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Working Memory And Brain Tissue 
Microstructure: White Matter Tract 
Integrity Based On Multi-Shell 
Diffusion MRI
Sohae Chung  1,2, Els Fieremans1,2, Nuri E. Kucukboyaci3, Xiuyuan Wang1,2, Charles J. 
Morton1,2, Dmitry S. Novikov1,2, Joseph F. Rath  4 & Yvonne W. Lui1,2

Working memory is a complex cognitive process at the intersection of sensory processing, learning, and 
short-term memory and also has a general executive attention component. Impaired working memory 
is associated with a range of neurological and psychiatric disorders, but very little is known about how 
working memory relates to underlying white matter (WM) microstructure. In this study, we investigate 
the association between WM microstructure and performance on working memory tasks in healthy 
adults (right-handed, native English speakers). We combine compartment specific WM tract integrity 
(WMTI) metrics derived from multi-shell diffusion MRI as well as diffusion tensor/kurtosis imaging (DTI/
DKI) metrics with Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests tapping auditory 
working memory. WMTI is a novel tool that helps us describe the microstructural characteristics in both 
the intra- and extra-axonal environments of WM such as axonal water fraction (AWF), intra-axonal 
diffusivity, extra-axonal axial and radial diffusivities, allowing a more biophysical interpretation of WM 
changes. We demonstrate significant positive correlations between AWF and letter-number sequencing 
(LNS), suggesting that higher AWF with better performance on complex, more demanding auditory 
working memory tasks goes along with greater axonal volume and greater myelination in specific 
regions, causing efficient and faster information process.

Working memory is traditionally conceptualized as a hierarchical system with limited capacity and duration at 
the core of cognition and consciousness. It is composed of three main components: (1) the phonological loop 
which provides short-term memory traces for sounds by continuously refreshing the information through silent 
rehearsal; (2) the visual-spatial sketchpad which allows individuals to momentarily create and revisit a mental 
image that can be manipulated in complex tasks; and (3) the central executive which involves selective attention, 
inhibition, and shifting between tasks1–4. Involving both maintenance and manipulation of information, work-
ing memory is essential for higher-order functions such as comprehension, learning, reasoning, and decision 
making2,5. Deficits in working memory are fundamental problems associated with a wide range of progressive 
and non-progressive conditions including developmental disorders, learning disabilities, traumatic brain injury, 
stroke, and multiple sclerosis6–9. In fact, macrostructural alterations of the brain including focal decreases in 
brain volume10,11, cortical thickness12, and hippocampal volume13 have previously been associated with cognitive 
disability.

There is specific interest in understanding the microstructural correlates that contribute to such macroscopic 
changes as well as inform more subtle differences in working memory performance. Several diffusion tensor 
imaging (DTI) studies of white matter (WM) reveal positive correlations between fractional anisotropy (FA) 
and performance of a working memory task in fronto-parietal WM in children14–16 and adults17; and also in the 
corpus callosum and posterior temporal WM in younger children18. Positive correlations between FA and verbal 
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working memory performance have also been reported in right precuneal WM in normal young adults19. FA is, 
however, a nonspecific measure of directional diffusion, affected by a number of biophysical factors such as extra-
cellular water, myelination, axon thickness and density20. In addition, diffusion kurtosis imaging (DKI)21 has been 
employed to characterize non-Gaussian diffusion and studies show an association between mean kurtosis (MK), 
a reflection of tissue microstructural complexity, and cognitive deficits in a number of pathologies including 
multiple sclerosis22, mild cognitive impairment23, Alzheimer’s23, and mild traumatic brain injury24. FA and MK, 
being empirical measures, intrinsically lack specific biophysical meaning. Thus, it remains unclear what biological 
structural differences may underlie the observed diffusion signal changes.

Most recently, compartment-specific WM tract integrity (WMTI) metrics derived from a WM modeling of 
multi-shell diffusion magnetic resonance imaging (MRI) have the potential to disentangle intra- and extra-axonal 
environments25. WMTI metrics include: 1) axonal water fraction [AWF], 2) intra-axonal diffusivity [Daxon, diffu-
sivity within axons], 3) extra-axonal axial and 4) extra-axonal radial diffusivities [



De,  and ⊥De, , diffusion parallel 
and perpendicular to the axonal tracts in the extra-axonal space, respectively]. There are promising works show-
ing WMTI metrics to be more specific to underlying tissue microstructure and mechanisms than empirical diffu-
sion measures such as FA: WMTI metrics and tissue microstructure have been studied in several animal 
validation works, specifically examining demyelination and remyelination26–29, as well as in human in vivo studies 
of neural development and disease. Briefly, alterations in AWF and ⊥De,  appear to reflect axon density and myeli-
nation both in normal development30 and in Alzheimer’s disease31,32; alterations in Daxon have been shown in 
conditions of axon injury including stroke33 and mild traumatic brain injury34; and 



De,  and ⊥De,  demonstrate 
sensitivity to changes in extra-axonal diffusion (such as demyelination, gliosis and astrocytosis, extracellular 
inflammation) in patients with mild cognitive impairment31. Specifically with regard to working memory and 
brain microstructure, prior reports show strong association of visual working memory with AWF in healthy 
subjects35,36.

