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Background: Treatment for Cutaneous T Cell Lymphoma (CTCL) is generally not curative. Therefore, selecting
therapy that is effective and tolerable is critical to clinical decision-making. Histone deacetylase inhibitors
(HDACi), epigenetic modifier drugs, are commonly used but effective in only ~30% of patients. There are no pre-
dictivemarkers of HDACi response and the CTCL histone acetylation landscape remains unmapped.We sought to
identify pre-treatment molecular markers of resistance in CTCL that progressed on HDACi therapy.
Methods: Purified T cells from39pre/post-treatment peripheral blood samples and skin biopsies from20patients
were subjected to RNA-seq and ChIP-seq for histone acetylation marks (H3K14/9 ac, H3K27ac). We correlated
significant differences in histone acetylation with gene expression in HDACi-resistant/sensitive CTCL. We ex-
tended these findings in additional CTCL patient cohorts (RNA-seq, microarray) and using ELISA in matched
CTCL patient plasma.
Findings: Resistant CTCL exhibited high levels of histone acetylation, which correlated with increased expression
of 338 genes (FDR b 0·05), including some novel to CTCL: BIRC5 (anti-apoptotic); RRM2 (cell cycle); TXNDC5,
GSTM1 (redox); and CXCR4, LAIR2 (cell adhesion/migration). Several of these, including LAIR2, were elevated
pre-treatment in HDACi-resistant CTCL. In CTCL patient plasma (n = 6), LAIR2 protein was also elevated (p b

0·01) compared to controls.
Interpretation: This study is the first to connect genome-wide differences in chromatin acetylation and gene ex-
pression to HDACi-resistance in primary CTCL. Our results identify novel markers with high pre-treatment ex-
pression, such as LAIR2, as potential prognostic and/or predictors of HDACi-resistance in CTCL.
Funding: NIH:CA156690, CA188286; NCATS: WU-ICTS UL1 TR000448; Siteman Cancer Center: CA091842.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of
non-Hodgkin lymphomas thought to derive from mature CD4+ skin-
homing T lymphocytes [1]. Mycosis Fungoides (MF) and its leukemic
variant, Sèzary Syndrome (SS), are the most common subtypes of
CTCL. Patients with MF/SS have a highly variable clinical course. While
some with early stage disease do not progress beyond limited skin dis-
ease and do not have significant morbidity or mortality from MF/SS,
others develop advanced stage disease characterized bymore extensive
skin involvement, skin tumors, and lymph node and peripheral blood
involvement. Those with advanced stage MF/SS have a 5-year overall
survival of only 20% [2,3]. Treatment for MF/SS is generally not curative,
. This is an open access article under
except for allogeneic stem cell transplant, which is a last resort. There-
fore, selecting a therapy that is both effective and tolerable is a critical
part of clinical decision making for treatment of MF/SS. Biologic agents,
immunomodulators, targeted therapies, histone deacetylase inhibitors,
and chemotherapy all have efficacy in some patients. However, except
for CD30-targeted drugs, predictive biomarkers to guide choice of ther-
apy do not exist for MF/SS [4].

Romidepsin and vorinostat, histone deacetylase inhibitors (HDACi),
are two of the drugs FDA-approved for advanced MF/SS, underscoring
the significance of histone modification in MF/SS pathogenesis and
treatment. HDACs remove acetyl groups from lysine residues on histone
proteins, causing condensation and decreased accessibility for tran-
scription factors and other transcriptional machinery. HDACs also re-
move acetyl groups from non-histone proteins, including transcription
factors. Thus, by broadly regulating transcription, HDACs modulate a
wide range of cellular processes, including cell cycle and apoptosis,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Cutaneous T Cell Lymphomas are a heterogeneous group ofwhich
Mycosis Fungoides (MF) and Sèzary Syndrome (SS) are the most
common subtypes; 5-year survival for advanced MF/SS is only
20%. Treatment for MF/SS is generally not curative; thus,
selecting a therapy that is both effective and tolerable is critical
to clinical decision-making. Histone deacetylase inhibitors
(HDACi) have been used to treat CTCL for N10 years, yet
epigenome-wide histone acetylation, the direct target of these
drugs, has not previously been mapped. Essentially all previously
reported mechanisms of HDACi resistance were defined in cell
lines, not in primary patient samples.Moreover, only~30%of pa-
tients respond to HDACi, and we lack predictive markers for
response.

Added value of this study

Our study is the first to map epigenome-wide differences in chro-
matin acetylation (ChIP-seq) and link them to altered gene expres-
sion (RNA-seq) in HDACi-resistant CTCL (39 samples, 20
patients). We identified novel mechanisms of HDACi resistance
inMF/SSpatient samples and validated these findings in additional
CTCL patient cohorts (RNA-seq, microarray). Elevated expression
of several genes, including BIRC5, NRP2, and LAIR2, was detect-
able prior to HDACi therapy, suggesting their utility as predictive
markers. Of these, LAIR2 was the most robust and is readily de-
tected in patient plasma using routine clinical laboratory methods
(ELISA).

Implications of all the available evidence

Our study demonstrates that elevated levels of histone acetylation
and novel cell adhesion/migration pathways are likelymechanisms
of HDACi resistance in CTCL patients. While further studies are
necessary, LAIR2 and other adhesion proteins may promote in-
flammation and migration of malignant and benign immune cells
in the CTCL microenvironment. The predictive markers we identi-
fied represent novel therapeutic targets and could inform thera-
peutic decision-making in CTCL.
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cell growth and survival, DNA repair, development and differentiation,
each of which has been implicated inMF/SS pathogenesis when dysreg-
ulated [5–8]. HDACi therefore may be effective in treating MF/SS be-
cause they disrupt many key cellular processes and may impact
pathogenic pathways. However, the exact mechanism(s) of HDACi re-
sponse and resistance remains largely unknown [6].

