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Abstract

Introduction: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and
mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based
and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a
problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for
measuring both area and volumetric mammographic density from processed images.

Methods: The data set used in this study comprises raw and processed images of the same view from 1462 women. We
developed two algorithms for processed images, an automated area-based approach (CASAM-Area) and a volumetric-based
approach (CASAM-Vol). The latter method was based on training a random forest prediction model with image statistical
features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three
methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known
genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast
cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association
analysis was based on 1011 control subjects.

Results: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p,0.025 for
breast cancer risk and p,161026 for rs10995190). After adjusting for one of the measures there remained little or no
evidence of residual association with the remaining density measures (p.0.10 for risk, p.0.03 for rs10995190).

Conclusions: Our results show that it is possible to obtain reliable automated measures of volumetric and area
mammographic density from processed digital images. Area and volumetric measures of density on processed digital
images performed similar in terms of risk and genetic association.
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Introduction

A mammogram is normally used for detection of breast cancers,

either in screening or as part of a clinical work up procedure. In

recent years there has been intensive research into the information

contained in a mammogram in terms of its value in assisting the

prediction of breast cancer risk. Breast tissue density is reflected in

the amount of fibroglandular tissue that exists in the breast which

appears in mammograms as bright areas. The proportion of the

total breast area classified as dense tissue is known as percent

density (PD) and has been shown to be a strong determinant of

breast cancer risk [1,2], independently of other established risk

factors.

The classical analog mammogram is essentially a film-based

projection of the breast which is mechanically scanned in and

digitized (i.e., conversion from analog to digital). For digitized

analog images there exists a gold-standard for measuring area

density, Cumulus [3]. Although it has been widely used in a

research context, its use is not feasible on very large studies or in
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the clinical setting due to it being semi-automated, i.e., user

assisted. We have previously developed an automated procedure

which mimics this measure [2] and has been validated and used in

research [4,5]. These area-based measures of mammographic

density do not take into account the thickness of the dense tissue

and rely on a flat two-dimensional projection. Volumetric density

can be calculated from screen-film images if a physical phantom,

for machine calibration, is placed on the machine’s plate at time of

mammography, and if acquisition parameters (APs) are recorded.

For analog images, a few studies comparing area- and volumetric-

density, in terms of breast cancer risk association, have been

reported. Their conclusions, however, differ. Boyd et al. [1] found

that measurement of the volume of breast tissue did not improve

prediction of breast cancer risk as compared to that using an area-

based measure. Aitken et al. [6] concluded that area percent

density is a stronger predictor of breast cancer risk than the

volumetric method SMF (version 2.2ß), whilst Shepherd et al. [7]

concluded that volumetric measures of breast density are better

predictors of breast cancer risk than percent dense area.

Recent years have seen a shift from analog to full-field digital

mammography (FFDM), in which images are acquired directly

with high quality. FFDM images are produced in a raw format

which gets altered digitally to yield better visualisation. Both for
processing (raw) and for presentation (processed) images occupy a

large memory size. Typically only processed images are stored in

the PACS (picture archiving and communication system) [8].

Although there are now FDA cleared algorithms for determining

volumetric density on raw digital mammograms, there are few

algorithms that measure mammographic density on processed

images; that is, the images normally used in clinical settings.

Software that needs the raw data (such as computer-aided

detection and volumetric breast density algorithms) processes

and then deletes the data [9]. Although the semi-automated

Cumulus (area-based) approach has been shown to yield

correlated area density measurements from raw and processed

images [10–13], automating the unification of measurements of

processed digital images is a more complicated task than it is on

their raw counterparts, owing to the fact that the procedure of

processing raw images is not standardised and varies widely by

mammography machine vendors who keep the details of their

algorithms undisclosed. To use retrospective data sets for

mammographic image studies there is a need for algorithms

which work well on processed data.

In this article we assess the feasibility of measuring PD from

processed FFDM images. We do this using a study in which both

raw and processed FFDM images have been collected prospec-

tively. Our approach to volumetric density measurement is based

on mimicking Volpara, an FDA cleared algorithm for measuring

volumetric density on raw digital mammograms, by combining

information on spatial features and acquisition related tags.

