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ABSTRACT: The high tunability of deep eutectic solvents
(DESs) stems from the ease of changing their precursors and
relative compositions. However, measuring the physicochemical
properties across large composition and temperature ranges,
necessary to properly design target-specific DESs, is tedious and
error-prone and represents a bottleneck in the advancement and
scalability of DES-based applications. As such, active learning (AL)
methodologies based on Gaussian processes (GPs) were developed
in this work to minimize the experimental effort necessary to
characterize DESs. Owing to its importance for large-scale
applications, the reduction of DES viscosity through the addition
of a low-molecular-weight solvent was explored as a case study. A
high-throughput experimental screening was initially performed on
nine different ternary DESs. Then, GPs were successfully trained to predict DES viscosity from its composition and temperature,
showcasing the ability of these stochastic, nonparametric models to accurately describe the physicochemical properties of complex
mixtures. Finally, the ability of GPs to provide estimates of their own uncertainty was leveraged through an AL framework to
minimize the number of data points necessary to obtain accurate viscosity modes. This led to a significant reduction in data
requirements, with many systems requiring only five independent viscosity data points to be properly described.
KEYWORDS: machine learning, Gaussian processes, viscosity, choline chloride, ethaline

■ INTRODUCTION
Deep eutectic solvents (DESs) are a novel class of sustainable
solvents.1,2 They are eutectic-type liquid mixtures prepared by
physically mixing solid precursors, usually a hydrogen bond
donor (HBD) and a hydrogen bond acceptor (HBA), without
the need for any chemical reaction or synthesis steps. The
liquid phase of a DES arises due to the establishment of a
solid−liquid equilibrium where its components are strongly
interacting, usually through the formation of extensive
hydrogen-bonding networks.1,2 Thus, the notion of DESs
greatly expands the amount and type of compounds available
as liquid solvents by allowing solid precursors, otherwise unfit
for solvation processes, to form liquid phases at a given desired
temperature (typically room temperature).

Because DESs are mixtures, their properties, which are
directly connected to those of their precursors, can be easily
tuned by simply changing the relative composition of each
component. This high degree of tunability, combined with
desirable sustainability metrics,3 has led to the successful
application of DESs in a variety of chemistry-related areas, such
as carbon dioxide capture,4,5 extraction of bioactive and value-
added compounds,6−9 metal oxide dissolution and process-
ing,10,11 and drug formulation and delivery.12,13 DESs also find

applications as solvents for electrochemical processes and
energy storage,14,15 particularly under the umbrella of
concentrated hydrogen-bonded electrolytes (CoHBEs) in
redox flow batteries.16,17

Despite their usefulness and overall green character, DESs
typically display high viscosities, stemming from both the usage
of solid precursors in their preparation and the formation of
extensive hydrogen-bonding networks.18,19 For example,
commonly studied DESs such as the 1:2 molar ratio mixtures
of choline chloride and urea or ethylene glycol exhibit
viscosities that are 2−3 orders of magnitude higher than
those of typical solvents (e.g., water or ethanol).20,21 This
major drawback, which hampers the deployment of DESs in
industrial applications, is commonly mitigated by modulating
DES viscosity through the addition of a low-molecular-weight
cosolvent as a third component (e.g., water).18,21,22 A great
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deal of research has been done focusing on the impact of this
cosolvent in the structure and intermolecular interactions of
DESs.23

While tunability is a key advantage of DESs, the necessity of
using cosolvents to adjust their properties, particularly
viscosity, adds an extra dimension to an already vast design
space that encompasses operational conditions (e.g., temper-
ature) and the chemical natures and relative compositions of
HBD and HBA precursors. Furthermore, anticipating the
behavior of DESs upon cosolvent addition is not a trivial task,
which is exacerbated by a lack of available theoretical or even
empirical models that can describe DES properties beyond
simple temperature dependencies. The literature reflects this,
with most DES-targeted viscosity models proposed to date
attempting to describe only simple temperature depend-
encies.24,25 As such, the current design framework of novel
DESs is limited by tedious experimental viscosity measurement
campaigns on ternary systems across large composition and
temperature ranges.18

Gaussian processes (GPs) are machine learning (ML)
models that excel as interpolators of data and are quickly
becoming decisive tools in several chemistry-related fields.26,27