Here we investigate the relationship between diffusion metrics and performance on Wechsler Adult 
Intelligence Scale-Fourth Edition (WAIS-IV)37 subtests tapping auditory working memory, including digit span 
forward (DSF), backward (DSB), sequencing (DSS), and letter-number sequencing (LNS) in healthy adults. The 
working memory tasks represent a progression from “simple span” tasks, focusing on short-term storage and 
deemphasizing the executive component of working memory, to “complex span” tasks which involve both storage 
and manipulation of information. In this progression, DSF, requiring simple repetition of numbers in the order 
presented, taps the phonological loop. DSB, which requires that numbers be re-ordered and repeated in reverse, 
taps both the phonological loop and executive components of working memory. DSS adds an element of semantic 
processing, because the meaning of the numbers presented must be comprehended in order to repeat them in 
ascending order. Finally, shifting between letters and numbers as required by LNS involves additional executive 
demands. LNS has been shown to involve processing speed and visual-spatial working memory components 
(relating to the strategy of visualizing numbers and letters as they are placed in ascending/alphabetical order) not 
tapped by DS tasks38. In order to avoid any confounding effects of language and handedness, we included only 
right-handed, native English speaking individuals in this study.

Results
Length of education of our subjects varied between 12 and 20 years (16 ± 2 years) and the WRAT-4 IQ scores 
were ranged from 88 to 134 (111 ± 15). The WAIS-IV DS and LNS test scaled scores were ranged from 7 to 19 
and age-corrected z-scores were ranged from −1 to 3. They were not significantly correlated with age and length 
of education, but we found a trend for DSS and LNS with length of education. These are summarized in Table 1.

From TBSS analysis, there were statistically significant positive correlations of AWF and MK with LNS at the 
95% confidence level after multiple comparisons. As shown in Fig. 1A, this significant correlation between AWF 
and LNS was present mainly in parietal WM, more prominently on the left. Specific areas based on MNI atlas 
include: right/left parietal WM, left superior and posterior corona radiata, and left body of corpus callosum. A 
region in the right anterior corona radiata also showed a significant positive correlation between MK and LNS 
(Fig. 1B). No other diffusion metrics showed area of significant correlations surviving multiple comparison cor-
rections. No significant correlations were found with performance on the DS tasks. We found essentially identical 
results between using scaled scores and using z-scores.

Figure 2 presents the scatter plots of each significant metric and LNS z-score, showing that higher AWF 
(Fig. 2A; r = 0.88) and higher MK (Fig. 2B; r = 0.92) are associated with better performance on the LNS task for 
those significant voxels on the skeleton in TBSS shown in Fig. 1.

Scaled score Z-score Correlation with 
age (p-value)

Correlation with 
education (p-value)Mean ± SD Min Max Mean ± SD Min Max

DSF 11.73 ± 3.06 7 16 0.58 ± 1.02 −1 2 0.47 0.56

DSB 12.20 ± 2.65 9 18 0.67 ± 0.87 −0.33 2.67 0.60 0.15

DSS 11.67 ± 3.06 8 17 0.55 ± 1.02 −0.67 2.33 0.43 0.056

LNS 12.60 ± 3.33 9 19 0.87 ± 1.11 −0.33 3 0.44 0.053

Table 1. WAIS-IV working memory subtests scaled/z-scores (N = 15), and their correlation p-values with age 
and length of education.



www.nature.com/scientificreports/

3SciEntiFic RepORTS |  (2018) 8:3175  | DOI:10.1038/s41598-018-21428-4

Discussion
This study demonstrates statistically significant WM microstructural associations with performance on a select 
auditory working memory task, LNS. It is interesting to note that no significant correlations were observed with 
performance on the three relatively simpler WAIS-IV DS tasks (recalling numbers in order, backwards, and reor-
dering in WAIS-IV DS subtest). However, when subjects were asked to perform LNS, the most complex and 
demanding WAIS-IV working memory subtest which requires shifting between letters and numbers, significant 
correlations were observed in AWF as well as MK. While processing speed has been shown to contribute to LNS 
performance38, past research agrees with the WAIS development team37 that many aspects of crystallized (e.g., 
high reading level39) and fluid intelligence (e.g., strong visuospatial working memory) may contribute to high 
scores in this test.

Our findings show WM microstructure to be more closely associated with more complex tasks of working 
memory that also require efficiencies in processing speed and fluid intelligence. The greater localization to the left 
hemisphere is consistent with typical lateralization for auditory-verbal working memory40. The correlation shown 
in a small right frontal region supports virtual visual rehearsal and manipulation that many individuals employ 
in order to successfully complete such tasks38. Indeed, a prior report shows associations of visual short-term 
memory with WM microstructure in the superior longitudinal fasciculus and inferior fronto-occipital fasciculus 
within the right hemisphere41. Our findings in the parietal WM regions may also relate to visual rehearsal42.

Figure 1. (A) Tract-based spatial statistics (TBSS) results showing significantly positive correlations between 
axonal water fraction (AWF) and WAIS-IV letter-number sequencing (LNS) test z-scores. Mean FA skeleton 
(green) overlaid on the mean FA map. Significantly correlated voxels (corrected p < 0.05) are shown in red-
yellow and involve left greater than right parietal white matter (WM) (specifically based on the MNI atlas: right/
left parietal WM, left superior and posterior corona radiata, left body of corpus callosum). (B) Significantly 
correlated voxels between mean kurtosis (MK) and LNS test z-scores are present in the right anterior corona 
radiata. No negative correlations were found. Identical results were found with WAIS-IV LNS test scaled scores.