Additionally, we developed a fully automated approach to

measuring area-based density in processed digital images. We

compare measurements derived from processed images using our

approaches to those obtained from Volpara on corresponding

FFDM raw images, directly and in terms of association with breast

cancer risk and with the genetic variant, rs10995190. All of these

comparisons are important and it can even be argued that

calibrating density measures against a genetic variant is preferable

to using disease status [14]. We also study the importance of

individually extracted image textural features on breast cancer risk

and the genetic variant. To the best of our knowledge this is the

first article to compare volumetric and area based density on

FFDM images in terms of their association with breast cancer risk

or a genetic variant for breast cancer/mammographic density.

Moreover, we believe that this work forms the first attempt to

generate volumetric mammographic density from processed

FFDM images without the need for a calibration reference

phantom.

Materials and Methods

Main study population
All women included in the current study participate in the

Karolinska Mammography cohort (KARMA) study (http://

karmastudy.org/), which is a prospective cohort study that was

initiated in January 2011 and comprises women attending

mammography screening or clinical mammography at four

hospitals in Sweden. Upon study entry, participants donated

blood and filled out a detailed web-based questionnaire. In

addition, permission was asked for storage of both raw and

processed FFDM and linkage to Swedish national registers on

inpatient care and cancer. The main analysis presented in this

article is based on 47 women diagnosed with incident breast

cancer (in KARMA) and 1011 healthy women (in KARMA) with

FFDM images (raw and processed, medio-lateral oblique (MLO)

images) for the GE Medical Systems, model: Senographe Essential

version ADS 53.40 and station name: HBGMG03. For the 1011

healthy women we have genotype data from iCOGs, a custom

illumina iSelect genotyping array designed for replication and fine

mapping of common and rare variants with relevance to breast,

ovary and prostate cancer [15]. We also had access to the same

types of images for an additional 403 healthy women in KARMA

(genotype data is not available for these women). Their images

were used for developing/training our automated volumetric

density measure, CASAM-Vol, to predict Volpara, in a step

carried out prior to performing the analysis which used images

from the 47 and 1011 women. For the 47 women with breast

cancer, all images included in analyses presented here are from the

contralateral breast and were taken prior to diagnosis (but less than

3 years prior to diagnosis). For the 1414 healthy women we

selected the LMLO view of the image.

Questionnaire data
Information on age, BMI, hormone replacement therapy

(HRT) status, reproductive history and other breast cancer risk

factors were collected via a web-based questionnaire at study

entry. Menopausal status was defined according to information on

last year menstruation status, previous oophorectomy and age at

study entry.

Ethics Statement
The Karma study has an ethical committee approval by the

Ethical Committee at Karolinska Institutet (Dnr 2010/958-31/1)

and all participants provided written informed consent.

Measures of PD compared in this study
Volpara (for raw images, version: 1.4.3|3433|). Volpara

is an FDA cleared algorithm for measuring volumetric density on

both 2D medio-lateral oblique (MLO) and 2D cranio-caudal (CC)

raw digital mammograms. The software makes use of the physics

information stored with digital mammograms (the acquisition

parameters) to work backwards from the pixel intensity values in

the raw image to the X-ray attenuation between the pixel and the

X-ray source, and uses the X-ray attenuation of an entirely fatty

region as an internal reference; see [16,17]. Volumetric percent

density is obtained as the ratio of dense volume and breast volume,

where dense volume is obtained by summing the dense thickness

across all pixels in the breast and breast volume is obtained by

Density Estimation in Processed Full-Field Digital Mammograms
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multiplying the breast area by the recorded compressed breast

thickness, with a correction for the breast edge. By design, Volpara

is not extendable to work on processed FFDM or on digitised film

mammogram images. That is, its algorithm assumes that pixel

values are proportional to exposure, which is not the case for

processed images since the pixel values are non-linearly trans-

formed to enhance the contrast [8]. It is important to know that

manufacturers keep the raw-to-processed conversion algorithm

secret. A blind reverse engineering of this conversion is not feasible

due to non-linearity of the transformation which may be also

assisted by some acquisition parameters. Volpara’s generated PD

is measured on a volumetric scale which is lower than that of area-

based PD measures. The approach has recently been demonstrat-

ed to correlate well with density measured from magnetic

resonance imaging (MRI) images [9,16,17] and a visual assessment

method, Breast Imaging-Reporting And Data System (BIRADS)

[17]. We use a natural log transformation of Volpara in all

analyses presented here which results in values being roughly

symmetrically distributed. To date, there have only been a few

other attempts to derive volumetric density measures from FFDM

images. Heine et al. [18], for example, quantified PD from raw

CC images after performing calibration to adjust for inter-image

acquisition technique differences.