They are versatile, nonparametric models that are easy to use
and implement and do not assume any underlying functional
form between dependent and independent variables. We have
recently shown the feasibility of using GPs to accurately
describe the activity coefficients of organic mixtures, including
DESs, which, in turn, allows for the prediction of a plethora of
phase equilibrium phenomena.28 Another advantage of GPs is
their stochastic nature, through which they can provide blind
uncertainty estimates for their own predictions. This allows the
use of active learning (AL) algorithms to iteratively build GP
models for a given application. That is, AL can guide the
design of experiments and acquisition of data in an efficient
manner, greatly reducing the number of experimental
measurements necessary to construct accurate models.28,29

To fast-track the design and development of low-viscosity
DESs, this work illustrates how high-throughput experimenta-
tion and AL can be combined to comb through a variety of
DES precursors, cosolvents, and operational conditions quickly
and efficiently. To do so, a high-throughput experimental
screening was initially performed on nine different ternary
DESs, composed of choline chloride (ChCl) as the HBA,
ethylene glycol (EG) or aniline (AN) as the HBDs, and water
(H2O), acetonitrile (ACN), or dimethyl sulfoxide (DMSO) as
the cosolvents. These DES components were chosen based on
their previous study and usage for energy storage applica-
tions,30 as well as their different and complex viscosity trends.
Then, with the aim of obtaining a general framework to
accurately model the viscosity of ternary DESs, GP models
were developed to describe the viscosity of the studied DESs as
a function of their composition and temperature. Finally, the
ability of GPs to provide estimates of their own uncertainty
was leveraged as part of AL algorithms to greatly minimize the
amount of experimental high-throughput data points necessary
to obtain accurate viscosity models.

■ METHODS
This section describes the experimental and computational methods
employed in this work. All Python codes developed and deployed are
available, free of charge, in the following GitHub repository: https://
github.com/MaginnGroup/ViscAL.

Materials. Unless otherwise specified, all solvents were used
without further purification. The hydrogen bond acceptor�choline
chloride (99% purity)�and the hydrogen bond donors�anhydrous
ethylene glycol (99.8% purity) and aniline (99.5% purity)�were
purchased from Sigma-Aldrich. Anhydrous solvents�acetonitrile
(99.8% purity) and dimethyl sulfoxide (99.8% purity)�were also
from Sigma-Aldrich. Deionized water was obtained with a Milli-Q
apparatus (water resistivity of 18.2 MΩ·cm at 298 K and total organic
carbon < 5 ppb).
Mixture Preparation. DESs were prepared by mixing the HBA

(choline chloride) and the desired HBD in either a 1:4 or a 1:6 molar
ratio (ChCl:HBD) while stirring at 80 °C for 1 h using a modular
robotic platform (Big Kahuna, Unchained Laboratories) inside an
argon-filled glovebox.30−32 Samples were then cooled to room
temperature and mixed with a cosolvent (water, acetonitrile, or
dimethyl sulfoxide) using a vortexer. The final molar ratios of the
ternary ChCl:HBD:cosolvent mixtures were 1:4:0.5, 1:4:1, 1:4:2, or
1:4:4. Mixtures of ChCl:AN:cosolvent in molar ratios of 1:6:0.5,
1:6:1, 1:6:2, and 1:6:4 were also prepared. These compositions follow
those already extensively studied for energy storage applications.30

Viscosity Measurements and Modeling. All viscosity measure-
ments were performed using a VROC initium one plus high-
throughput viscometer (RheoSense), with temperatures ranging from
298 to 323 K (±0.1 K) in 5 K increments.30 All measurements were
repeated at least 3 times, with means and standard deviations reported
in Tables S1−S4. The Vogel−Fulcher−Tammann (VFT) equation
was used to model the data collected in this work33
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where η is the observed viscosity at temperature T, and B, ηo, and To
are the empirical fitting parameters. Equation 1 was fitted to all data
sets using a nonlinear least-squares approach.
Gaussian Processes. In this work, GPs were used to describe

viscosity (η) as a function of composition (mole fractions, xi) and
temperature (T). Thus, for each case, a surrogate function η′(X) was
constructed and distributed as a GP with the mean function m(X) and
covariance function k(X)26,34

X X Xm k( ) ( ), ( )[ ] (2)

where X is the feature vector containing the input variables (X = [x1,
x2, x3, T]). The mean and covariance functions encode information
about the relationship between viscosity and composition/temper-
ature. Following previous results obtained for other physicochemical
properties of DESs,28 and to simplify the training and usage of the
GPs studied in this work, the mean function was taken to be zero, i.e.,
m(X) = 0.