Figure 2. Scatter plots showing significant correlations. (A) Between AWF and LNS z-scores (r = 0.88) and  
(B) between MK and LNS z-scores (r = 0.92) for voxels on the skeleton with statistically significant association 
in TBSS (corrected p < 0.05; shown in Fig. 1).
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The correlation coefficients observed in the significant regions are high between AWF and LNS (r = 0.88), 
and between MK and LNS (r = 0.92). Higher AWF has previously been shown in two conditions; higher axonal 
density as well as greater myelination28,43. Higher MK reflects greater tissue microstructural complexity29,44. 
Differences between subjects in terms of axonal density and myelination would certainly be expected to influence 
neuronal signal transmission45 and could conceivably contribute to greater efficiency in information processing38.

We find no significant correlation between FA and these tests of working memory. The literature is variable 
with some papers showing positive correlations with FA though in differing brain regions17,19 and others showing 
no correlation35,46. This may be because FA is inherently a nonspecific empiric measure affected by multiple differ-
ent microstructural features including myelination, axon density, extracellular fluid content, etc47.

This study includes subjects with age range of 19 to 45 years old. High average reliability of LNS scores 
(0.86–0.91) in our subjects across age and low (<14%) coefficient of variability48 seen here agree with prior 
research documenting relative stability of working memory performance in healthy adults, characterized by a 
slow decline in average scores beginning in middle age49–51. In addition, we address any remaining age effects by 
using age-corrected z-scores derived from a published normative sample (n = 2200) divided into 13 age bands, 
spanning ages 16 to 9037. This analysis was also cross-checked using the scaled scores of the cognitive tests, which 
showed no differences in the results. Also, DTI studies52,53 have revealed that this age range is a relatively stable 
period and possibly contributes to why age-related changes were not observed in this study. Furthermore, all sta-
tistical analyses included age and sex as covariates and were not found to have an effect on the findings.

TBSS, used here, is an established methodology, widely used for voxelwise analysis of whole brain WM dif-
fusion measures. Limitations of TBSS include the fact that WM texture is not interrogated using this method as 
only the maximum value along a line orthogonal to the skeleton is projected onto the skeleton. Other potential 
problems that have been reported associated with TBSS including effects of partial volume, skeleton shapes, 
image noise level and registration error54. While TBSS certainly has limitations, TBSS has several strengths which 
make it an excellent choice of methodology including skeletonization which reduces the need for data smoothing, 
alleviates residual image misalignment and gains statistical power from reducing dimensionality54. In this study, 
default parameter settings have been employed and potentially problematic regions (e.g., low FA (<0.2) regions 
such as fornix, uncinate fasciculus) have not been included in the results, as recommended by Bach et al.54. By 
using skeletonized WM, TBSS is useful in substantially decreasing the number of comparisons compared with a 
voxel-by-voxel based approach; however, there remain potential limitations in the methodology applied to small 
sample size studies55. In particular, variance in diffusion metrics across healthy subjects has been reported, par-
ticularly affecting FA55. Variance in FA may reflect why no correlations in FA were detected in our study. Kurtosis 
measures, on the other hand, show less variance. Based on previously reported intersubject variance in DKI 
metrics, our study is powered to detect an effect size of 10% at 0.9 statistical power56. In particular, Jensen et al.57 
have showed the WMTI model parameters to have deviations being less than 10% at FA threshold ≥0.3 which is 
much lower as detailed in the De Santis et al. paper55, putting the sample size employed in this work in a reasona-
ble range. Moreover, potential error relating to default FA-based TBSS registration would be further improved by 
using a tensor-based registration54; however, it was not implemented in this study.

Finally, the WMTI model employed here makes two main assumptions regarding fiber alignment and diffu-
sion compartmentalization: 1) It assumes regions of highly aligned fiber bundles and therefore, in this work, the 
WM regions were thresholded to FA ≥ 0.4 as has been previously described25,57 (about 30% of total WM) to 
restrict TBSS analysis to regions of reasonable high directional diffusion for calculation of WMTI metrics; FA 
threshold at 0.4 conservatively restricts the WM assessed to area where the WMTI model is valid based on Jensen 
et al.57, and 2) the model assumes Daxon ≤ 



De, ; which is supported by several animal validation studies26,28 though 
remains a topic of debate58–61; Nevertheless, AWF is independent of this latter assumption and therefore the main 
result of this investigation is not affected.

In summary, our findings support a real potential of diffusion metrics not only to identify WM microstruc-
tural associations with working memory but to begin to parse out the meaning behind such relationships, sug-
gesting that higher AWF with better performance on LNS goes along with greater axonal volume and greater 
myelination in specific regions. Elucidating the links between brain microstructure and working memory has 
generalizable value across normal and pathologic conditions such as aging, dementia, and abnormalities of atten-
tion including attention deficit hyperactivity disorder (ADHD).