CASAM-Area (for processed images). CASAM is an

acronym for Computer Aided Statistical Assessment of Mammo-

grams. The second density measure assessed here is our own

measure of area-based PD on processed mammograms obtained

from directly segmenting the breast and fibro-glandular dense

tissue areas in the two dimensional space. We have carefully

designed our pre-processing steps (of the processed images) in

order to arrive at a reliable PD measurement and thereafter to

extract meaningful statistical features. In the pre-processing phase

we utilised contrast limited adaptive histogram equalization

(CLAHE). CASAM-Area takes the square-root of an area-based

PD measure. It is calculated as

CASAM{Area~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i~1
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j~1
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where m and n are the dimensions of the image I and dense and

breast refer to segmented regions in the image; see the

supplementary material for detailed information about the

method.

CASAM-Vol (for processed images): CASAM-Vol is obtained as

a weighted combination of statistical and morphological features

(measured in processed images) and acquisition related tags, with

weights obtained by training a random forest, an ensemble

learning nonparametric statistical method for classification and

regression developed by Breiman [19], to predict log Volpara

measurements (from raw images). Images for the subset of 403

women were used for training. The acquisition parameters and

statistical/morphological features used for training against Vol-

para are described in more detail below. We used the pre-

compiled MATLAB mex-files [20] to find the optimal value of the

shrinkage tuning parameter in which the number of trees was set

to 500. Weights obtained from the training data set were

subsequently used to produce CASAM-Vol measures, i.e.

predicted values of log Volpara, for the processed images from

the independent subsets of 47 and 1011 women (the test data). The

acquisition parameters, extracted from the image header, which

we used as inputs to the random forest were: KVP, XTC
(ExposureIn mAs/ExposureTime), ExposureTime, X-rayTubeCur-
rent, Exposure, ExposureIn mAs, BodyPartThickness, Log(Expo-
sureIn mAs), (1/BodyPartThickness), log(BodyPartThickness), (1/
ExposureIn mAs), CompressionForce, AnodeTargetMaterial, Re-
lativeXrayExposure and OrganDose. We chose to use the

acquisition parameters (in addition to features measured in

processed images) since they are incorporated into Volpara and

are used in the volumetric percent density measure described by

[1].

The computer-aided procedure for extracting the features

which were used in training CASAM-Vol is described in the

supplementary material (see, Algorithm S1). The algorithm for

pre-processing the processed images was developed to reveal

structures within the breast and to lessen the mal-effect of contrast

intensity fluctuation. After pre-processing each processed image

we segmented the breast region and detected and removed the

pectoral muscle. For intra-breast segmentation, uniform thresh-

olding clearly entails knowledge of the intensity values’ range,

otherwise regions of interests may be missed in the selection

process [21] Ch. 3, p. 94. We used a multi-thresholding approach

as has been used in [2]. To help circumvent the dense-fatty low

contrast issue we apply background subtraction by subtracting the

morphologically open image (with a disk-shaped structuring

element with a radius of 50 pixels) from its original image. We

then applied 7 thresholding methods to obtain cut-offs from which

12 regions within the breast were determined; see Table S2 in the

supplementary material. Finally, a variety of low level and high

level features were evaluated comprising 55 measurements for

each mammogram (in most cases recalculated for each of the 12

regions, resulting in a feature vector of length 489). The 55

measurements are listed in Table S1.

Genetic data
For the subset of women with iCOGs data we used genotypes

for the SNP rs10995190, in the gene ZNF365. This SNP has

been confirmed to be associated with both mammographic density

(p = 9610210) [22] and breast cancer risk (p = 1610236) [15].

Statistical analysis
To evaluate association between each of the automated PD

measures and genotypes of the SNP rs10995190 (coded 0/1/2,

treated as continuous variable), we fitted linear regression models

using PD measures one at a time as outcome variables and carried

out Wald tests. For CASAM-Area we used the square-root

transformation, as in [2,22], to obtain a variable which follows an

approximate normal distribution. For Volpara measurements we

used a logarithm transform since the distribution of the

untransformed measurements are more heavily skewed than the

area based measures. In addition to genotype, each model

included the variables age (in years) and BMI, menopausal status,

HRT use, parity and age at first birth as covariates. We also

carried out similar tests of association for each PD measure

additionally adjusting for the other PD measures (one at a time).