In the studies that led to the approval of romidepsin in MF/SS, the
overall response rate on average was 34% with a median duration of re-
sponse of 13·7–15months [9,10]. Nevertheless, clinical, biologic, ormo-
lecular markers that predict sensitivity or resistance to HDACi therapy
in MF/SS have not been defined [1,6]. Increases in bulk histone acetyla-
tion (measured byWestern blot) have been reported with HDACi treat-
ment of cell lines, primary normal cells, and primary MF/SS samples
[11]. More recently, HDACi response in MF/SS was linked to global in-
creases in accessible DNA and to enrichment in several transcription
factor motifs as mapped by ATAC-seq. However, the differential ATAC-
seq profiles could not be directly linked to changes in the gene expres-
sion because expression profiling was not performed in the same pa-
tient samples [12]. In other studies, genes and pathways have been
associated with resistance to HDACi treatment, including ATP-binding
cassette transporter, pro-apoptotic (Fas, Caspase), anti-apoptotic
(BCL), JAK-STAT, MAPK/PI3K, NFKB, Redox, and TNF pathways [13,14].
However, the majority of these studies were performed in cell lines
and it is not clear that the same processes drive resistance in patients
with MF/SS.

To address these outstanding questions, we performed chromatin
immunoprecipitation and sequencing (ChIP-seq) and transcriptome se-
quencing (RNA-seq) on purified malignant T cells from skin biopsies
and peripheral blood from patients treated with HDACi. Our studies re-
vealed significant differences in the histone acetylation of gene regula-
tory elements in HDACi-resistant versus -sensitive samples and we
linked these to significant expression changes in apoptosis, cell cycle,
cytokine/chemokine signaling, and cell migration pathways.We identi-
fied a number of genes not previously associated with MF/SS or with
HDACi-resistance. Notably, some of these changes are detectable prior
to HDACi therapy. One of these novel HDACi-resistance genes, LAIR2,
encodes a secreted collagen receptor protein that is also significantly el-
evated in the plasma of patients with HDACi-resistant MF/SS. In sum-
mary, we report the first epigenome-wide map of chromatin
acetylation in primary MF/SS and link significant differences in acetyla-
tion to gene expression in HDACi-resistant versus -sensitive samples.
Our findings identify previously unrecognized mechanisms of HDACi
resistance and define novel predictive markers as potential targets for
therapeutic development.

2. Materials and methods

2.1. Sample collection

De-identified peripheral blood draws or skin punch biopsies were
obtained from patients seen at the Washington University School of
Medicine Cutaneous Lymphoma Clinic under IRB-approved protocols
with patients providing informed consent. Peripheral blood was also
drawn from healthy volunteers at WUSM with IRB approval.

2.2. PBMC isolation from primary skin samples

PBMCswere isolated from skin punches throughmechanical separa-
tion and repeated flushing of the tissue with sort buffer (PBS, 1% FBS,
2 mM EDTA), followed by red blood cell lysis (155 mM NH4Cl, 10 mM
KHCO3, 0.1 mM EDTA) for 10 min.

2.3. T cell isolation from peripheral blood samples

Primary peripheral blood samples were incubated with RosetteSep
Human Monocyte (CD36) Depletion Cocktail for 15 min at room tem-
perature, layered onto a Histopaque-1077 gradient, and centrifuged at
400g for 30 min with no brake. The interphase was collected and
washed with 10 mL of sort buffer (PBS, 1% FBS, 2 mM EDTA), followed
by red blood cell lysis (155 mM NH4Cl, 10 mM KHCO3, 0·1 mM EDTA)
for 10 min. Cells were washed and resuspended in sort buffer.
Malignant cell populations were isolated with the EasySep Human
CD4 Positive Selection Kit according to the manufacturer's instructions
or through FACS on a Sony iCyt Synergy SY3200 after staining with
CD4 (Miltenyi Biotec Cat# 130–092-373, RRID:AB_871684), CD7
(Miltenyi Biotec Cat# 130–105-842, RRID:AB_2659107), and/or CD26
(Miltenyi Biotec Cat# 130–093-441, RRID:AB_1103210) fluorophore
conjugated antibodies.

2.4. Cell culture

HH (ATCC Cat# CRL-2105, RRID:CVCL_1280), HUT78 (ATCC Cat#
CRM-TIB-161, RRID:CVCL_0337), and Jurkat (ATCC Cat# TIB-152,
RRID:CVCL_0367) cell lines were acquired from ATCC. HH and Jurkat
cells were cultured in RPMI (Gibco) media supplemented with 10%
fetal bovine serum and 1% penicillin-streptomycin. HUT78 cells were
cultured in IMDM (Gibco) media supplemented with 20% fetal bovine
serum and 1% penicillin-streptomycin. Primary T cells were cultured
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in IMDM media supplemented with 20% fetal bovine serum and 1%
penicillin-streptomycin. All cells were grown at 37 °C with 5% CO2. All
cell lines were collected for RNA and gDNA extraction within 10 pas-
sages after receipt from ATCC.

2.5. In vitro Romidepsin treatments

Cells cultured as above were treated with 2·5 nM Romidepsin for
4 h, media was replaced, and cells were collected 20 h later for RNA-
seq and ChIP-seq.

2.6. Luciferase reporter assays

Putative regulatory regions were PCR amplified from HH, HUT78, or
Jurkat cell line gDNAwith Accuprime Pfx DNA polymerase (Invitrogen)
using primers with a NheI or XhoI cut site added to their 5′ end
(Table S1). PCR samples were gel-extracted (Qiagen cat. 28,706),
digested with NheI and XhoI (New England Biolabs), gel-purified
again, and ligated into the Promega pGL4·23 plasmid overnight at 23
°C with T4 DNA ligase (New England BioLabs, cat. M0202S). Sanger se-
quencing confirmed successful cloning. 1 μg of each luciferase plasmid
and 15 ng of Promega's pNL1·1·TK vector (#N1501) were co-
nucleofected into 1 × 106 HUT78 cells with an Amaxa Nucleofector 2b
system using the X-001 program and a homemade nucleofection buffer
(SM1) as described [15]. Cells were incubated for 24 h in IMDM (Gibco)
supplemented with 20% FBS and 1% penicillin-streptomycin, centri-
fuged at 200g for 10 min, and resuspended in 200 μL media. 60 μL
were added to each well of a 96 well flat-bottom, white, opaque plate.
The Promega Nano-Glo system (#N1110) was used to read the firefly
and renilla luciferase for each well according to the manufacturer's in-
structions in a BioTek Cytation5 platereader. All experiments were
read in triplicate and performed at least twice. The average ratios be-
tween the firefly and renilla luciferase readings for each sample were
compared to the average ratio for the empty pGL3-promoter vector to
determine relative luciferase.