Methods
Study Population. This study was approved by the Institutional Review Board at New York University 
School of Medicine, and all experiments were performed in accordance with relevant guidelines and regula-
tions. All subjects were prospectively recruited and provided written informed consent before the procedure. We 
studied 15 healthy individuals (mean age, 31 ± 7 years old; age range, 19–45 years old; 7 males). Exclusion crite-
ria included: 1) reported history of brain disorders, head trauma or psychotic disorders; 2) non-native English 
speakers and 3) non-right-handed individuals to avoid confounding effects of language and handedness in both 
WAIS-IV test performance and WM microstructure. Per study procedures, all subjects underwent formal neu-
rocognitive testing using WAIS-IV working memory subtests37 and a brain MRI scan within one day of each 
other. Wide Range Achievement Test-4th Edition Word Reading subtest (WRAT-4) was also performed to help 
characterize subjects and the scores were converted to IQ scores for a brief measure of academic achievement.

MRI Acquisition. MR imaging data were acquired on a 3 T MR scanner (Skyra, Siemens Medical Solutions, 
Erlangen, Germany). Diffusion imaging was performed at multiple shells: 5 b-values (250, 1000, 1500, 2000, 
2500 s/mm2) along with 5 diffusion encoding direction schemes (6, 20, 20, 30, 60, respectively) using multi-
band (factor of two)62 EPI for accelerated acquisitions with anterior-posterior (AP) phase encoding direc-
tion. Three non-weighted diffusion images (b = 0 s/mm2) were also acquired. Other imaging parameters were: 
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FOV = 220 mm × 220 mm, resolution = 2.5 × 2.5 × 2.5 mm3, matrix = 88 × 88, slices = 56, TR/TE = 4900/95 ms, 
bandwidth = 2104 Hz/pixel, a generalized autocalibrating partially parallel acquisitions (GRAPPA) fac-
tor of two. For geometric distortion correction, an additional image with b = 0 s/mm2 was acquired with the 
same imaging parameters, but with reversed (PA) phase encoding direction63. Standard clinical sequences 
including the MPRAGE (FOV = 256 mm × 256 mm, resolution = 1 × 1 × 1 mm3, matrix = 256 × 256, TR/TE/
TI = 2100/3.19/900 ms), FLAIR (FOV = 256 mm × 256 mm, resolution = 0.7 × 0.7 × 5 mm3, matrix = 220 × 220, 
TR/TE/TI = 9000/90/2500 ms) and SWI (FOV = 256 mm × 256 mm, resolution = 0.7 × 0.7 × 3 mm3, 
matrix = 220 × 220) were done to assess the presence of any brain abnormalities.

Working Memory Assessment. Working memory was assessed within one day that subjects under-
went MRI scanning, using two WAIS-IV subtests37: 1) Digit Span (DS), which includes a) DS Forward (DSF) 
- examinees repeat back a sequence of numbers read to them, b) DS Backward (DSB) - examinees repeat back a 
sequence of numbers read to them, in reverse order, c) DS Sequencing (DSS) - examinees repeat back a sequence 
of numbers read to them, in ascending order, and 2) Letter-Number Sequencing (LNS) - examinees repeat back 
a sequence of numbers and letters read to them, numbers first in ascending order, followed by letters in alphabet-
ical order. All measures were administered following standardized testing procedures, under the supervision of 
licensed clinical psychologists blinded to MRI results. Raw scores are converted to scaled scores (defined as mean 
of 10 with SD = 3, ranging 1–19) with higher scores indicating higher ability. In order to effectively eliminate age 
as a confounding factor for DS and LNS scores, age-corrected z-scores with a zero mean and a unitary variance 
were derived from the WAIS-IV normative sample (n = 2200) which was divided into 13 age bands spanning ages 
16 to 9037. Both scaled scores and z-scores were used for analysis.

Image Analyses. Diffusion image processing. The pre-processing steps for the diffusion weighted images 
include Marchenko-Pastur principal component analysis (MP-PCA) denoising64, Gibbs correction65, geometric 
EPI distortion correction (FSL’s function topup), eddy current distortion and motion correction (FSL’s function 
eddy), and outlier detection66. In-house image processing software developed in MATLAB R2017a (The 
Mathworks, Inc., Natick, MA) was used to calculate maps of WMTI metrics (AWF, Daxon, 



De, , ⊥De, ), as well as both 
DTI metrics (FA, mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) and DKI metrics (MK, 
axial kurtosis [AK], RK).

Tract-based spatial statistics (TBSS). Voxel-wise analyses were performed to reveal possible correlations 
between working memory subtest scores and the diffusion parametric maps by using the standard procedure of 
tract-based spatial statistics (TBSS)67. With TBSS, all subjects’ FA maps were registered to a FA template (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) and voxel-wise statistics were performed on FA values projected onto 
the study-specific WM skeleton by looking for maximum local values perpendicular to the skeleton. All other 
parametric maps underwent the same transformations and processes. The tract skeleton was thresholded at FA 
of 0.2 for DTI and DKI metrics and at FA of 0.4 to restrict analysis to WM regions consisting of single-fiber ori-
entations for WMTI metrics, as recommended25,57. Statistical tests were conducted using the permutation-based 
nonparametric analysis routine ‘randomise’ with 10000 iterations; the design matrix was set up for the correlation 
analysis with covariates (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM). The results were corrected for multiple com-
parisons using threshold free cluster enhancement (TFCE) in TBSS.