Two popular covariance functions (also known as kernels)�the
radial basis function (RBF) kernel and the rational quadratic (RQ)
kernel�were tested in this work.35 These are defined as36
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where σ and l are the variance and length-scale parameters of the
kernel, respectively, a∥Xi − Xja∥ represents the Euclidian distance
between Xi and Xj, and α is an RQ-specific hyperparameter.
Regardless of the main kernel chosen eqs 3 or 4, a white noise
kernel (W) was also used to account for experimental uncertainty35,36

X XW k i j( , ) ( , )i j
2= = (5)

where δ(i,j) is one when I = j and zero otherwise.
Given N training data points, the GP represented by eq 2 can be

fitted, and a new viscosity data point predicted through
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where (0, ) represents a multivariate Gaussian distribution with
mean zero and covariance ∑, which is subdivided into the covariances
between known training data points (∑η,η), unknown testing data
points (∑ηdi′,ηdi′), and cross-covariances (∑η,ηdi′ and ∑η,η di′

T ). Within the
framework of GPs, the unknown variable ηi′ is treated as a random
variable jointly distributed with the training data, such that

( , )i | (7)

with μ′ and ∑′ being

T 1
, ,i

= (8)

Figure 1. Experimental high-throughput viscosity data measured in this work (circles) for ternary deep eutectic solvents, namely, those based on
ChCl:EG (1:4) (top row), ChCl:AN (1:4) (middle row), and ChCl:AN (1:6) (bottom row), with added water (left column), acetonitrile (middle
column), and dimethyl sulfoxide (right column). Colors indicate different cosolvent mole ratios, and dashed lines represent VFT fits, with their
mean relative errors (MREs) being provided as the inset.
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Thus, μ′ eq 8 represents the GP-predicted viscosity (ηi′) at the testing
point X′i (which contains the desired testing compositions and
temperature) and ∑′ eq 9 represents the GP-predicted uncertainty
(variance) of its own viscosity estimate.

In this work, all GP-related calculations were performed using the
Python packages GPFlow (V. 2.5.2)36 and TensorFlow (V.
2.10.0).37,38 A Gaussian likelihood hyperparameter alongside the
white noise kernel eq 5 was used to account for experimental
uncertainty. This assumes that the training data have some associated
uncertainty (ε) that follows a Gaussian distribution, εN(0,σ2), with σ2

being a tunable hyperparameter. Note that this parameter (σ2) is
known as the Gaussian likelihood of the model and its value is added
to the diagonal of ∑y,y. Thus, each GP model trained in this work
possesses between four and five hyperparameters (2 or 3 from the
main kernel, the variance of the white noise kernel, and the Gaussian
likelihood variance). These were optimized by maximizing the log
marginal likelihood of each GP using the L-BFGS-B algorithm.39

Finally, features and labels were normalized in this work following
usual procedures in the ML literature, which have been shown to be
relevant for GP-related DES applications.28 Different normalization
schemes were tested, namely, min−max scaling eq 10, standardization
eq 11, and log-standardization eq 12
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y y
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where y′ is the normalized version of y, ymin and ymax are the minimum
and maximum values of y, ⟨y⟩ and sy represent the mean and standard
deviation of y, respectively, and ⟨ln(y)⟩ and sln(y) represent the mean
and standard deviation of the transformed variable ln(y), respectively.
Note that among other benefits, normalization rescales the viscosity
data, mitigating the consequences of choosing a GP mean function of
zero eq 2, which infers that the expected average DES viscosity value
is zero.

■ RESULTS AND DISCUSSION
Viscosity Data. The viscosity data measured in this work

are reported in the Supporting Information (SI) for the binary
DESs studied (Table S1), EG-based ternary systems (Table
S2), and AN-based ternary systems (Tables S3 and S4). These
data are depicted in Figure 1 along with the VFT eq 1 fits
obtained.