2.7. ChIP-seq

0.5–1.0× 105 cellswere snap-frozen for 15min on dry ice and stored
at −80 °C until use. Ultra-low-input chromatin immunoprecipitation
for H3K9/K14 ac (EMD-Millipore 06–599) and H3K27ac (Abcam
ab4729) was performed as described [16]. DNA was sequenced by the
Washington University Genome Technology Access Center on an
Illumina Hi-Seq 3500 to generate 50 bp single-end reads. Reads were
aligned to hg19 with bowtie2 (v2·2·5) with default settings [17].
Reads in ENCODE blacklisted regions were removed with samtools
(v1·3) [18,19]. Peaks were called with MACS2 (v2·1·0·20150420)
with the settings –q 0·01 –m 10 50 ‐‐nomodel ‐‐shiftsize = 150 and
input controls [20]. RPKMnormalized genomebrowser trackswere cre-
ated with deepTools' (v3·1·0) bamCoverage utility with settings ‐‐
binSize 10 ‐‐extendReads 150 ‐‐normalizeUsing RPKM and visualized
on the UCSC genome browser [21,22]. ChIPQC (v1·14·0) was used for
quality control [23], and samples with fewer than 30% (H3ac) or 25%
(H3K27ac) reads in peaks were removed from subsequent analyses.
The DiffBind R package (v2·8·0) was used to derive consensus peak
sets and determine differentially bound peaks between sample groups
[24]. The chipSeeker R package (v1·16·1) was used to annotate peaks
[25].

2.8. RNA-seq

0·5-2 × 106 cells from each sample were stored in 1 mL TRIzol re-
agent (Invitrogen cat. 15,596,026). RNA was isolated by the
Washington University Tissue Procurement Center and sequenced by
the Washington University Genome Technology Access Center on an
Illumina Hi-Seq 3500 to generate 50 bp single-end reads. Reads were
aligned to hg19 with UCSC annotations using STAR (v2·5·3a) [26].
RPKMnormalized genomebrowser trackswere createdwith deepTools'
(v3·1·0) bamCoverage utility and visualized on the UCSC genome
browser. Read quantification was performed by Salmon (v0·11·0)
usingUCSChg19knownGene annotations [27], and differential gene ex-
pression analyses were done with the DESeq2 R package (v1·20·0)
[28]. Genotify (v1·2·1) was used for manual gene curation [29]. All
data analysis was done in SoS Notebook environments [30]. All gene on-
tology and pathway enrichments were performed on the Enrichr web
server [31].

2.9. Quantitative real-time PCR

RNA was isolated from 0·5-2 × 106 cells stored in 1 mL TRIzol re-
agent following reagent instructions. DNA was removed with the
TURBO DNA-free kit (Invitrogen cat. AM1907) and cDNA synthesized
from 1 μg of RNA with a High-Capacity cDNA Reverse Transcription kit
(Applied Biosystems cat. 4368814). PCR reactions were performed
with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad cat.
1725271) in a Bio-Rad CFX96 Connect. Target primers are available in
Table S1. Relative expression to healthy CD4+ cells was calculated via
the ΔΔCT method [32].

2.10. LAIR2 ELISA

Plasma was collected from primary MF/SS and healthy control pe-
ripheral whole blood by centrifuging for 15 min at 1500g within
30 min of collection in EDTA-coated tubes. Plasma was stored at −80
°C until use. The LAIR2 sandwich ELISA (LifeSpan Biosciences cat. LS-
F6502) was performed according to manufacturer instructions with
plasma samples diluted 1:2. All samples were read in duplicate, and a
third-order polynomial regression line was fit to the standard curve to
calculate concentration.

2.11. Statistical analyses

All statistical tests were performed with GraphPad Prism (v8·1·1).

2.12. Data accession

Sequencing data was deposited in GEO: GSE132053. External
datasets used include GEO: GSE59307, GSE9479, and GSE113113.

3. Results

To define epigenetic changes that are associatedwith response or re-
sistance to HDACi, we first sought to map the epigenome-wide histone
acetylation landscape of primary patient CTCL samples. Patients being
treated at the Cutaneous Lymphoma Clinic at the Washington Univer-
sity School of Medicine were consented for tissue banking. Patient de-
mographics and clinical data are summarized in Table 1 and individual
patient data is included in Table S2. For this study, 20 patients had spec-
imens collected and subjected to epigenome and transcriptome analy-
ses. Comparisons of HDACi sensitivity or resistance were performed
for 17 MF/SS patients treated with romidepsin (n = 14) or vorinostat
(n=3). Skin biopsies and peripheral bloodwere collected at timepoints
prior to the start of HDACi therapy, during the course of therapy, and/or
at subsequent follow-up visits. For romidepsin patients, “pre” speci-
mens were collected just prior to first infusion and “post” specimens
were collected at the end of the infusion, one week later (prior to the
second infusion), or at subsequent visits (Fig. 1A and Table S3). Thirty-
nine specimens defined this “discovery set” for epigenome and/or tran-
scriptome studies. We assigned these specimens to HDACi-sensitive or
-resistant groups based on the patients' clinical responses to HDACi
therapy, determined by blinded review of themedical record. Sensitive:
specimens from patients who experienced partial or complete



Fig. 1. Epigenome-wide profiling identifies hyperacetylation of genes and regulatory elements in CTCL that responded or progressed on HDACi-therapy. a) Diagram of study design.
b) Heatmap of differentially bound (FDR ≤ 0·05) H3ac peaks (n = 4868) Sensitive and Resistant groups. c) Violin plot showing differences in log2 fold changes for H3ac peaks
enriched in Resistant samples categorized by functional genomic region (Kruskal-Wallis test; *, P ≤ 0·05; **, P ≤ 0·01; ***, P ≤ 0·001; ****, P ≤ 0·0001). d) Bar plot comparing RNA-seq
log2 fold changes of genes associated with H3ac peaks enriched in Resistant samples (Incr.) to genes not associated with enriched peaks (Not Incr.). H3ac peaks are categorized by
functional genomic region. (Mann-Whitney test; ***, P ≤ 0·001; ****, P ≤ 0·0001). Mean with 95% confidence interval shown.
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responses or stable disease with HDACi therapy; Resistant: specimens
from patients who experienced progressive disease during treatment
with HDACi (Tables 1 and S2 & S3). Assignment to these groups was
based on HDACi response during the course of therapy in which the
specimen was collected. We also collected peripheral blood from
healthy volunteers and purified control CD4+ T cells. Frompatient spec-
imens, we purified malignant MF/SS cells (CD4+/CD7− or CD4+/
CD26−, see Methods). Purity of malignant T cells from Resistant and
Sensitive samples was similar (92.5% and N99%, respectively); median
purity for all samples was N90%.