To explore whether the textural features in Table S1, and the

acquisition parameters listed earlier, could be independently

associated with rs10995190 we carried out further association

tests (again by fitting regression models). We first carried out tests

adjusting for age, BMI, menopausal status, HRT use, parity and

age at first birth, and subsequently additionally adjusting for one

other area- or volumetric-PD measure. Each feature was

transformed using a Box-Cox transformation (using the R package

MASS; [23]). –Log10 p-value QQ plots were constructed to

summarise the results of these tests using the R package Haplin

Density Estimation in Processed Full-Field Digital Mammograms
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[24]. We also performed a global test of association testing the null

hypothesis that none of the features are associated with

rs10995190 after adjusting for PD (Volpara), age and BMI. We

first calculated the residuals from fitting regression models with

each feature as an outcome (one at a time) and Volpara, age and

BMI as covariates. To account for the correlation structure of the

features we carried out a permutation (global) test, using as a test

statistic the number of p-values,0.05 from testing association

(using a Wald test from a linear regression model) between the

residuals and genotypes. We first did this for the observed data and

for 10,000 data sets with the genotypes permuted. To obtain our

global p-value we compared the value of our global test statistic

from the observed data to the distribution of the test statistic from

the permuted data sets.

In addition to the genetic association analyses described above

we studied the association between the density measures and

breast cancer. After combining the data from the subsets of 47 and

1011 women, we evaluated the association between case-control

status and the different PD measures using unconditional logistic

regression (case/control status as dependent variable and each of

the features as the independent variable). As well as adjusting for

all potential confounders (used in the genetic analysis), we also

carried out analyses with partial adjustment (for age and BMI). We

did this because of the small number of cases and to avoid over-

adjustment. Finally, we carried out tests of association for each PD

measure adjusting for each of the other measures (one at a time)

and tested for association with the textural features in Table S1

(using unconditional logistic regression).

R (version 2.13.0) was used for data management, statistical

analyses and graphics [25]. All reported tests are two-sided. All of

the models were adjusted for age, BMI, menopausal status, HRT

use, parity and age at first birth.

Results

Characteristics of the women and their mammographic images,

included in each of the data subsets are described in Table 1. No

significant differences between the genetic association (control)

data set and the cases were observed for the APs, Volpara,

CASAM-Area and CASAM-Vol. Differences in age, menopausal

status and HRT use were observed but these factors were adjusted

for in the case-control analysis (below).

We developed/trained our measure of volumetric density (for

processed digital images) using the subset of (raw and processed)

images for the 403 women. We also measured area PD in their

processed images. Scatter plots of these two sets of measurements

against Volpara measurements from corresponding raw images for

this training data set are shown in Figure 1 (a). The Pearson

correlation coefficients between Volpara and CASAM-Area, and

between Volpara and CASAM-Vol, were 0.77 and 0.91,

respectively.

We then examined the correlation between our measures of PD

from processed digital images with Volpara PD measurements

(taken from corresponding raw FFDM images), in the subset of

1011 healthy women; see Figure 1 (b). The Pearson correlation

coefficients between Volpara and CASAM-Area, and between

Volpara and CASAM-Vol, were 0.84 and 0.91, respectively. From

both the training (n = 403) and test (n = 1011) data sets plots, we

can assert that it is possible to obtain a reliable volumetric

mammographic density from processed images based on predict-

ing Volpara values. Although CASAM-Area and Volpara

measures differ conceptually, the correlation between them was

observed to be fairly strong (r = 0.84).

We next assessed the association between the SNP rs10995190
and each of the automated PD measures, using our test data sets.

All three automated PD measures were associated with

rs10995190, after adjusting for age, BMI, menopausal status,

HRT use, parity and age at first birth (p,161026); see Table 2.