The viscosity value of neat ChCl:EG (1:4) measured here at
298.15 K, η = 20.89 cP, aligns closely with previous reports
within the uncertainty associated with the residual water
uptake from air during measurements: η = 20.84 cP,40 24.7 cP
(0.05 wt % H2O),41 and 26.21 cP.19 The discrepancy in
viscosity values can also be attributed to the purity differences
in parent compounds. The observed decrease in viscosity with
increasing cosolvent addition for ChCl:EG (1:4) also aligns
with findings from previous studies on combinations of DESs
with H2O,42−44 ACN,45 or DMSO.46 This validates the
effectiveness of the high-throughput methodology employed
in this work to efficiently measure the viscosity of the studied
DESs.

The low intrinsic viscosity of the cosolvents (ηACN = 0.34 cP,
ηHd2O = 0.89 cP, and ηDMSO = 1.99 cP at 298 K),43,47,48 along
with their capability to disrupt or weaken the hydrogen-

bonding network among the HBA and HBD components,
assists in lowering the overall viscosity of the studied DESs.30

For instance, Alfurayj et al.42 demonstrated that the addition of
water to ChCl:EG (1:2) in the 1−28.5 wt % range resulted in
the solvation of chloride by water, thus disrupting the strong
hydrogen-bonding network between this anion and EG. This
disruption frees the faster solvent component, EG, thus
enhancing solvation dynamics and increasing the overall
polarity of the system. A similar behavior has been described
when DMSO is employed as a cosolvent in ChCl:EG
mixtures.46,49

Finally, the results reported in Figure 1 reveal a significant
decrease in viscosity with increasing temperature for all
systems studied, which is most significant in the ternary
mixtures based on ChCl/AN (1:4). Interestingly, temperature
has a lower impact on the viscosity of acetonitrile-based
systems with cosolvent mole ratios of 3 or 4. The data fit well
to the VFT equation, with the largest mean relative errors
(MREs) being observed for ChCl:AN:ACN (1.0%), followed
by ChCl:EG:H2O (0.6%) and ChCl:AN:DMSO (0.4%).
GP Regression. While the VFT model accurately fits the

temperature dependence of viscosity, the lack of models that
can capture the composition dependency of viscosity in DESs
hampers a thorough analysis of the experimental data collected
so far, particularly from the perspective of cosolvent efficiency
in decreasing DES viscosities. In this section, we describe how
GP regression was performed, aiming at obtaining accurate
relationships between DES viscosities and their compositions
and temperatures, with all models explored being of the form

x x x TGP( , , , )1 2 3= (13)

where x1, x2, and x3 are the HBA, HBD, and cosolvent mole
fractions, respectively. Note that for ternary systems, only two
of the three composition parameters (x1, x2, and x3) are
independent. When the HBD/HBA ratio of the DES is kept
constant, the number of independent composition values
decreases to one. Thus, the number of GP input variables in
this work could be reduced to just two (e.g., x3 and T).
However, we chose to use eq 13 with explicit composition
variables due to its generality, allowing all methods developed
here to be readily deployed to any other systems of interest
without modifications, including systems beyond ternary.
Moreover, unlike parametric models (such as the VFT
equation), increasing the number (i.e., dimensionality) of
input variables does not increase the number of GP
hyperparameters, which is solely determined by the choice of
kernel.

While GPs are nonparametric models, the choice of kernel
eqs 3 or 4 and normalization procedures eqs 10−12 can affect
their performance.28 As such, a small benchmark was
conducted to probe the best combination of kernels and
normalization schemes. To do so, all possible combinations of
kernels and normalization procedures were tested on the nine
DES ternary systems described in the previous section, with
the mean relative errors obtained for each case being reported
in Table S5. Note that MREs were calculated by considering all
training data, akin to those reported in the previous section for
the VFT fits. As Table S5 indicates, MREs are usually higher
for GPs with the RQ kernel, with the average MRE of RBF-
based GPs being 1.25%, while that of RQ-based GPs being
4.21%. With regard to feature normalization, min−max
provides the lowest average MRE (2.38%), followed by
standardization (2.60%) and no feature normalization
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(3.21%). Finally, both standardization (2.06%) and log-
standardization (2.25%) perform well and are superior to no

label normalization (3.88%), although log-standardization
better captures the natural distribution of viscosity values

Figure 2. Three-dimensional surface plots of the GP-predicted viscosity of ChCl:EG:H2O (left panel), ChCl:EG:ACN (middle panel), and
ChCl:EG:DMSO (right panel) as a function of cosolvent composition and temperature. Color warmth on the surface corresponds to increasing
viscosity. Projections of the surface on the composition/viscosity plane are also included, with color warmth corresponding to an increasing
temperature. GPs were trained using an RBF kernel (with a white noise kernel and a trainable Gaussian likelihood) against min−max-scaled
features and log-standardized labels, with MREs being provided for each case. Black circles indicate experimental GP training data.