HDAC inhibitors prevent the deacetylation of chromatinhistonepro-
teins, resulting in increased levels of acetylation. Histone acetylation is
most often an activatingmodification that leads to increased expression
of nearby genes. Two of the most prominent of these are H3K9/14 ac
(H3ac), which mark active enhancers and promoters, and H3K27ac,
which marks active enhancers. Because cellular yields were limiting in
primaryMF/SS samples, we optimized amethod for performing histone
acetylation profiling (H3K27ac, H3K9/14 ac) from small numbers of
cells: ultra-low input chromatin immunoprecipitation and sequencing
(ULI-ChIP-seq) [33]. For comparison, we treated healthy control CD4+

T lymphocytes with romidepsin using a dose and timing based on
existing literature and to mimic, to the extent possible, the exposure
of primary MF/SS tumors treated in vivo [34]. RNA-sequencing of the
same samples was performed in parallel.

3.1. Altered acetylation corresponds to dysregulated gene expression in
HDACi resistant MF/SS

To define epigenetic and linked gene expression changes associated
with HDACi resistance or response, we updated and optimized an inte-
grative informatic pipeline that we had created previously to analyze
ULI-ChIP- and RNA-seq data from serial MF/SS samples and the
in vitro treated T cells (see Methods). Briefly, we used MACS2 to call
acetylation peaks with an FDR q value b0·01 [20].We first derived con-
sensus peak sets and then identified differentially bound peaks between
sample groups using the DiffBind R package and an FDR q value b0·05
[24]. The heatmap in Fig. 1B shows the ~5000 acetylation peaks with
significantly altered activity in resistant compared to sensitive sample
groups (Table S3); the majority of these are increased in samples from
Table 1
Summary of patient clinical characteristics.

Characteristics WUSM cohort (N = 20)

Age at diagnosis, median (range) 65 (27–84)
Sex: F, M % 40%, 60%
Ethnicity

Caucasian % 75%
African-American % 25%

Deceased 30%
Initial Stage - range IA - IVA2
Worst Stage - range IIA - IVA2
IIA 5%
IIB 20%
IIIA 5%
IIIB 10%
IVA1 40%
IVA2 15%
N/A 5%
Treated with HDACi N = 17

Romidepsin 82%
Vorinostat 18%

HDACi sensitive/resistant
Sensitive 24%
Resistant 76%

Previous therapy lines, n (%)
0 24%
1 18%
2 24%
≥ 3 35%
patients with progressive disease on HDACi. Comparison of functional
genomic regions (promoter, enhancer, exon, intron) revealed that the
greatest number of significantly altered acetylation peaks are located
within introns and distal intergenic regions (enhancers), compared to
promoters and exons. Most of these peaks have increased acetylation
in resistant samples (Fig. S1A). Indeed, we observed a greater than
two-fold change (log2) in all functional genomic regions, with distal
intergenic (enhancer) regions having the highest relative increase in
acetylation (Fig. 1C). The small number of peaks with decreased acety-
lation in resistant samples similarly showed a greater than two-fold re-
duction in all functional regions (Fig. S1B). Because acetylation is an
activating histonemodification associated with increased transcription,
we examined the expression of genes linked to genomic regions with
significantly higher acetylation in resistant versus sensitive samples.
As expected, genes with highly acetylated regulatory elements (distal
enhancer regions and promoters), as well as exons and introns, had sig-
nificantly higher expression compared to genes with unchanged or de-
creased acetylation at these elements (Fig. 1D). These data demonstrate
that MF/SS tumors that progress during HDACi treatment have signifi-
cantly increased histone acetylation at thousands of regulatory ele-
ments compared to HDACi-sensitive MF/SS tumors, and that their
target genes exhibit significantly increased expression.

3.2. HDACi-resistant MF/SS exhibits high expression of anti-apoptotic, cell
cycle, and cell adhesion/migration genes

We next directly evaluated the transcriptomes of primary patient
MF/SS samples based on their response to HDACi. Using DESeq2, we
identified 491 genes with significantly different expression in resistant
versus sensitive samples (Fig. 2A–B and Tables S3 & S4) [28]. Similar
to the histone acetylation changeswe observed above (see Fig. 1), ama-
jority of significantly altered genes have higher expression in the
HDACi-resistant group (357 up versus 134 down). To validate these ex-
pression changes in additional MF/SS samples, we obtained publicly
available RNA-seq data from a study of early to advanced stage MF (n
=49) samples and healthy control CD4+ T cells (n=3) [35]. Genes up-
regulated in HDACi-resistance also exhibited higher expression in MF
samples compared to control CD4+ T cells from the Querfeld et al.
study (Fig. S2A) [35]. In contrast, genes that were down-regulated in
HDACi-resistant samples were not significantly different across this in-
dependent dataset (Fig. S2B).

Gene ontology and pathway analyses revealed several significantly
enriched pathways for HDACi-resistance upregulated genes, but none
for downregulated genes (Fig. 2C and Table S5). A number of the upreg-
ulated genes in these pathways have been previously associated with
MF/SS or HDACi treatment, but many are novel to this analysis of
HDACi response/resistance in MF/SS. These include anti-apoptotic,
BCL2 (known) and BIRC5 (novel); cell cycle, CDK1 (known) and CDC6
(novel); and proliferation, RAB25 and RBM11 (both novel) [36,37]. We
also observed a number of upregulated genes with inflammatory func-
tions, such as TNFAIP3, which is known to be upregulated and/or mu-
tated in B cell lymphoma [38–41], and STAT4, which was reported to
be downregulated in severalMF/SS studies [42], butwe find to be nearly
two-fold upregulated (1·9 log2 fold change, p b 0·0001) in HDACi-
resistant samples. Quite striking was the number of extra-cellular ma-
trix, cell adhesion, and cell migration genes that were upregulated in
the resistant group, including several not previously associated with
MF/SS: CCR6 (known), CCL28 (novel), EPCAM (novel), VCAM1 (novel),
and LAIR2 (novel) [42–45]. Upregulation of these genes in the resistant
group suggest that increased proliferation, anti-apoptotic signaling, and
higher levels of chemotaxis and migration may represent functional
mechanisms of HDACi resistance and/or MF/SS progression.

