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Electrocardiogram lead selection
for intelligent screening of patients
with systolic heart failure

Yu-An Chiou?, Jhen-Yang Syu?, Sz-Ying Wu?, Lian-Yu Lin*, Li TzuYi®, Ting-Tse Lin%3*>! &
Shien-Fong Lin%2**

Electrocardiogram (ECG)-based intelligent screening for systolic heart failure (HF) is an emerging
method that could become a low-cost and rapid screening tool for early diagnosis of the disease
before the comprehensive echocardiographic procedure. We collected 12-lead ECG signals from 900
systolic HF patients (ejection fraction, EF <50%) and 900 individuals with normal EF in the absence

of HF symptoms. The 12-lead ECG signals were converted by continuous wavelet transform (CWT)

to 2D spectra and classified using a 2D convolutional neural network (CNN). The 2D CWT spectra of
12-lead ECG signals were trained separately in 12 identical 2D-CNN models. The 12-lead classification
results of the 2D-CNN model revealed that Lead V6 had the highest accuracy (0.93), sensitivity (0.97),
specificity (0.89), and f1 scores (0.94) in the testing dataset. We designed four comprehensive scoring
methods to integrate the 12-lead classification results into a key diagnostic index. The highest quality
result among these four methods was obtained when Leads V5 and V6 of the 12-lead ECG signals were
combined. Our new 12-lead ECG signal-based intelligent screening method using straightforward
combination of ECG leads provides a fast and accurate approach for pre-screening for systolic HF.

Heart failure (HF) is a prevalent cardiovascular condition and a considerable public health problem!?. Half of
the patients with HF have systolic cardiac contractile dysfunction, which is usually confirmed by ejection frac-
tion (EF) measured with echocardiography®. Although the echocardiographic diagnosis of systolic HF is precise,
this modality is relatively time-consuming and costly in comparison with electrocardiography*. By contrast, a
12-lead electrocardiogram (12-lead ECG) is a convenient and inexpensive tool that provides comprehensive
information on cardiac electrical dynamics. Consequently, its use is highly desirable for the early screening of
suspected systolic HE.

In recent years, artificial intelligence (AI) has been widely used in the medical field>°. Numerous AI ECG-
based feature detection approaches have been employed, such as the use of artificial neural networks?, image
classification-based convolutional neural networks (CNNs)’, time-relative recurrent neural networks®, and the
unsupervised method’. Along with the rapid development of Al, studies on using ECG signals to prescreen for
specific diseases based on Al algorithms are evolving rapidly. Crucial research on systolic HF combine 12-lead
ECG for classification was markedly progressed. However, a single ECG lead or combination of leads primarily
drove accuracy of EF discrimination is unknown. In this study, we applied the continuous wavelet transform
(CWT) to convert the 1D-ECG signals to 2D spectra for 2D-CNN classification. The contribution of individual
ECG leads to the classification result was evaluated, and a comprehensive scoring method was designed to
improve outcomes.

Methods

Dataset. This study was approved by the Research Ethics Committee for Human Subject Protection,
National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan (IRB number:108-073-E), and each
person enrolled were all over 18 years old and gave written informed consent to participate. All authors confirm
that all the experiments were performed in accordance with relevant guidelines and regulations. Two datasets
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Figure 1. Data selection flowchart. A total of 900 patients with systolic HF were included in the study. For
comparison, 900 age-matched individuals without systolic HF were included in the research. After ECG
preprocessing, noisy data and data with ECG splitting errors were excluded. The remaining 700 patients with
systolic HF and the corresponding individuals without HF were combined into one dataset. These data were
then separated into groups of 1260 for training data, 140 for validation data, and 186 for testing data.

were used in this study. One included 1090 systolic HF patients with an EF of <50%. The other included 10,000
individuals with an EF of >50% and without HF symptoms. The EF was measured by echocardiography per-
formed by cardiologists, and 12-lead ECG data were acquired at clinics or during hospitalization. Both datasets
were provided by National Taiwan University Hospital, Hsinchu and Biomedical Park Branch. The 12-lead ECG
data of all participants were obtained within one week after echocardiography identified their left ventricular EF
(LVEF) greater than 50% or not. Each 12-lead ECG recording was from a single participant, without duplication.

Patient selection. The patient selection process is presented in Fig. 1. Among the 1090 patients with
reduced EF, 12-lead ECG data with excessive noise were excluded from this research. ECG data with excessive
noise was attributed to interferences from baseline wander, power line interference, electromyography noise, and
R peak detection error. Examples of noise illustrations were shown in Fig. 2. Excessive noise in the ECG signal
resulted in a splitting error. Splitting errors may generate an atypical waveform map, which could mislead our
model for finding EF features. Thus, such ECG signals were excluded from our study. The remaining 12-lead
ECG data for 900 patients with systolic HF was used as the patient training dataset. The corresponding 900 age-
matched and EF-normal individuals were selected from the dataset with 10,000 individuals from health exami-
nation. Information for the patients with systolic HF and the individuals without HF are presented in Table 1. A
total of 214 individuals were excluded due to having ECG data with signal splitting errors. A total of 186 testing
data were randomly selected from the remaining 772 patients with systolic HF and 814 individuals without HE
The data of the systolic HF patients and the individuals without HF (total 1400) were randomly separated into
two groups: 90% of data were used for training (n=1260) and 10% of data were used for validation (n=140).
All patient’s original EF values were measured with echocardiograph. The systolic HF patient (EF <50%) and
individuals without systolic HF (EF > 50%) were divided in two classes, and compared to the AI prediction class.