Figure 3. Three-dimensional surface plots of the GP-predicted viscosity of ChCl:AN:H2O (left column), ChCl:AN:ACN (middle column), and
ChCl:AN:DMSO (right column), with a ChCl:AN molar ratio of 1:4 (top row) or 1:6 (bottom row), as a function of cosolvent composition and
temperature. Color warmth in the surface corresponds to increasing viscosity. Projections of the surface on the composition/viscosity plane are also
included, with color warmth corresponding to increasing temperature. GPs were trained using an RBF kernel (with a white noise kernel and a
trainable Gaussian likelihood) against min−max-scaled features and log-standardized labels, with MREs being provided for each case. Black circles
indicate experimental GP training data.
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with respect to temperature while preventing unphysical
viscosity predictions (e.g., negative values).

Given the results discussed above, features and labels were
normalized with min−max scaling eq 10 and log-stand-
ardization eq 12, respectively. GPs were employed with an
RBF kernel (in addition to a white noise kernel and a trainable
Gaussian likelihood, yielding a total of four model hyper-
parameters). The results of fitting a GP to each ChCl:EG-
based DES reported in the previous section are depicted in
Figure 2 as three-dimensional plots and in Figure S1 as
composition slices. GP hyperparameters are listed in Table S6.

Figure 2 reveals that GPs can accurately interpolate the
viscosity of ternary DESs as a function of composition and
temperature, with MREs comparable to those reported in
Figure 1 for VFT fits. Note, however, that GPs here are being
trained against all data points, yielding one model per system,
while a new VFT fit is necessary for each composition slice.
Thus, GPs retain model generality (by simultaneously
interpolating across compositions and temperature) without
any significant loss of accuracy when compared against the
state-of-the-art viscosity correlative model.

The capability of GPs to describe viscosity data, as illustrated
in Figure 2, allows for an extensive analysis of the impact of
cosolvent composition on DES viscosities. ACN was the most
effective cosolvent in lowering the viscosities of the studied
EG-based DESs, with their values following an exponential
decrease with respect to cosolvent composition. This trend is
not readily seen for H2O or DMSO, where viscosities appear to
decay linearly with the added cosolvent. This is consistent with
the viscosities of the pure cosolvents, with ACN displaying a
much lower viscosity (0.34 cP at 298 K)47 than water (0.89 cP
at 298 K)43 or DMSO (1.99 cP at 298 K).48

While ACN is clearly the most efficient cosolvent to reduce
the viscosity of ChCl:EG-based solvents, the trend for water
and DMSO is not as clear. For example, at 298 K, the viscosity
of neat ChCl:EG decreased from 20.9 to 10.8 cP in
ChCl:EG:ACN 1:4:1 to 15.6 cP in ChCl:EG:DMSO 1:4:1
and to 17.0 cP in ChCl:EG:H2O 1:4:1 (Tables S1 and S2).
Despite possessing a pure-component viscosity that is more
than twice that of water, DMSO appears to rival the capacity

for DES viscosity reduction of water. This is most likely
connected to the ability of water to establish and participate in
the hydrogen-bonding network of the neat ChCl:EG DES,
whereas DMSO (much like ACN) possesses no hydrogen-
bond-donating capability and is thus not expected to have
relevant interactions with ChCl.

Having studied the impact of cosolvent addition on the
viscosity of neat ChCl:EG, aniline-based DESs are now
examined as three-dimensional plots in Figure 3 and as
composition slices in Figure S2. Starting with the 1:4 mol ratio
of ChCl/AN, ACN again provides the largest viscosity
decrease with an exponential decay trend much like that
seen in the ChCl:EG:ACN system (Figure 2). However, water
now has a more pronounced effect on viscosity than DMSO,
despite a faint inflection in its dependence on the cosolvent
composition. For the smallest cosolvent mole fraction studied
(0.5), water provides a viscosity decrease that is more
pronounced than that provided by ACN (Table S3).