Alterations in histone acetylation likely contribute to the differences
in gene expression we identified in HDACi-resistant or responsive MF/
SS. Indeed, upregulated genes had significantly higher levels of histone
acetylation at regulatory elements and gene bodies compared to
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unchanged/downregulated genes, with promoters exhibiting the
greatest relative increase in acetylation (Fig. 2D). Similarly, downregu-
lated genes had significantly lower chromatin acetylation levels com-
pared to genes with unchanged/increased expression, with promoters
and exons exhibiting the greatest decreases in acetylation (Fig. 2E).
Taken with the data presented in Fig. 1, these results further support a
role for differential histone acetylation in HDACi resistance and link
acetylation to anti-apoptotic, cell cycle, and cell adhesion/migration
pathways as potentialmechanisms of resistance andMF/SS progression.

3.3. Primary MF/SS HDACi-resistance genes are distinct from those identi-
fied by in vitro studies

A number of studies have identified mechanisms that contribute to
HDACi resistance, the vast majority of which were performed in vitro,
generally in cancer cell lines. Approximately 30 genes and proteins re-
portedly contribute to HDACi resistance, including those in ABC trans-
porter (MDR), pro-apoptotic (Fas, Caspase), anti-apoptotic (BCL), heat
shock, HDAC, JAK-STAT, MAPK/PI3K, NFKB, Redox, and TNF pathways
[13,14]. To evaluate these mechanisms in primary MF/SS samples, we
examined the expression of genes in these pathways (n = 361)
(Fig. S2C and Table S6). Of these, 14 were significantly altered in resis-
tant versus sensitive groups. Notably, only 3/14 had been previously as-
sociated with HDACi resistance: anti-apoptotic gene BCL2 and PI3K
genes PIK3C2A and PIK3C2B, and these latter two were significantly de-
creased in the resistant group while increases have been reported [13].
While other STATswere unchanged,we detected significantly increased
expression of STAT4, which has not been previously connected to HDACi
resistance. We also identified three genes involved in Redox pathways
that had not previously been reported: TXNDC5, whose product cata-
lyzes thiol-disulfide interchanges, and GSTM1 and GSTM3, which are
glutathione S-transferases that detoxify drugs, toxins, and reactive oxy-
gen species. Decreases in TNF-related apoptotic pathway proteins are
also associated with resistance to HDACi treatment in vitro [13], but
we detected increases in two of these genes, TNFRSF17 and TNFAIP3,
both of which promote B cell survival, and no change in the rest of
these genes (51/53). A caveat to this RNA-seq analysis is that it does
not measure levels of protein or phosphoprotein, which may be differ-
ent from mRNA levels. Nevertheless, we demonstrate that mRNA ex-
pression of most of the HDACi-resistance pathways previously
identified in vitro are not significantly altered in primary MF/SS
HDACi-resistant versus -sensitive groups. In addition, we identify
STAT4, TNFRSF17, TNFAIP3, GSTM1, GSTM3, and TXNDC5 as previously
unrecognized genes whose upregulated expression may contribute to
HDACi-resistance in MF/SS disease.

3.4. Differences in the expression of key resistance-associated genes are de-
tectable pre-HDACi treatment

We next asked which of the gene expression differences in MF/SS
samples collected pre- and post-one-week romidepsin therapy coin-
cided with, or diverged from, expression changes induced by in vitro
romidepsin treatment of normal CD4+ T cells. We therefore compared
RNA-seq from healthy donor CD4+ T cells pre- and post-romidepsin
treatment and paired MF/SS samples collected immediately pre-
infusion and one-week post-infusion of romidepsin. We identified
genes with increased expression (log2 fold change ≥1) in paired post-
versus pre-treatment MF/SS samples (N2300) or healthy CD4+ T cells
(800). Of these upregulated genes, only 136 were in common (5·8% of
Fig. 2. Genes in anti-apoptosis, cell cycle, cell adhesion and migration pathways are upregulate
genes (adj. p-value ≤0·05) in Sensitive versus Resistant samples. Selected genes that are upregu
sistant versus Sensitive samples. DEGs (adj. p-value ≤0·05) are colouredorange. c) Select enrich
Table S4). d) Bar plot comparing log2 fold changes for H3ac peaks linked to geneswith increased
H3ac peaks are categorized by functional genomic region (Mann-Whitney test; ****, P ≤ 0·000
creased (Decr.) and unchanged/increased (Not Decr.) expression in Resistant vs Sensitive sam
MF/SS, 17%of healthyCD4+T cells) (Fig. 3A). The numbers of downreg-
ulated genes (log2 fold change ≤ −1) in each comparison were more
similar: 1011 for MF/SS and 1154 for healthy CD4+ T cells. The 188
genes in common comprised 18·6% of MF/SS and 16·3% of healthy
CD4+ T cell downregulated genes (Fig. 3B). As we observed with the
MF/SS samples, genes with expression changes in HDACi-treated con-
trol T cells had corresponding changes in acetylation (Fig. S3). Thus,
the MF/SS cells exhibited a substantially greater number of genes with
increased expression after romidepsin treatment compared to healthy
donor CD4+ T cells.