Statistical Analysis. Spearman rank correlation was performed to assess the association of the DS and LNS 
test scores with age and length of education.

For TBSS analysis, age and sex were included as covariates. Statistical threshold level of p < 0.05 (corrected for 
multiple correction) was used. Spearman’s partial rank correlation coefficients were also calculated for regions on 
the skeleton with corrected p < 0.05, adjusted for age and sex using MATLAB R2017a.

References
 1. Diamond, A. Executive functions. Annu Rev Psychol 64, 135–168, https://doi.org/10.1146/annurev-psych-113011-143750 (2013).
 2. Baddeley, A. Working memory: looking back and looking forward. Nat Rev Neurosci 4, 829–839, https://doi.org/10.1038/nrn1201 (2003).
 3. Conway, A. R., Kane, M. J. & Engle, R. W. Working memory capacity and its relation to general intelligence. Trends Cogn Sci 7, 

547–552, https://doi.org/10.1016/j.tics.2003.10.005 (2003).
 4. Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends 

in Cognitive Sciences 17, 391–400, https://doi.org/10.1016/j.tics.2013.06.006 (2013).
 5. Malenka, R., Nestler, E. & Hyman, S. In Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 313–321 (McGraw-

Hill Medical, 2009).
 6. Wingfield, A., Stine, E. A. L., Lahar, C. J. & Aberdeen, J. S. Does the capacity of working memory change with age. Exp Aging Res 14, 

103–107, https://doi.org/10.1080/03610738808259731 (1988).
 7. Goldman-Rakic, P. S. Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6, 348–357, https://doi.

org/10.1176/jnp.6.4.348 (1994).
 8. Sandry, J. Working memory and memory loss in neurodegenerative disease. Neurodegener Dis Manag 5, 1–4, https://doi.

org/10.2217/nmt.14.51 (2015).
 9. Sandry, J., Chiou, K. S., DeLuca, J. & Chiaravalloti, N. D. Individual differences in working memory capacity predicts responsiveness 

to memory rehabilitation after traumatic brain injury. Arch Phys Med Rehabil 97, 1026–1029 e1021, https://doi.org/10.1016/j.
apmr.2015.10.109 (2016).

 10. Soria-Pastor, S. et al. Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 124, 
e1161–1170, https://doi.org/10.1542/peds.2009-0244 (2009).

 11. Sanfilipo, M. P., Benedict, R. H. B., Sharma, J., Weinstock-Guttman, B. & Bakshi, R. The relationship between whole brain volume 
and disability in multiple sclerosis: A comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 
26, 1068–1077, https://doi.org/10.1016/j.neuroimage.2005.03.008 (2005).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM
http://dx.doi.org/10.1146/annurev-psych-113011-143750
http://dx.doi.org/10.1038/nrn1201
http://dx.doi.org/10.1016/j.tics.2003.10.005
http://dx.doi.org/10.1016/j.tics.2013.06.006
http://dx.doi.org/10.1080/03610738808259731
http://dx.doi.org/10.1176/jnp.6.4.348
http://dx.doi.org/10.1176/jnp.6.4.348
http://dx.doi.org/10.2217/nmt.14.51
http://dx.doi.org/10.2217/nmt.14.51
http://dx.doi.org/10.1016/j.apmr.2015.10.109
http://dx.doi.org/10.1016/j.apmr.2015.10.109
http://dx.doi.org/10.1542/peds.2009-0244
http://dx.doi.org/10.1016/j.neuroimage.2005.03.008


www.nature.com/scientificreports/

6SciEntiFic RepORTS |  (2018) 8:3175  | DOI:10.1038/s41598-018-21428-4

 12. Wang, L. et al. Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain 
cortical thickness mapping and diffusion tensor imaging. Am J Neuroradiol 30, 893–899, https://doi.org/10.3174/ajnr.A1484 (2009).

 13. Shi, F., Liu, B., Zhou, Y., Yu, C. & Jiang, T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s 
disease: Meta-analyses of MRI studies. Hippocampus 19, 1055–1064, https://doi.org/10.1002/hipo.20573 (2009).

 14. Olesen, P. J., Nagy, Z., Westerberg, H. & Klingberg, T. Combined analysis of DTI and fMRI data reveals a joint maturation of white and 
grey matter in a fronto-parietal network. Brain Res Cogn Brain Res 18, 48–57, https://doi.org/10.1016/j.cogbrainres.2003.09.003 (2003).

 15. Klingberg, T. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44, 
2171–2177, https://doi.org/10.1016/j.neuropsychologia.2005.11.019 (2006).

 16. Darki, F. & Klingberg, T. The role of fronto-parietal and fronto-striatal networks in the development of working memory: a 
longitudinal study. Cereb Cortex 25, 1587–1595, https://doi.org/10.1093/cercor/bht352 (2015).

 17. Schulze, E. T. et al. Anatomical correlates of age-related working memory declines. J Aging Res 2011, 606871, https://doi.
org/10.4061/2011/606871 (2011).

 18. Bathelt, J., Gathercole, S. E., Johnson, A. & Astle, D. E. Differences in brain morphology and working memory capacity across 
childhood. Dev Sci. https://doi.org/10.1111/desc.12579 (2017).