As soon as one measure of density was adjusted for, the other

measures were, at best, weakly associated with rs10995190. There

was some evidence that the area and volumetric based approaches

complement each other, but only to a very small extent; p = 0.036

for the Volpara – rs10995190 association, after adjusting for

CASAM-Area, and p = 0.047 for the CASAM-Area –

rs10995190 association after adjusting for Volpara. CASAM-

Vol (from processed images) appeared to mimic well Volpara

(from raw images) (p = 0.079 for the test of ‘‘residual’’ association

in Table 3).

We next evaluated association between each of the statistical/

textural features and each of the percent density measures. The

QQ-plot in Figure 2 (a) shows that the features, as a whole, are

strongly associated with rs10995190 without adjusting for a

measure of PD (i.e. with standard adjustment for age, BMI,

menopausal status, HRT use, parity and age at first birth). After

adjusting additionally for Volpara, there remained some evidence

of association (Figure 2 (b)). The QQ plots summarising associ-

ation tests based on adjusting instead for CASAM-Area (Figure 2

(c)) and CASAM-Vol (Figure 2(d)), were similar to those based on

adjusting for Volpara. Since the association tests summarised by

the QQ-plots are correlated (many of the features and APs are

correlated), for the tests based on adjusting for Volpara, we carried

out a permutation test of a global null hypothesis (none of the

features are associated). We obtained a p-value of 0.047,

suggesting that there is some useful information in the images

which is not captured by Volpara.

Subsequently, we evaluated the association of PD measurements

with cancer risk (case/control status). Table 4 summarises results

from fitting logistic regression models with breast cancer status as

outcome and PD measurements (one at a time) as a covariate,

along with other potential confounders.

After adjusting for one measure of PD, none of the other

measures were significantly associated with case-control status (p.

0.10; Table 5). We tested for association with each of the features

listed in Table S1, and each of the APs. The QQ plot summarising

the tests which adjusted for Volpara, showed no evidence of

association (i.e., no significant deviation from the 45o line) between

the features/APs and case-control status (data not shown).

Discussion

We found the CASAM-based mammographic density measure-

ments to be associated with breast cancer status and rs10995190
(ZNF365), with amount of evidence similar to that found for

volumetric measure in raw images (Volpara), suggesting that it is

possible to measure density in an automated fashion using

processed FFDM images. The p-values from tests of genetic

association for the volumetric and area measures were observed to

be similar. We found some evidence to suggest that area and

volumetric measures of density can complement each other. Our

case-control analysis, based on 47 cases, was not able to show that

area and volumetric measures of density can complement each

other in risk prediction probably due to lack of power. If this can

be shown, statistics integrating area and volumetric density should

be developed (see [14]). For risk prediction, larger studies are

needed to address whether volumetric approaches to breast

density measurement in two-dimensional digital images can offer

gains over standard area-based measures. Even for analog images

Density Estimation in Processed Full-Field Digital Mammograms
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it is unclear whether volumetric approaches are markedly better

than area approaches [26]. Shepherd et al. [7], however, used

digitized film mammograms (275 cases and 825 controls) matched

for age, ethnicity, and mammography system, assessed three

measures of breast density: PD, fibroglandular volume, and

percent fibroglandular volume, and did conclude that volumetric

measures of breast density provide more accurate predictors of

breast cancer risk than area-based PD.

Approaches for measuring volumetric PD are typically based on

calibrating a model against a phantom. Heine et al. used a balloon

filled up with water (mimicking the fatty region in a breast) and oil

(mimicking the dense region) [27]. Boyd et al. created plastic

phantoms representing a range of combinations of fat/fibrogland-

ular tissue to calculate the volumetric percentage density [1]. They

based their study on digitized analog films (16 machines in 7

different locations in Canada), all images were CCs (364 cases/656

controls). Breast thickness was recorded under different compres-

sion forces along with the thickness read by the machine. Their

hypothesis was that the breast thickness reported by a mammog-

raphy machine needs correction since compression is such that the

two used plates will not be perfectly parallel. Additional

corrections for exposure and processing were made using a step

wedge included in each image. The authors concluded, however,

that measurement of the volume of breast tissue, based on utilising

APs, in two-dimensional images, did not improve prediction of

breast cancer risk over area-based measures. Other researchers

have also compared volumetric and area-based measures of PD in

two-dimensional images. Ding et al. [28] carried out a large case-

control study comprising 634 cases with 1,880 age-matched

controls. They used the standard mammography form (SMF)

technique to verify the association of the volume of breast density

with risk of breast cancer and to compare these measurements

with Cumulus readings. SMF uses information about the thickness

of the compressed breast, tube voltage and exposure time, to

estimate the breast tissue volumes. These volumes were associated

with breast cancer risk but less strongly so than the measured area

Table 1. Key characteristics of individuals included in this study (mean (s.d) or n (%)).