Given that we observed significant differences in hundreds of genes
in HDACi-resistant versus -sensitive groups (Figs. 1 & 2), we asked
whether these differences were also detectable in the post- versus
pre-treatment analysis. Indeed, we found that the HDACi-resistant
MF/SS samples showed consistently higher expression of these differen-
tially expression genes, and surprisingly, many of these were signifi-
cantly increased in pre-treatment samples (Fig. S4). Several examples
are shown in Fig. 3C. These include anti-apoptotic genes BCL2 and
BIRC5 (Survivin), which promote proliferation and prevent apoptosis
in multiple cancer types, including B and T cell lymphomas [46]. We
also identified genes in cell cycle pathways such as CDK1, a cyclin-
dependent kinase that promotesmitosis, and RRM2, a ribonucleotide re-
ductase enzyme involved in DNA replication/repair. Cell adhesion path-
way genes also showed this pattern in HDACi-resistance, including
NRP2, whose protein product binds semaphorins and VEGF and is in-
volved in the migration of T cells and other immune cells [47], and
LAIR2, which codes for a secreted collagen receptor protein expressed
by T andNK cells [48]. In an independent study of CTCL that did not eval-
uate HDACi therapy [35], expression levels of RRM2, BIRC5, CDK1, CCR6,
CXCR4, and LAIR2 are significantly higher in MF compared to control
skin samples, with a trend toward higher expression in more advanced
stages (Fig. S5). NRP2 expression showed a non-significant trend to-
ward higher expression inMF samples, but BCL2 expressionwas not dif-
ferent from control skin (Fig. S5). The pattern of higher expression of
these genes in advanced disease and HDACi-resistant samples, detect-
able pre- and post-HDACi, suggests that theymay be involved in disease
progression and/or mechanisms of HDACi resistance.

3.5. Highly acetylated regions demonstrate robust enhancer activity in re-
porter assays

To confirm enhancer activity of regionswith higher levels of acetyla-
tion in HDACi-resistant versus sensitive samples, we performed lucifer-
ase reporter assays in anMF/SS cell line (HUT78) by adapting previously
described protocols [49]. We selected putative enhancer regions that
met the following criteria: 1) higher acetylation in resistant samples,
2) likely to regulate expression of nearby genes based on GeneHancer
interactions and ENCODE transcription factor binding data, 3) target
gene(s) with significantly elevated expression in resistant samples,
and 4) the regulated genes have known or potential roles in lymphoma
progression and/or drug resistance. Three gene loci with enhancer re-
gionsmeeting these criteriawere subjected to luciferase reporter assays
(Figs. 4 and S6). CCR6 is a beta chemokine receptor expressed by normal
memory T cells and MF/SS that may regulate their migration and re-
cruitment in inflammation and MF/SS metastasis [43]. Expression of
CCR6 is significantly higher in resistant samples (Fig. S7), and the gene
locus contains two distal intergenic elements upstream of the pro-
moter/transcription start site (TSS) and two elements within the first
intron that exhibit significantly higher levels of H3K27 and K3K9/14
d in Resistant samples. a) Heatmap showing mRNA expression of differentially expressed
lated in Resistant samples are listed. b) Volcano plot of gene expression differences in Re-
ed (adj. p-value ≤0·05) Reactome terms for genes upregulated inResistant samples (full list
(Incr.) and unchanged/decreased (Not Incr.) expression in Resistant vs Sensitive samples.
1; mean with 95% confidence interval shown). e) Bar plot as in d, but for genes with de-
ples (Mann-Whitney test; ****, P ≤ 0·0001). Mean with 95% confidence interval shown.
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acetylation in the resistant group (Figs. 4A and S6C). Luciferase assays
confirmed strong enhancer activity in one of the intronic elements (6-
fold higher activity compared to empty vector, Fig. 4B). In the LAIR2
locus, we tested three regions with higher acetylation in resistant sam-
ples, two distal intergenic elements upstream of the promoter/TSS and
another element in the second intron of LAIR2 (Figs. 4C and S6D). Lucif-
erase assays confirmed strong enhancer activity for the intronic ele-
ment, with N10-fold greater activitya compared to the vector alone
(Fig. 4D). The chemokine receptor CXCR4 binds CXCL12/SDF-1 and
this signaling axis plays major roles in cell migration and immune re-
sponse [50]. CXCR4 expression is higher in the resistant group
(Fig. S7), and we identified three upstream intergenic regions with
higher acetylation in resistant samples (Figs. 4E and S6E). Luciferase re-
porter assays demonstrated robust enhancer activity (N5-fold) for the
two most distal of these elements (Fig. 4F). These results demonstrate
that highly acetylated elements near upregulated genes in resistant
samples harbor strong enhancer activity, suggesting that these ele-
ments may drive high expression of genes that promote HDACi resis-
tance in MF/SS.

3.6. LAIR2 is a novel marker of HDACi-resistance in MF/SS

Among the genes with highly acetylated enhancers and significantly
upregulated expression in the HDACi-resistant group, LAIR2was partic-
ularly intriguing because of the degree of upregulation and its roles in T
cell adhesion,migration, and activation [48,51].We confirmed the RNA-
seq results using qRT-PCR for LAIR2 in additional MF/SS samples from
the same patients, including additional time points; in some cases, the
additional samples were collected during treatment with non-HDACi
therapies due to progression on HDACi. We also tested peripheral
blood CD4+ T cells from healthy donors and T cell lines (Jurkat, leuke-
mia; HH and HUT78, MF/SS). We found substantially higher levels of
LAIR2mRNA in samples frompatientswithMF/SS thatwere progressing
on HDACi therapy compared to normal CD4+ T cells or to samples from
patients withMF/SS that was responding to therapy (Fig. 5A).We noted
that in two samples from two patients with mixed response to therapy
(i.e., response in lymph nodes/blood and progression in skin, 1126 B,
999), LAIR2 expression was trending higher than samples from the
same patient at different time points in complete response or compared
to samples from other patients in complete response. LAIR1 is a highly
homologous gene located near LAIR2 on chromosome19q13·42. In con-
trast to LAIR2, LAIR1 expression was not significantly higher in MF/SS
compared to healthy control CD4+ T cells, and HDACi-resistant samples
were not different from -sensitive (Fig. 5B).