 19. Takeuchi, H. et al. Verbal working memory performance correlates with regional white matter structures in the frontoparietal 
regions. Neuropsychologia 49, 3466–3473, https://doi.org/10.1016/j.neuropsychologia.2011.08.022 (2011).

 20. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J 
Magn Reson B 111, 209–219, https://doi.org/10.1016/j.jmr.2011.09.022 (1996).

 21. Jensen, J. H. & Helpern, J. A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23, 698–710, 
https://doi.org/10.1002/nbm.1518 (2010).

 22. Bester, M. et al. Non-Gaussian diffusion MRI of gray matter is associated with cognitive impairment in multiple sclerosis. Mult Scler 
21, 935–944, https://doi.org/10.1177/1352458514556295 (2015).

 23. Falangola, M. F. et al. Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and 
Alzheimer’s disease. Magn Reson Imaging 31, 840–846, https://doi.org/10.1016/j.mri.2013.02.008 (2013).

 24. Grossman, E. J. et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J 
Neurotrauma 29, 2318–2327, https://doi.org/10.1089/neu.2011.1763 (2012).

 25. Fieremans, E., Jensen, J. H. & Helpern, J. A. White matter characterization with diffusional kurtosis imaging. Neuroimage 58, 
177–188, https://doi.org/10.1016/j.neuroimage.2011.06.006 (2011).

 26. Guglielmetti, C. et al. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced 
demyelination and spontaneous remyelination. Neuroimage 125, 363–377, https://doi.org/10.1016/j.neuroimage.2015.10.052 (2016).

 27. Falangola, M. F. et al. Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced 
corpus callosum demyelination. NMR Biomed 27, 948–957, https://doi.org/10.1002/nbm.3140 (2014).

 28. Jelescu, I. O. et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated 
by electron microscopy. Neuroimage 132, 104–114, https://doi.org/10.1016/j.neuroimage.2016.02.004 (2016).

 29. Kelm, N. D. et al. Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains. Neuroimage 124, 612–626, 
https://doi.org/10.1016/j.neuroimage.2015.09.028 (2016).

 30. Jelescu, I. O. et al. One diffusion acquisition and different white matter models: how does microstructure change in human early 
development based on WMTI and NODDI? Neuroimage 107, 242–256, https://doi.org/10.1016/j.neuroimage.2014.12.009 (2015).

 31. Fieremans, E. et al. Novel white matter tract integrity metrics sensitive to Alzheimer disease progression. Am J Neuroradiol 34, 
2105–2112, https://doi.org/10.3174/ajnr.A3553 (2013).

 32. Benitez, A. et al. White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer’s disease. 
Neuroimage Clin 4, 64–71, https://doi.org/10.1016/j.nicl.2013.11.001 (2014).

 33. Hui, E. S. et al. Stroke assessment with diffusional kurtosis imaging. Stroke 43, 2968–2973, https://doi.org/10.1161/STROKEAHA. 
112.657742 (2012).

 34. Grossman, E. J. et al. N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI. Neuroimage 
118, 334–343, https://doi.org/10.1016/j.neuroimage.2015.05.061 (2015).

 35. Golestani, A. et al. Constrained by our connections: white matter’s key role in interindividual variability in visual working memory 
capacity. J Neurosci 34, 14913–14918, https://doi.org/10.1523/JNEUROSCI.2317-14.2014 (2014).

 36. Lazar, M. Working memory: how important is white matter? The Neuroscientist 23, 197–210, https://doi.org/10.1177/1073858416634298 
(2017).

 37. Wechsler, D. Wechsler Adult Intelligence Scale. Fourth edn, (Pearson Assessment, 2008).
 38. Crowe, S. F. Does the letter number sequencing task measure anything more than digit span? Assessment 7, 113–117, https://doi.

org/10.1177/107319110000700202 (2000).
 39. Frick, A., Wahlin, T. B. R., Pachana, N. A. & Byrne, G. J. Relationships between the national adult reading test and memory. 

Neuropsychology 25, 397–403, https://doi.org/10.1037/a0021988 (2011).
 40. Thomason, M. E. et al. Development of spatial and verbal working memory capacity in the human brain. J Cogn Neurosci 21, 

316–332, https://doi.org/10.1162/jocn.2008.21028 (2009).
 41. Chechlacz, M., Gillebert, C. R., Vangkilde, S. A., Petersen, A. & Humphreys, G. W. Structural variability within frontoparietal 

networks and individual differences in attentional functions: an approach using the theory of visual attention. J Neurosci 35, 
10647–10658, https://doi.org/10.1523/JNEUROSCI.0210-15.2015 (2015).

 42. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754, https://
doi.org/10.1038/nature02466 (2004).

 43. Novikov, D. S. & Fieremans, E. Relating extracellular diffusivity to cell size distribution and packing density as applied to white 
matter. ISMRM 20th annual meeting & exhibition, Melbourne, Australia. In Proc. Intl. Soc. Mag. Reson. Med. 20. p.1829, (2012).

 44. Cheung, M. M. et al. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. 
Neuroimage 45, 386–392, https://doi.org/10.1016/j.neuroimage.2008.12.018 (2009).

 45. Hartline, D. K. & Colman, D. R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17, R29–R35, 
https://doi.org/10.1016/j.cub.2006.11.042 (2007).