Data used for
developing CASAM-
Vol (n = 403)

Data used for genetic
association study (*)
(n = 1011)

Cases used for case-
control study (n = 47)

P-value (y), (**)(comparing
columns 3&4 data sets)

Age 55.93 (9.12) 53.52 (9.45) 58.59 (8.43) ,0.001

BMI 25.12(4.17) 25.92 (4.46) 25.67 (4.27) 0.710

Postmenopausal 0.003

No 148 (37) 508 (50) 33 (69) -

Yes 240 (60) 477 (47) 14 (29) -

HRT use 0.041

Never 241 (60) 707 (70) 35 (73) -

Past 102 (25) 204 (20) 6 (13) -

Current 30 (7) 42 (4) 6 (13) -

Parity and age at first birth 0.286

Nulliparous 49 (12) 101(10) 9 (19) -

Parity #2 and age at first birth #25 95 (24) 250 (25) 13 (27) -

Parity #2 and age at first birth .25 131(33) 380 (38) 16 (33) -

Parity .2 and age at first birth #25 78 (19) 154 (15) 7 (15) -

Parity .2 and age at first birth .25 35 (9) 99 (10) 2 (4) -

Acquisition Parameters (APs)

KVP 29.11 (1.17) 29.44 (1.07) 29.34 (1.13) 0.332

XTC 68.73 (14.75) 66.28 (12.40) 68.57 (14.76) 0.184

ExposureTime 721 (252.86) 819 (316) 767 (293) 0.230

XRayTubeCurrent 68.12 (14.66) 65.68 (12.39) 68.14 (14.82) 0.175

Exposure 47.42 (13.40) 52.59(18.03) 50.37 (15.89) 0.390

ExposureInMicroAs 47403 (13388) 52574 (18023) 50353(15844) 0.377

BodyPartThickness 58.53 (14.53) 61.43 (14.03) 59.02 (14.04) 0.232

AnodeTargetMaterial 0.823 (0.38) 0.884 (0.32) 0.823 (0.38) 0.195

RelativeXrayExposure 4748 (1746) 5426 (2280) 5116 (2025) 0.329

OrganDose 0.010 (0.0022) 0.011 (0.0031) 0.011 (0.0027) 0.277

CompressionForce 102 (29.69) 101 (30) 106 (27.99) 0.209

Volpara (raw) 2.01 (0.56) 2.01 (0.58) 2.12 (0.60) 0.159

CASAM-Area (Processed) 4.58 (1.02) 4.57 (1.03) 4.78 (1.01) 0.160

CASAM-Vol (Processed) 2.01 (0.49) 2.01 (0.50) 2.08 (0.51) 0.393

(*) Also used as controls in the case-control study. (y) Wald test p-values (logistic regression, unadjusted). (**) LR tests for menopausal status, HRT use and parity.
doi:10.1371/journal.pone.0110690.t001
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PD (note that Volpara represents an improved version of SMF

[13]).

It is possible that the density measures studied in the paper are

unable to capture every aspect of density completely. This is

supported, in our data, by the fact that the association between

rs10995190 and statistical/textural features does not completely

disappear after adjusting for these PD measures. No single feature

sticks out from the others in terms of its association with

rs10995190 and furthermore it is difficult to interpret individual

statistical/textural features in mammographic images [29–31].

The features could relate directly to some biological change in

breast composition but, on the other hand, these features could be

capturing some aspect of the X-ray energy that is a proxy for

breast composition or dense tissue thickness.

It is clear from Figure 1 that CASAM-Area has a narrower

range of values than the conventional area-based methods. This is

Figure 1. Correlation between Volpara and our PD measurements from processed mammograms: (a) Scatter-plots of our PD
measurements (processed mammograms) and Volpara (raw mammograms) measurements for the training sample of GE
mammograms from 403 women (b) scatter-plots of our PD measurements and Volpara measurements for the test sample of GE
mammograms from 1011 women with genotype information.
doi:10.1371/journal.pone.0110690.g001

Table 2. Effect estimates for rs10995190 on automated measures of mammographic density.