To evaluate LAIR2 expression in additionalMF/SS patient cohorts,we
obtained publicly available expression data from four studies in which
mRNA was collected from MF or SS samples and from healthy control
CD4+ T cells in 2 of 4 studies [35,52–54]. Similar to our findings in
HDACi-resistant MF/SS samples measured by RNA-seq (Fig. 5C), LAIR2
expression quantified by microarray was higher in MF and SS samples
compared to control CD4+ T cells, (Figs. 5D and S8A) [53]. In a larger
study using RNA-seq (49 MF, 3 control), LAIR2 expression was signifi-
cantly higher (two-fold on a log2 scale) in all stages of MF compared
to controls [35]. More advanced stage disease (IIA and above) showed
higher LAIR2 levels than early stage MF (IA/IB) in this study, as well as
another CTCL study that performed microarray analysis (Figs. 5E and
S8B) [52]. LAIR1 levels were not statistically different in purified MF/SS
cells from resistant versus sensitive samples (Fig. S8C) or were slightly
Fig. 3. Resistant-associated expression changes are detectable pre-HDACi treatment. a) Ven
treatment in paired MF/SS samples (one-week post-treatment vs immediately pre-treatm
untreated, orange). b) Venn diagram showing overlap of genes downregulated (log2 fold cha
downregulated in healthy CD4+ T (as in A, orange). c) Paired dot plots (left) and box plots
post-HDACi treatment samples connected (purple = Resistant, green = Sensitive). Paired hea
(Wald test – DESeq2; **, P ≤ 0·01; ***, P ≤ 0·001; ****, P ≤ 0·0001). Whiskers show 10-90th p
Untreated; Romi = Romidepsin treated; Rest = HDACi Resistant; Sens = HDACi Sensitive.
decreased in Sezary cells (Fig. S8D) compared to healthy control CD4
+ T cells [54]. In unsorted MF samples, LAIR1 expression was increased
relative to control samples (Fig. S8E) [35]. However unlike LAIR2, which
is expressed only in T and NK cells, LAIR1 is expressed on nearly all im-
mune cells, including monocytes, macrophages, T, B, and NK cells, den-
dritic cells, mast cells, and eosinophils, so the increased levels may
reflect the inflammatory microenvironment of MF-involved skin [55].
Thus, we demonstrate using several different methods that LAIR2 ex-
pression is significantly higher in HDACi-resistant MF/SS disease.

The gene that encodes LAIR2 lies within the leukocyte receptor
complex (LRC), a gene cluster on chromosome 19q13.4 that is rich
in leukocyte immunoglobulin-like receptor (LIR) and Killer cell
immunoglobulin-like receptors (KIRs) genes (Fig. S9). These genes en-
code transmembrane inhibitory and activating receptors expressed by
T cells and/or NK cells, which are highly polymorphic; expression differ-
ences and genomic polymorphisms have been associated with auto-
immune and infectious diseases [56,57]. LAIR2 is present in primates
but absent in most other organisms, including mice (Fig. S9) [48]. In
amino acid sequence, LAIR2 is highly homologous to the N-terminus
of LAIR1, which includes the Ig-like domain, but lacks the transmem-
brane and intracellular domains that are present in LAIR1 (Fig. 5F).
LAIR2 is a secreted protein and has been detected in the body fluids of
patients with autoimmune disease [48,58]. Therefore, we collected
plasma from MF/SS patients and healthy donors and performed ELISA
using an anti-LAIR2 antibody. Consistent with mRNA levels, we de-
tected significantly higher levels of LAIR2 protein inMF/SS plasma com-
pared to healthy controls (Fig. 5G). Notably, the patient with the lowest
plasma concentration of LAIR2 protein,whichwas equivalent to healthy
controls, has had a sustained response to romidepsin over four years of
treatment (Patient 1125). Taken together, these results demonstrate
that LAIR2 mRNA and protein expression levels are significantly higher
in both malignant cells and plasma from patients with HDACi-
resistant MF/SS.

4. Discussion

An outstanding question in CTCL research is why only a fraction of
patients respond to HDACi therapy [6], and the related question of
how response and resistance could be predicted to inform therapeutic
choice. Here we have identified significant differences in the histone
acetylation of gene regulatory elements in samples from CTCL patients
with HDACI-resistant versus -sensitive disease and linked them to sig-
nificant expression changes in cell cycle, apoptosis, cytokine/chemokine
signaling, and cell adhesion/migration pathways. We and others have
previously shown that high levels of acetylation of enhancers and pro-
moters can lead to overexpression of oncogenes that promote cancer
pathogenesis [49,59–62]. In this study, we demonstrated that enhancer
elements near potential MF/SS oncogenes CCR6, CXCR4, and LAIR2 had
significantly increased acetylation levels in HDACI-resistant samples
also showed strong enhancer activity by luciferase reporter assay.
These results suggest that highly acetylated elements may drive the
high expression levels of target genes in resistant samples, promoting
enhanced chemotaxis, cell migration, and inflammation that contribute
to progressive disease.

We validated our findings in several independent expression profil-
ing studies of MF/SS, showing that HDACi-resistance genes were gener-
ally elevated in MF/SS compared to normal CD4+ T cells and several
genes exhibited higher levels in more advanced stages of MF
n diagram showing overlap of genes upregulated (log2 fold change ≥1) by romidepsin
ent, purple) and genes upregulated in healthy CD4+ T cells (24 h post-treatment vs
nge ≤ −1) by romidepsin treatment in paired MF/SS samples (as in A, purple) and genes
(right) for select differentially expressed genes. Paired MF/SS pre-HDACi and one-week
lthy CD4+ T cell pre- and 24 h post-romidepsin treatment samples connected (orange).
ercentile. Pre = pre-HDACi treatment; Post = one-week post HDACi treatment; Untx =
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[35,52–54]. One caveat is that these studies did not evaluate response to
HDACi, however, there were no expression datasets with HDACi re-
sponse data available for comparison to our study. Several HDACi-
resistance genes had higher levels of acetylation and expression in
pre-treatment samples, including BCL2, CDK1, CXCR4 and CCR6. Previous
studies have shown that knock-down or inhibition of BCL2, or defi-
ciency of CDK1 familymember, CDKN1A (p21), increased the sensitivity
of cells treatedwithHDACi in vitro [63–67]. Other inhibition and knock-
down studies demonstrated that CXCR4 and CCR6 may play a role in
CTCL pathogenesis, though synergy with HDACi remains to be demon-
strated [68–72].We also identified several genes that had not been pre-
viously associated with MF/SS or HDACi-resistance, including BIRC5,
NRP2, RRM2, and LAIR2, whose role in CTCL and HDACi-resistance may
be further elucidated by future studies. Taken together, these results
suggest that elevated levels of histone acetylation and novel cell adhe-
sion/migration pathways are likely mechanisms of HDACi resistance in
CTCL patients.