 46. Peters, B. D. et al. Age-related differences in white matter tract microstructure are associated with cognitive performance from 
childhood to adulthood. Biol Psychiatry 75, 248–256, https://doi.org/10.1016/j.biopsych.2013.05.020 (2014).

 47. Jito, J. et al. Maturational changes in diffusion anisotropy in the rat corpus callosum: comparison with quantitative histological 
evaluation. J Magn Reson Imaging 28, 847–854, https://doi.org/10.1002/jmri.21496 (2008).

 48. Wisdom, N. M., Mignogna, J. & Collins, R. L. Variability in Wechsler Adult Intelligence Scale-IV subtest performance across age. 
Arch Clin Neuropsychol 27, 389–397, https://doi.org/10.1093/arclin/acs041 (2012).

 49. Kessels, R. P., Molleman, P. W. & Oosterman, J. M. Assessment of working-memory deficits in patients with mild cognitive 
impairment and Alzheimer’s dementia using Wechsler’s Working Memory Index. Aging Clin Exp Res 23, 487–490, https://doi.
org/10.1007/BF03325245 (2011).

 50. Economou, A. Memory score discrepancies by healthy middle-aged and older individuals: the contributions of age and education. J 
Int Neuropsychol Soc 15, 963–972, https://doi.org/10.1017/S1355617709990580 (2009).

 51. Wang, M. et al. Neuronal basis of age-related working memory decline. Nature 476, 210–213, https://doi.org/10.1038/nature10243 
(2011).

http://dx.doi.org/10.3174/ajnr.A1484
http://dx.doi.org/10.1002/hipo.20573
http://dx.doi.org/10.1016/j.cogbrainres.2003.09.003
http://dx.doi.org/10.1016/j.neuropsychologia.2005.11.019
http://dx.doi.org/10.1093/cercor/bht352
http://dx.doi.org/10.4061/2011/606871
http://dx.doi.org/10.4061/2011/606871
http://dx.doi.org/10.1111/desc.12579
http://dx.doi.org/10.1016/j.neuropsychologia.2011.08.022
http://dx.doi.org/10.1016/j.jmr.2011.09.022
http://dx.doi.org/10.1002/nbm.1518
http://dx.doi.org/10.1177/1352458514556295
http://dx.doi.org/10.1016/j.mri.2013.02.008
http://dx.doi.org/10.1089/neu.2011.1763
http://dx.doi.org/10.1016/j.neuroimage.2011.06.006
http://dx.doi.org/10.1016/j.neuroimage.2015.10.052
http://dx.doi.org/10.1002/nbm.3140
http://dx.doi.org/10.1016/j.neuroimage.2016.02.004
http://dx.doi.org/10.1016/j.neuroimage.2015.09.028
http://dx.doi.org/10.1016/j.neuroimage.2014.12.009
http://dx.doi.org/10.3174/ajnr.A3553
http://dx.doi.org/10.1016/j.nicl.2013.11.001
http://dx.doi.org/10.1161/STROKEAHA.112.657742
http://dx.doi.org/10.1161/STROKEAHA.112.657742
http://dx.doi.org/10.1016/j.neuroimage.2015.05.061
http://dx.doi.org/10.1523/JNEUROSCI.2317-14.2014
http://dx.doi.org/10.1177/1073858416634298
http://dx.doi.org/10.1177/107319110000700202
http://dx.doi.org/10.1177/107319110000700202
http://dx.doi.org/10.1037/a0021988
http://dx.doi.org/10.1162/jocn.2008.21028
http://dx.doi.org/10.1523/JNEUROSCI.0210-15.2015
http://dx.doi.org/10.1038/nature02466
http://dx.doi.org/10.1038/nature02466
http://dx.doi.org/10.1016/j.neuroimage.2008.12.018
http://dx.doi.org/10.1016/j.cub.2006.11.042
http://dx.doi.org/10.1016/j.biopsych.2013.05.020
http://dx.doi.org/10.1002/jmri.21496
http://dx.doi.org/10.1093/arclin/acs041
http://dx.doi.org/10.1007/BF03325245
http://dx.doi.org/10.1007/BF03325245
http://dx.doi.org/10.1017/S1355617709990580
http://dx.doi.org/10.1038/nature10243


www.nature.com/scientificreports/

7SciEntiFic RepORTS |  (2018) 8:3175  | DOI:10.1038/s41598-018-21428-4

 52. Hasan, K. M. et al. Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor 
imaging. Neuroreport 18, 1735–1739, https://doi.org/10.1097/WNR.0b013e3282f0d40c (2007).

 53. Hasan, K. M. et al. Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain 
Res 1227, 52–67, https://doi.org/10.1016/j.brainres.2008.06.030 (2008).

 54. Bach, M. et al. Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage 100, 358–369, https://doi.
org/10.1016/j.neuroimage.2014.06.021 (2014).

 55. De Santis, S., Drakesmith, M., Bells, S., Assaf, Y. & Jones, D. K. Why diffusion tensor MRI does well only some of the time: Variance 
and covariance of white matter tissue microstructure attributes in the living human brain. Neuroimage 89, 35–44, https://doi.
org/10.1016/j.neuroimage2013.12.003 (2014).