Outcome Estimate (95%CI) p-value

Volpara (raw) –0.138(–0.191, –0.085) 461027

CASAM-Area (Processed) –0.254(–0.353, –0.155) 661027

CASAM-Vol (Processed) –0.113(–0.158, –0.068) 961027

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for the SNP in linear regression models with PD measures as outcomes,
adjusting for potential confounding variables (n = 1011).
doi:10.1371/journal.pone.0110690.t002
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an inevitable phenomenon since the algorithm encompasses the

use of a histogram equaliser called contrast limited adaptive

histogram equalization (CLAHE). Applying CLAHE to the

mammogram images has significantly increased the accuracy of

our algorithm in picking up the dense region within the breast

area. This was helpful because CLAHE’s underlying algorithm,

which is well adopted in medical imaging field, uses a sophisticated

adaptive process to enhance image contrast without any saturation

occurrences. The reason behind CASAM-Area’s lower PD range

in Figure 1 being truncated is that CLAHE operation increases

the signal-to-noise ratio while highlighting dim structures, in our

case that refers to blood vessels in a fatty breast which are classified

by our algorithm as dense tissue as one can easily identify by

examining Figure S1 (b). On the other hand, the truncation shown

in CASAM-Area’s upper PD range in Figure 1 could be due to the

fact that in a very dense breast, the dense region can be optically

exaggerated; making it difficult to distinguish the real dense area

border because of the fuzzy gradient contour that arise from an

optical occurrence known as the point spread function. By virtue

of the properties of CLAHE, the effect of the point spread function

Table 3. p-values assessing the association of the automated measures of mammographic density with rs10995190 (after
additional adjustment for one other density measure) (n = 1011).

Outcome variable Variables adjusted for

Standard(*) Standard + Volpara Standard + CASAM-Area (Processed) Standard + CASAM- Vol

Volpara 461027 - 0.036 0.079

CASAM-Area (Processed) 661027 0.048 - 0.147

CASAM-Vol (Processed) 961027 0.198 0.282 -

(*) adjusting for age, BMI, menopausal status, HRT use, parity and age at first birth.
doi:10.1371/journal.pone.0110690.t003

Figure 2. –log10 QQ plots for p-values assessing the association between the investigated features (Table S1 and APs) and
rs10995190. (a) with adjustment for age, BMI, menopausal status, HRT use, parity and age at first birth. (b) with adjustment as in (a), plus Volpara. (c)
with adjustment as in (a), plus CASAM-Vol. (d) with adjustment as in (a), plus CASAM-Area.
doi:10.1371/journal.pone.0110690.g002
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is greatly diminished. We believe that our pre-processing and

segmentation steps are important for the success of our algorithm,

which is why we describe these key steps in some technical details

in the supplementary material to provide clarity and to ease

replication.

Inclusion of the analysis of association using the genetic variant

is a strength of the analysis because case-control association

analysis of mammographic images is theoretically susceptible to

bias, if there are differences in mammography machines used

between cases and controls [14]. For calibrating density measures,

it may be better to use genetic variants of mammographic density

and breast cancer risk than breast cancer status.

Volpara is cleverly designed to reproduce the volume of breast

composition from a 2D projection with high accuracy. However, it

works only on raw images and for processed digital images there is

no established fully-automated method for measuring density.

Although the medical and scientific community are slowly picking

up on the value of storing raw images, there are, to date, huge

archives of processed digital images which stand to benefit from

retrospective assessment of mammographic density for epidemi-

ologic research. Until prospective studies with data from raw

images mature, interim measures such as those described in this

article could play a vital role in research.

The results of our association analyses using processed FFDM

images were similar to those using raw FFDM images, suggesting

that processed images may be viable for large-scale epidemiologic

research. In this manuscript we have studied three automated

measures of mammographic density. The images included here

have not been read by a subjective or semi-automatic method. We

note, however, that we find that the association between Volpara

and Cumulus (an established percent density semi-automatic

method) has previously been reported to be high [13] and that

Volpara has also been shown to be strongly associated with MRI

density measurements (r = 0.93) [9]. Quantra (an earlier version of

Volpara) has been shown to be associated with the BIRADS

classification (89.0% correct classification) [32], and in another

recent study Volpara density classification and radiologist’s

BIRADS showed a positive strong correlation (r = 0.87; p,

0.001) [33].

