavioral pattern that
includes increased errors and RT should also be considered when profiling an individuals’
attentional state. It is worth noting that, in our study, only omission errors were associated
with reduced MW, with no association between EoC and MW. Building on the conjecture
mentioned earlier, this could be due to this study’s more difficult task demand, which
prompted participants to rely heavily on the strategy of slowing down to avoid inhibition
errors induced by MW. This implies that the strategic shift is more relevant to reducing
MW than inhibiting habituated responses, per se.

4.2. Evaluation of Sustained Attention in Older Adults

To our knowledge, this is the first study that demonstrated the well-reported age
effect on sustained attentional capacity using the HRI approach. In the scope of using
robotic technology for early cognitive impairments detection, many studies have focused
on implementing clinical screening assessments with HRI. However, most have assessed
only specific aspects of attention, such as processing speed, selectivity, and capacity of
transient attention [14,59]. Among these, attentional selectivity and capacity—referring to
the ability to focus on a specific source of stimuli while ignoring others and the amount
of information encoded simultaneously, respectively—both showed linear declines with
age [60]. On the contrary, sustained attention is distinctive from other aspects of attention
by showing only minor age-related decrement [26,61]. Notably, once an impaired sustained
attention signal appears, even with just a minor sign (i.e., faster RT) among community-
dwelling seniors, it is sufficient enough to detect individuals at risk for various health
issues, including falling [21,62], hearing loss [22], and metabolic risks [23]. These facts
highlight that sustained attention should also be utilized in the early detection system
provided by home-based ambient assistance.

4.3. Social Robots for Older Adults’ Cognitive Evaluation

The results in this present study offer a possibility that older adults can perform
this psychological paradigm autonomously with a social robot’s accompaniment. Under
the HRI context, older adults in this study showed a typical conservative strategy that is
analogous to the results observed with computer-based lab tasks. Accordingly, introducing
social robots as experimenters can elicit decision-making processing in participants that
resemble the processes as guided by human experimenters. Specifically, natural vocal
intonation constitutes an important factor for humans to apply in social norms when
engaging with a robot [63]. In our study, the social robot exhibited its sociability to
participants before testing sessions with verbal interactions, suggesting that it is critical for
inducing social presence. Social presence, the perception of co-presence with another social
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agent, is the essence of social robots. Social presence has been implicated in various aspects
of interpersonal interaction and can increase the intention to use a robot [64], enhance
psychological consolations [65], facilitate rapport building [66], and guide human behavior
efficiently [67]. Despite having these advantages of HRI, many improvements still need
to be made before introducing social robots into the healthcare context, including voice
recognition and accent interpretation [68], which have been rated the least reliable of
features on social robots [16].

4.4. Using the Tablet as an Extension Device

In the present study, we demonstrated an alternative to utilizing the advantage of
social robots and accurately assessing older adult cognitive functions simultaneously. After
the greeting sessions, the RoBoHon guided participants to the instructions presented on the
tablet, and the tablet itself also recorded the task responses. In addition, the practice trials
before the formal session were also able to help identify any misunderstanding regarding
the task instructions and minimize task confounding due to the robot’s verbal ability.
Compared to traditional computers, the tablet has a more intuitive graphical interface
that is more accessible to users and has been widely accepted by older adults, who might
be novice tablet users [69]. Indeed, 41 % of 65- to 69-year-olds reported having tablet
computers [70], making the tablet an ideal digital device to pair with a social robot. The
expanding usage of social robots could be a solution to the increasing need for healthcare
services. To this end, robots should elicit social presence and aim to be lightweight and
low-cost [71]. Our study indicates that the RoBoHon, a cell-phone-based robot with built-in
natural language ability, or any similar sized social robot (e.g., Zenbo, Jr.) paired with
tablet computers, can serve as a remote cognitive assessment set up for older adults. This
setting can be applied to a wide range of visually presented cognitive tasks; for instance,
performing a longitudinal assessment on visual memory tasks that are sensitive to the
gradual decline in subjectively reported mild cognitive impairment (e.g., CANTAB, [72]).