 56. Szczepankiewicz, F. et al. Variability in diffusion kurtosis imaging: impact on study design, statistical power and interpretation. 
Neuroimage 76, 145–154, https://doi.org/10.1016/j.neuroimage.2013.02.078 (2013).

 57. Jensen, J. H., McKinnon, E. T., Glenn, G. R. & Helpern, J. A. Evaluating kurtosis-based diffusion MRI tissue models for white matter 
with fiber ball imaging. NMR Biomed 30, https://doi.org/10.1002/nbm.3689 (2017).

 58. Novikov, D. S., Veraart, J., Jelescu, I. O. & Fieremans, E. Mapping orientational and microstructural metrics of neuronal integrity 
with in vivo diffusion MRI. arXiv:1609.09144v1 [physics.bio-ph] (2016).

 59. Lampinen, B. et al. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using 
spherical tensor encoding. Neuroimage 147, 517–531, https://doi.org/10.1016/j.neuroimage.2016.11.053 (2017).

 60. Reisert, M., Kellner, E., Dhital, B., Hennig, J. & Kiselev, V. G. Disentangling micro from mesostructure by diffusion MRI: A Bayesian 
approach. Neuroimage 147, 964–975, https://doi.org/10.1016/j.neuroimage.2016.09.058 (2017).

 61. Veraart, J., Fieremans, E. & Novikov, D. S. Universal power-law scaling of water diffusion in human brain defines what we see with 
MRI. arXiv:1609.09145v1 [physics.bio-ph] (2016).

 62. Setsompop, K. et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced 
g-factor penalty. Magn Reson Med 67, 1210–1224, https://doi.org/10.1002/mrm.23097 (2012).

 63. Holland, D., Kuperman, J. M. & Dale, A. M. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo 
Planar Imaging. Neuroimage 50, 175–183, https://doi.org/10.1016/j.neuroimage.2009.11.044 (2010).

 64. Veraart, J., Fieremans, E. & Novikov, D. S. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 1582–1593, 
https://doi.org/10.1002/mrm.26059 (2016).

 65. Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 76, 
1574–1581, https://doi.org/10.1002/mrm.26054 (2016).

 66. Collier, Q., Veraart, J., Jeurissen, B., den Dekker, A. J. & Sijbers, J. Iterative reweighted linear least squares for accurate, fast, and 
robust estimation of diffusion magnetic resonance parameters. Magn Reson Med 73, 2174–2184, https://doi.org/10.1002/mrm.25351 
(2015).

 67. Smith, S. M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505, 
https://doi.org/10.1016/j.neuroimage.2006.02.024 (2006).

Acknowledgements
This work was supported in part by grant funding from the National Institutes of Health (NIH): R01 NS039135-
11 and R21 NS090349, National Institute for Neurological Disorders and Stroke (NINDS). This work was also 
performed under the rubric of the Center for Advanced Imaging Innovation and Research (CAI2R, www.cai2r.
net), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183).

Author Contributions
S.C. and X.W. processed and analyzed MRI data. E.F. and D.S.N. provided a set of diffusion image-processing 
tools. N.E.K. and J.F.R. performed and oversaw working memory testing, scoring and norming, and wrote parts 
of the manuscript text. C.J.M. recruited research participants and consent them. S.C. and Y.W.L. wrote the main 
manuscript text and prepared figures. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1097/WNR.0b013e3282f0d40c
http://dx.doi.org/10.1016/j.brainres.2008.06.030
http://dx.doi.org/10.1016/j.neuroimage.2014.06.021
http://dx.doi.org/10.1016/j.neuroimage.2014.06.021
http://dx.doi.org/10.1016/j.neuroimage2013.12.003
http://dx.doi.org/10.1016/j.neuroimage2013.12.003
http://dx.doi.org/10.1016/j.neuroimage.2013.02.078
http://dx.doi.org/10.1002/nbm.3689
http://dx.doi.org/10.1016/j.neuroimage.2016.11.053
http://dx.doi.org/10.1016/j.neuroimage.2016.09.058
http://dx.doi.org/10.1002/mrm.23097
http://dx.doi.org/10.1016/j.neuroimage.2009.11.044
http://dx.doi.org/10.1002/mrm.26059
http://dx.doi.org/10.1002/mrm.26054
http://dx.doi.org/10.1002/mrm.25351
http://dx.doi.org/10.1016/j.neuroimage.2006.02.024
http://www.cai2r.net
http://www.cai2r.net
http://creativecommons.org/licenses/by/4.0/

	Working Memory And Brain Tissue Microstructure: White Matter Tract Integrity Based On Multi-Shell Diffusion MRI

	Results

	Discussion

	Methods

	Study Population. 
	MRI Acquisition. 
	Working Memory Assessment. 
	Image Analyses. 
	Diffusion image processing. 
	Tract-based spatial statistics (TBSS). 

	Statistical Analysis. 

	Acknowledgements

	Figure 1 (A) Tract-based spatial statistics (TBSS) results showing significantly positive correlations between axonal water fraction (AWF) and WAIS-IV letter-number sequencing (LNS) test z-scores.
	Figure 2 Scatter plots showing significant correlations.
	Table 1 WAIS-IV working memory subtests scaled/z-scores (N = 15), and their correlation p-values with age and length of education.