We expect that the PD measures for processed FFDM images,

presented here, will perform consistently for mammograms taken

from GE machines. There will, however, inevitably be some

variability across different vendor machines due to discrepancies in

raw-to-processed conversion algorithms. To address this issue, in

cohorts comprising mammograms from different vendor ma-

chines, it may be necessary to retrain CASAM-Vol to mimic

Volpara on each specific machine. Note that CASAM-Vol is

Table 4. Effect estimates for automated measures of mammographic density on case-control status, n = 1058 (Cases 47, Controls
1011).

Covariate Estimate (95%CI) p-value

(a)

Volpara(raw) 0.978 (0.300, 1.660) 0.005

CASAM-Area (Processed) 0.483 (0.112, 0.862) 0.012

CASAM-Vol (Processed) 0.926 (0.124, 1.730) 0.023

(b)

Volpara(raw) 0.961 (0.239, 1.706) 0.010

CASAM-Area (Processed) 0.467 (0.071, 0.879) 0.023

CASAM-Vol (Processed) 0.813 (–0.041, 1.691) 0.065

Point estimates, interval estimates and p-values (Wald tests) are based on estimated coefficients for PD in logistic regression models with case-control status as
outcome. (a) with partial adjustment (age and BMI), (b) with full adjustment (age, BMI, menopausal status, HRT use, parity and age at first birth).
doi:10.1371/journal.pone.0110690.t004

Table 5. p-values assessing the (residual) association between automated measures of mammographic density and case-control
status (after adjustment for one other density measure).

Covariates Variables adjusted for

Standard Standard + Volpara Standard + CASAM-Area (Processed) Standard + CASAM- Vol

(a)

Volpara 0.005 - 0.479 0.823

CASAM-Area (Processed) 0.012 0.162 - 0.960

CASAM-Vol (Processed) 0.023 0.088 0.235 -

(b)

Volpara 0.010 - 0.529 0.561

CASAM-Area (Processed) 0.023 0.172 - 0.769

CASAM-Vol (Processed) 0.065 0.054 0.158 -

(a) with partial adjustment (age and BMI), (b) with full adjustment (age, BMI, menopausal status, HRT use, parity and age at first birth) (n = 1058).
doi:10.1371/journal.pone.0110690.t005
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constructed from features which include various acquisition

parameters that are also exploited by Volpara and are X-ray

system dependent (i.e., are not affected by the raw-to-processed

conversion algorithm). We expect that CASAM-Vol can mimic

Volpara with similar accuracy across different machines. Brand et
al. [34] have shown that there are only small differences in

distributions of Volpara measurements across different vendor

machines. It will therefore probably not be crucial (but it could still

be wise) to adjust for machine in case/control or genetic

association analyses based on CASAM-Vol. CASAM-Area is

more likely, than CASAM-Vol, to be affected by raw-to-processed

conversion variability. Like all threshold based methods in the

literature, CASAM-Area is image intensity dependent. This

intensity is greatly manipulated in an unpredictable way by the

raw-to-processed conversion algorithms. For CASAM-Area it will

be important to adjust for machines when fitting statistical models

in studies incorporating multiple mammography machines.

Supporting Information

Figure S1 Pre-processing of mammograms: (a) original
mammograms, (b) pseudo-colour generation after ap-
plying the horizontal and vertical cropping, (c) the
positive signal in the Q (x,y) colour space (Q (x,y).0),
detecting the reddish area (d) convex hull of the negative
(c), (e) the final extracted breast mask, and (f) breast
region after applying the contrast limited adaptive
histogram equalization (CLAHE).
(TIF)

Table S1 The derived statistical and textural features.

(DOC)

Table S2 The table depicts the twelve different regions
used in our approach from which features in Table S1
are derived.

(DOC)

Algorithm S1 A detailed description of the underlying
algorithm for mammography image processing and
segmentation.

(DOCX)

Data S1 Data for Analyses is an Excel CSV file
containing the data set we used in this study.

(CSV)

File S1 RCode is a text file which accesses the ‘‘Data for
Analyses’’ file to regenerate our results.

(TXT)
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