Contrary to ChCl:EG and 1:4 ChCl:AN, the addition of
ACN or DMSO to 1:6 ChCl:AN leads to viscosity trends that
are not monotonous, displaying relative extrema. In the case of
ChCl:AN:ACN, this leads to an initial region where viscosity
decreases slowly or stays approximately constant, followed by a
sharp decrease with an increased ACN composition, a
phenomenon that can be attributed to a disruption of the
hydrogen-bonding network and subsequently the eutectic
behavior of the solvents.30 As previously discussed, this
phenomenon arises from specific changes in the intermolecular
interactions of DESs in the presence of cosolvents at particular
mole fractions. These modifications entail alterations in the
strength and number of hydrogen bonds between the HBD
and HBA, which are attributed to the preference of either the
HBD or HBA to interact and form hydrogen bonds with the
cosolvent. Consequently, with high polarity cosolvents,43 the
cosolvent accumulates around the polar groups in the DES,
significantly altering the solvation environment and weakening
the HBD−HBA interactions, as described in analogous
studies.50,51

As for ChCl:AN:DMSO, there is one clear viscosity
maximum and two minima. Despite the complex behavior of

Figure 4. Schematic illustration of the active learning workflow employed in this work to iteratively construct GP models for the description of DES
viscosities. Note how each new data point is selected based on the estimate of the model regarding its own uncertainty (acquisition function).
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these three-dimensional viscosity surfaces, GPs can accurately
describe them, with MREs on par or even superior to those
reported in Figure 1 for VFT fits.

While understanding and interpreting the nonmonotonic
behavior of viscosity for ChCl:AN:ACN and ChCl:AN:DMSO
from a molecular perspective is beyond the scope of this work,
it is worth noting that such behavior has been previously
observed in the literature for other DES properties. Examples
include activity coefficient52 and hydrogen-bonding number53

extrema for ChCl:urea and ChCl:betaine with the addition of
small quantities of water. There is also limited evidence of a
small inflection in the behavior of the viscosity for the same
system with the addition of water.54 This type of unusual
viscosity behavior is often overlooked and seldom reported in
the DES literature, most likely due to a lack of composition-
dependent viscosity models. This hinders a comprehensive
analysis, which the usage of GPs fully resolves.
Active Learning. The results reported in the previous

section establish GPs as accurate and useful models to
correlate and interpolate DES viscosity data as a function of
all operational conditions of interest, particularly cosolvent
composition and temperature. However, the applicability of
GPs does not lie solely in data regression. As explained earlier,
GPs provide uncertainty estimates for their own label
predictions eq 9. This can be leveraged to develop AL
algorithms that build GP models in an iterative fashion, a
technique already tested on highly data-efficient phase diagram
construction for DESs.28 That is, rather than performing high-

throughput experimental screenings on predefined, fine
composition/temperature data meshes, viscosity data sets can
be built sequentially. An initial viscosity data point is measured
(that of the neat DES at room temperature), and a GP model
is trained on that single data point. Then, eq 9 is used to
compute uncertainty estimates across the composition and
temperature ranges of interest, and the composition/temper-
ature testing point with maximal uncertainty (or another
variance-derived metric of interest) is probed experimentally.
This new experimental viscosity data point is then added to the
available data set, the GP model is retrained, and new
uncertainty estimates are computed, yielding the next
experimental viscosity point to measure. The active learning
algorithm continues until the metric of interest is below a given
threshold, as schematized in Figure 4.

The acquisition function (AF) chosen in this work is the
GP-predicted relative error, defined as

AF =
(14)

where ∑′ and μ′ follow from the definitions of eqs 8 and 9 and
represent the GP-predicted variance and mean, respectively.
The stopping criterion chosen was an average AF value of 5%.
Thus, the active learning algorithm halts when the GP-
predicted mean relative error is below 5% rather than stopping
when a prearranged number of experimental data points has
been collected. The results for the EG-based DESs studied
thus far are reported in Figure 5, including the convergence of

Figure 5. Active learning acquisition function with respect to AL iteration (top row), as well as three-dimensional surface plots of the GP-predicted
viscosity (bottom row) for ChCl:EG:H2O (left column), ChCl:EG:ACN (middle column), and ChCl:EG:DMSO (right column) as a function of
cosolvent composition and temperature. Color warmth in the surface corresponds to increasing viscosity. Projections of the surface on the
composition/viscosity plane are also included, with color warmth corresponding to increasing temperature. GPs were trained on the active-
learning-acquired data points highlighted (black circles), using an RBF kernel (with a white noise kernel and a trainable Gaussian likelihood)
against min−max-scaled features and log-standardized labels, with MREs being provided for each case.
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AF as a function of AL iteration. Composition slices, along
with the progression of AL-acquired data points, are provided
in Figure S3.