4.5. Future Directions

A major restriction for using the tablet as an extension device is the limited data
storage capacity. Hence, we were unable to record fine-grained data of sustained attention
in this study. For instance, in healthy adults, a brain activity-based MW detection system
has identified specific saccade patterns during the SART and could also be used as an
indicator of attentional states [73]. Such a limitation, nevertheless, can be overcome
as technology continues to advance. For example, the recent technological release for
portable eye-tracking devices has the potential to help cognitive screening assessments
detect transient attentional states. In addition, the restorative effects of aerobic exercise on
cognitive loss [74] can also be utilized in residential environments with the extension of
social robots. By adding wearable sensors on foot, individuals are able to exercise with the
cognitive simulative protocol [75]. In these settings, not only the elderly but the individuals
with impaired motor abilities (e.g., injuries by accident or illness) who need to engage in
rehabilitation programs persistently can benefit from the social robots. Overall, under the
increasing demand for social robots, the cost-efficient approach of pairing social robots
with commercialized biometric sensing tools could be an agonist used to popularize social
robots in healthcare scenarios.

Another issue that had not been addressed in this study was how individual dif-
ferences in digital proficiency and acceptance affect the incentives of using social robots.
Older adults represent a highly heterogeneous group of technology users, and those with
lower socioeconomic backgrounds tend to have lower Internet skills [76]. Additionally,
the skill set and intention for using new technology varied among older adults, with
some who reported using digital services only because there was no offline alternative,
whereas others tended to use them more but needed someone to help them try out digital
services that were unfamiliar or difficult for them to use [77]. All these suggest a potential
barrier for introducing social robots to those older adults who have lower digital awareness.
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Nonetheless, technology acceptance could be enhanced by well-designed digital services.
For instance, older adults showed a higher level of engagement in interacting with an
AI-based coaching application than younger adults, despite that it requires a certain level
of digital literacy (e.g., navigate the in-app menu, pair connected Bluetooth devices with
their mobile phones) [78], suggesting that older adults, in general, would engage with new
technologies when provided the opportunity. Future studies are needed in terms of how
the underlying factors of digital awareness interact with the intentions and the further
experiences of using social robots by older adults.

Social robots are not merely tools for humans. Unlike other digital tools, robots with
various degrees of sociability would affect individuals’ acceptance of robots [79–81]. Robots
with exquisite social abilities, such as those alleged to have advanced feelings like pain
and fear, are sometimes troubling to adult users [82]. In the meantime, social robots are
expected to have multiple roles for their multi-functionalities despite interacting with the
same individual [83]. For instance, the social robot in our study, RoBoHon, is expected
to be applied under various HRI scenarios, including providing emotional comfort for
children [84] and eliciting memory retrieval for seniors [85] with its wide range of social
abilities (e.g., chatting, joking, and dancing). Therefore, future research is warranted
regarding how different social features affect the impressions and expectations toward a
robot with various roles.

The tide for deploying social robots in residential environments is on the rise. We are
in an urge to address the overwhelming needs of healthcare that come with an aging society.
The homebound lifestyles amid COVID-19 also facilitate a transformation of in-person
healthcare. By having social robots at home, the aging population can remain in their
familiar environment and sustain their self-sufficient active lifestyle while also maintaining
a higher level of communication and monitoring of their health. In addition to intelligently
interacting with the environment, the techniques developed must be successfully adopted
by users. Therefore, it is essential to consider the cost-efficient aspect for potential users.
This study illustrates that a cognitive behavior paradigm that presents visual stimuli with
a tablet is compatible with a potential robot-assistive cognitive evaluating system, and the
results obtained are consistent with the burgeoning existing literature. Nevertheless, future
research is needed for more versatile applications that will be required given the trend of
an aging society.

5. Conclusions

In this study, we introduced a robotic experimenter under a home-like setting for a
sustained attentional task. Using the tablet computer presented stimuli and recorded task
responses; the significant results of this study dovetail with major consensus discovered by
standard psychometric paradigms—sustained attention is preserved by the recruitment
of a conservative response strategy in older adults. Specifically, the indices associated
with a conservative response strategy, represented by longer RTs and increased omissions,
were reflective of the subjective attentional states and could be utilized to identify the
engagement of such compensatory effects in older adults. Failing to deploy this strategy
would indicate non-normative performance for a person in this given age group and would
link to an increased risk of falling in older adults, and it also serves as an early signal of
cognitive impairment. Furthermore, the attentional profile demonstrated in this study
provides a basis for identifying an individual’s sustained attentional states from younger
to older age, which is particularly essential in this era of distractions.
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