Our analysis of primary samples fromHDACi-treatedMF/SS patients
also revealed several novel genes upregulated in previously identified
HDACi resistance pathways. These include three genes in Redox path-
ways, TXNDC5, GSTM1, and GSTM3, which process therapeutic drugs
and reactive oxygen species. Cells with altered levels of other compo-
nents of these pathways have decreased cell death when treated with
HDACi in vitro [13], and these three genes may contribute to in vivo
mechanisms of HDACi resistance. STAT4 expression was nearly two-
fold in the resistant group, in contrast to previous reports of downregu-
lation in Sèzary and upregulation inMF skin, though no associationwith
HDACi resistancewas previously reported [42]. Also, in contrast to pub-
lished in vitro HDACi resistance studies, the resistant group exhibited
higher expression of TNF pathway genes TNFRSF17 and TNFAIP3, though
notably both of these are associatedwith the pathogenesis of B cell lym-
phomas [38–41,73]. In summary, we identify STAT4, TNFRSF17, TNFAIP3,
GSTM1, GSTM3, and TXNDC5 as previously unrecognized genes whose
upregulated expression may contribute to HDACi-resistance in primary
MF/SS and may represent novel targets for therapeutic development.

One of the most striking differences we detected in HDACI-resistant
compared to sensitive groups was elevated expression of LAIR2, a gene
that encodes a secreted collagen receptor protein [48]. LAIR2 mRNA
was significantly higher in MF/SS skin biopsies and blood from patients
with resistant disease, and the LAIR2 proteinwas elevated in the plasma
of these patients. The LAIR2 genemay have arisen by duplication from a
close homologue, LAIR1, which encodes a transmembrane inhibitory re-
ceptor expressed on the majority of immune cells, in contrast to LAIR2
expression only on T and NK cells [48]. The ligands of LAIR1 and LAIR2
receptors are collagen types I, III, and IV. When bound to collagens,
LAIR1 transmits inhibitory signaling that reduces immune cell activa-
tion andproliferation (Fig. 6A) [51,74]. Binding of collagen by LAIR2pre-
vents binding of LAIR1, which may promote activation, proliferation,
and migration of malignant T cells from skin sites into lymph nodes
and peripheral blood (Fig. 6B) [75,76]. Downregulation of LAIR1-
mediated inhibitory signaling may also contribute to inflammation in
the MF/SS tumor microenvironment, in which benign immune cells
are activated and contribute to morbidity of the disease [77]. In this
way, MF/SS cells that produce LAIR2 might have a higher rate of prolif-
eration and could more readily migrate through and out of tissue into
lymphatics and/or the peripheral blood. LAIR2 could also promote a
more inflammatorymilieu by blocking collagen binding of LAIR1 on be-
nign immune T and NK cells in the MF/SS microenvironment. Thus,
LAIR2 represents a novel pathway for HDACi-resistance in MF/SS. It is
Fig. 4. Luciferase reporter assays confirm enhancer activity for regulatory elements near HDAC
with representative Resistant and Sensitive samples. All signal tracks are normalized to read
luciferase reporter are highlighted. b) Enhancer activity of putative CCR6 enhancer regions m
and read in triplicate. Ratios are relative to empty vector. c) UCSC genome browser snapsho
d) Enhancer activity of putative LAIR2 enhancer regions (c) in HUT78 cells, performed as in b
as in b. (Mann-Whitney test *, p ≤ 0·05; **, p ≤ 0·01) Mean with standard deviation shown.
also a potentially clinically useful marker for prognosis, HDACi resis-
tance prediction, and monitoring disease burden and may represent a
new therapeutic target for this challenging cancer.

In conclusion, these studies are the first to connect differences in
epigenome-wide acetylation and gene expression to HDACi resistance
in primary samples from CTCL patients. Many of the HDACi resistance
genes are involved in cell adhesion/migration, suggesting they may
play a role in the variable manifestations of MF/SS disease in skin,
lymph node, and peripheral blood. Elevated expression of several of
these significantly altered genes was detectable prior to HDACi therapy,
suggesting their utility as prognostic and/or predictive markers. Of
these, we characterized LAIR2 as themost robust, whichmay contribute
to inflammation andmigration ofMF/SS andbenign immune cells in the
microenvironment. Further studies to define the role of LAIR2 in MF/SS
pathogenesis and progression, as well as its potential as a predictive
marker and therapeutic target in this challenging cancer, are already
underway.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.07.053.
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Fig. 5. LAIR2 is upregulated in multiple independent MF/SS datasets. a) LAIR2 mRNA expression measured by qRT-PCR in healthy control CD4+ T cells, T cell lines, and primary MF/SS
samples. Green bars: responding to therapy, Pink bars: mixed response to therapy; Purple bars: progressive disease. (Unpaired student's t-test compared to control; *, P ≤ 0·05; **, P ≤
0·01; ***, P ≤ 0·001). Mean with standard deviation shown. b) LAIR1 mRNA expression measured as in A. (Unpaired student's t-test compared to control; *, P ≤ 0·05; **, P ≤ 0·01; ***,
P ≤ 0·001; ***, P ≤ 0·0001). Mean with standard deviation shown. c) LAIR2 mRNA expression in CD4+ T cells purified from Sensitive and Resistant MF/SS samples (WUSM, RNAseq).
d) LAIR2 mRNA expression in control skin (n = 8) and primary MF (n = 6) (microarray; Mann-Whitney test; Humme et al., 2015). e) LAIR2 mRNA expression in control skin (n = 3)
and primary MF (n = 49) biopsies (RNAseq; Kruskall-Wallis test; Querfeld et al., 2018). c-e show mean with 95% CI. f) Diagram showing protein domains in LAIR2 and LAIR1. g) LAIR2
protein expressionmeasured by ELISA in plasma from healthy controls and CTCL patients (colours as in A&B; unpairedWelch's t-test; **, P ≤ 0·01). Meanwith standard deviation shown.
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Fig. 6. Proposed model for the role of LAIR2 in MF/SS pathogenesis. a) MF/SS cells that produce low/no LAIR2, such as in the Sensitive group, would still bind collagen through LAIR1,
causing inhibitory signaling through LAIR1 ITIM domains. LAIR1-mediated inhibitory signaling could decrease proliferation, immune response, and inflammation. b) MF/SS cells that
produce high levels of LAIR2, such as in the Resistant group, would have decreased binding of LAIR1 to collagen, causing decreased inhibitory ITIM signaling. Loss of LAIR1-inhibitory
signaling could promote migration and proliferation of MF/SS cells and increased inflammation in the tumor microenvironment through decreased inhibitory signaling in local benign
T and NK cells.
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