The performance of AL reported in Figure 5 is remarkable.
With no experimental input beyond the viscosity of neat DES
ChCl:EG at room temperature, AL acquires four additional
experimental viscosity data points and halts, attaining an
average acquisition function below the requested 5%. In turn,
this leads to GP models that although are only trained on five
experimental data points, they accurately describe the three-
dimensional viscosity−temperature−composition surface of
each system, with MREs (computed based on all available
data, not just the active-learning-acquired training data fed to
the GPs) between 1.7% for ChCl:EG:DMSO and 3.0% for
ChCl:EG:ACN. This represents a 6-fold reduction in the
amount of data initially measured without AL to describe the
viscosity of these systems and establishes AL as a powerful and
useful tool for data reduction.

Having examined the results for EG-based DESs, we now
discuss their aniline counterparts. It is worth noting that ChCl/
AN (both in the 1:4 and 1:6 molar ratios) presented complex
behavior, with nonmonotonic composition dependencies of
viscosity in some cases, as discussed in the previous section.
Thus, both molar ratios are analyzed separately, starting with
the 1:4 molar ratio in Figure 6 and the 1:6 molar ratio in
Figure 7. Similar to ChCl:EG, Figures S4 and S5 depict
composition slices and AL data progression for each case,
respectively.

The performance of AL for ChCl:AN:ACN (1:4:*) and
ChCl:AN:DMSO (1:4:*) reported in Figure 6 is similar to that
seen for ChCl:EG in Figure 5, with only 6 experimental
viscosity data points being necessary to fully describe the
viscosity surfaces of interest, attaining MREs of 1.9 and 2.2%,
respectively. In stark contrast, AL takes 23 iterations to
converge to a mean acquisition function of 5% for
ChCl:AN:H2O (1:4:*). This lower performance is most likely
connected to the unusual inflection points seen in the
temperature slices of this system (Figure 3), leading to a
viscosity surface that possesses a saddle point and, thus, is
more difficult to capture. Nevertheless, the GPs trained
throughout the AL workflow for this system capture that
unusual behavior by providing larger uncertainty estimates to
AL, which in turn requests more experimental data. Of course,
the data requirements for this system can be significantly
decreased by simply increasing the requested stopping
criterion leading, naturally, to a larger MRE.

The final AL case study analyzed in this work is that of the
systems based on neat ChCl/AN (1:6), as reported in Figure
7. Unlike ChCl:AN:H2O (1:4:*), AL converges to an accurate
representation of viscosity (MRE of 1.4%) for ChCl:AN:H2O
(1:6:*) in just 5 iterations, much like the results seen for the
remaining ternary systems based on ChCl/AN (1:4) and
ChCl:EG. This supports the notion that the poor performance
of AL seen for ChCl:AN:H2O (1:4:*) in Figure 6 is unrelated
to the cosolvent used, instead being connected with the saddle
point of the overall viscosity surface.

Figure 6. Active learning acquisition function with respect to AL iteration (top row), as well as three-dimensional surface plots of the GP-predicted
viscosity (bottom row) for ChCl:AN:H2O (1:4:*) (left column), ChCl:AN:ACN (1:4:*) (middle column), and ChCl:AN:DMSO (1:4:*) (right
column) as a function of cosolvent composition and temperature. Color warmth in the surface corresponds to increasing viscosity. Projections of
the surface on the composition/viscosity plane are also included, with color warmth corresponding to increasing temperature. GPs were trained on
the active-learning-acquired data points highlighted (black circles), using an RBF kernel (with a white noise kernel and a trainable Gaussian
likelihood) against min−max-scaled features and log-standardized labels, with MREs being provided for each case.
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The AL behavior for ChCl:AN:ACN (1:6:*) and
ChCl:AN:DMSO (1:6:*) is particularly interesting and similar
to that observed for ChCl:AN:H2O (1:4:*). In the first case,
the GP-derived acquisition function quickly reaches 10% and
then oscillates between 10 and 20% until iteration 14, where
the algorithm is finally satisfied with its understanding of the
viscosity surface of the system and its nonmonotonic behavior.
Similarly, the acquisition function for ChCl:AN:DMSO
(1:6:*) fluctuates between roughly 20 and 70%, eventually
reaching roughly 10% when there are no more experimental
data points to acquire. Thus, ChCl:AN:DMSO (1:6:*) is the
only system where AL fails to outperform the data require-
ments of the high-throughput experimental screening reported
earlier. However, there is merit in the ability of the underlying
GP to understand that the viscosity surface is complex and
nonmonotonic and the translation of this into an acquisition
function that is considerably larger than those seen for the
remaining systems. This is an important advantage of AL that,
despite not necessarily leading to greater experimental
acquisition efficiency, allows for the quick identification of
problematic systems with outlying behavior that, depending on
the application, warrants closer examination.

The AL results reported in this section demonstrate the
major advantages of using GP-based tools to correlate viscosity
data for DESs and guide the acquisition of experimental data.
This leads to an experimentally inexpensive exploration of the
DES design space, requiring the measurement of only those
viscosity data points that are strictly necessary to obtain an

accurate GP model and eliminating redundancies. This,
combined with our previous results that demonstrated the
feasibility of applying AL to describe activity coefficients and
phase equilibria for DESs,28 shows that AL is a valuable and
general tool for data reduction targeting DES development and
design.

■ CONCLUSIONS
In this work, a high-throughput experimental screening was
performed to measure the viscosity of three neat DESs−
ChCl:EG, ChCl:AN (1:4), and ChCl:AN (1:6)−and their
mixtures therein with three low-molecular-weight cosolvents,
water, acetonitrile, and DMSO, aiming at developing semi-
empirical tools to accelerate the design and development of
DESs. The high-throughput experimental data obtained were
also validated using the VFT equation, and temperature trends
were discussed.

GPs were able to fully interpolate and describe the viscosity
data measured for the nine ternary DES systems studied.
Owing to their ability of capturing both composition and
temperature dependencies, the usage of GPs allowed the
identification of the best cosolvents to decrease the viscosity of
a particular neat DES, as well as unexpected nonmonotonic
trends between the amount of added cosolvent and DES
viscosities.

The ability of GPs to estimate the uncertainty of their
predictions was leveraged in an AL workflow, aiming at
minimizing the amount of experimental data necessary to

Figure 7. Active learning acquisition function with respect to AL iteration (top row), as well as three-dimensional surface plots of the GP-predicted
viscosity (bottom row) for ChCl:AN:H2O (1:6:*) (left column), ChCl:AN:ACN (1:6:*) (middle column), and ChCl:AN:DMSO (1:6:*) (right
column) as a function of cosolvent composition and temperature. Color warmth in the surface corresponds to increasing viscosity. Projections of
the surface on the composition/viscosity plane are also included, with color warmth corresponding to increasing temperature. GPs were trained on
the active-learning-acquired data points highlighted (black circles), using an RBF kernel (with a white noise kernel and a trainable Gaussian
likelihood) against min−max-scaled features and log-standardized labels, with MREs being provided for each case.
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describe the relationship between DES viscosity and cosolvent
composition/temperature. A substantial efficiency increase was
attained for several systems, particularly those based on
ethylene glycol where only five experimental data points,
acquired through AL, were necessary to fully describe the
overall viscosity data set in each case. This represented a 6-fold
increase in efficiency when compared with the high-throughput
experimental screening based on a predetermined temper-
ature/composition grid.

All in all, we demonstrated that leveraging the combined
approach of AL and high-throughput screenings greatly
enhances the efficiency of experimentally characterizing the
physicochemical properties of DESs. Owing to their stochastic
nature and the GP inputs chosen (composition and temper-
ature), the performance of the AL methodology presented in
this work is mostly affected by the shape of the viscosity
surface (as demonstrated in Figures 5−7) rather than the
chemical nature of the mixture components. Thus, the results
and conclusions obtained are expected to be general and valid
across other ternary DESs and HBD/HBA/cosolvent combi-
nations.
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