Electrocardiogram extraction. The flow chart for the whole experiment, including ECG extraction,
CWT, and 2D-CNN classification, is depicted in Fig. 3. Because the 12-lead ECG data were recorded as a JPG
image, the ECG signals had to be extracted from the image. The extraction procedure involved processing the
JPG image through image binarization and signal extraction to obtain pure ECG signals. Then, the ECG image
was cut vertically into four parts, followed by searching for black pixels on each of three vertical line to recon-
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Figure 2. Signals with excessive ECG noise, such as R peak detect error, electromyogram noise, baseline
wandering and power line artifact, were excluded from our study. These ECG signals are severely affected by
noise and therefore cannot be processed to obtain the correct ECG compound. They were excluded from our
research to avoid misleading the neural network model during training.

struct the original ECG signal. The reconstructed ECG signal was then normalized and calibrated. Each ECG
line was cut between two R peaks to obtain three small segments, and the middle segment was selected as the
single-beat ECG compound. This procedure generated 12 single-lead ECG compounds for further processing.
The details of the ECG extraction process are demonstrated in Fig. 4.

Continuous wavelet transform. The 12-lead ECG signals were transformed by CWT to 2D spectra.
Wavelet transform can be used to analyze time series in different frequencies that contain nonstationary power.
In this research, Daubechies CWT (db8) was used to transform the ECG signals because it has a favorable bal-
ance between time and frequency localization. The CWT and Daubechies wavelet formulas are shown in Egs. (1)
and (2).
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Systolic HF patients | Individuals without HF
Number 900 900
Male 630 417
Female 270 483
Age (years) 69.3+14.6 71.4+13.7
Height (cm) 162.1£9.7 158.9+10.3
Weight (kg) 61 (76-51) 66 (52-83)
LVEF (%) 34 (24-42) 61 (54-76)
LVEDD (mm) 53 (46-61) 43 (39-51)
LVESD (mm) | 46 (42-56) 31 (24-40)
iVS (mm) 9 (6-13) 8 (6-12)
PWD (mm) 11 (8-14) 9 (7-12)
E/A (ratio) 0.740.5 1.1+04

Table 1. Information on individuals with and without systolic HE.

CWT equation:

CWTY(z,5) = % /x(t)xlf*<t_%)dt (1)

Daubechies equation:
) 1+ edoNP
Hy () = V2 <+%) R(e) @

In the CWT Eq. (1), tand s correspond to the translation and scale parameters, respectively. y(t) is the
transforming function, which also represents the mother wavelet. Matlab CWT toolbox was employed in the
CWTs. In the Daubechies Eq. (2), p represents a vanishing moment'’. The Matlab wavelet toolbox was used for
the implementation of these two equations.

CNN structure. The neural network programming was based on the Python and Keras application program-
ming interfaces. The 2D-CNN structure was modified from the Visual Geometry Group (VGG) network® for
the 12-lead ECG CWT spectra classification. The 12-lead ECG CWT spectra were first resized to 200 x 200 x 3
pixels and then passed to the 2D-CNN as inputs. A 14-layer 2D-CNN was constructed with 6 convolution layers,
6 max-pooling layers, 1 flatten layer and 1 dense output layer with softmax function. The rectified linear unit,
batch normalization, and dropout functions were used after each convolution layer was applied. Binary cross-
entropy was defined as the loss function. An Adam optimizer was employed as the learning guide for 2D-CNN
learning, and its learning rate was set as 10™. For detailed 2D-CNN structure and hyperparameter information,
please refer to Tables S1 and S2. In this research, the 12-lead ECG spectra were separately passed to 12 identical
2D-CNNGs.

Comprehensive 12-lead ECG scoring.  The comprehensive 12-lead ECG scoring method is based on the
2D-CNN output layers with a softmax formula, which is displayed in Eq. (3).

S() = <= fori=1,...]
ZeyJ (3)

j

The logits vector from the 2D-CNN flatten layer proceeds through the softmax layer, the output class prob-
ability score of i(yi), and the class probability score summation [ ¢¥i (for j from 0 to 1)]°. In our research, the
12-lead ECG CWT spectra were separately passed to 12 2D-CNNs, which generated 12 probability scores in
the individual without HF class. The 12 probability scores were employed in our comprehensive 12-lead ECG
scoring method.

This method integrates 12 scores into one key diagnostic index for detecting systolic HE. V5, and V6 are the
three ECG leads physically closest to the left ventricle, and they may have more relevance to EF detection than
other ECG leads. Also, the Leads I result shows higher accuracy (82%) than Lead II and Lead III, so this lead
had been considered in our comprehensive method. The scores from these three leads were selected in our com-
prehensive scoring method. The four types of scoring method were designed to obtain four diagnostic indices.
The first one is the average value of the 12-lead output score, named “12-lead with equal weighting;” the second
index is the average of three crucial lead scores, Leads I, V5, and V6, named “Lead I, V5, and V67; the third
index is the average value of Lead I and V6 scores, named “Lead I and V6;” and the fourth index is the average
value of the V5 and V6 scores, named “V5 and V6. The 12 output prediction scores from 12 neural network
softmax layers were summed and used the cutoft value of 0.5. If the summation score is greater than or equal to
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Figure 3. Illustration of the research process employed in this study. The first step was to extract the ECG signal
from the JPG images. The second step was to transform each single-lead ECG signal into CWT spectra. In the
final step, the spectra were trained separately in 12 models for the 12-leads, and the softmax layer output scores
(ranging from 0 to 1) were recorded and applied for the comprehensive scoring method. Four comprehensive
scoring methods were considered, including one where equal weights were given to the 12-leads and the key
leads close to the left ventricle (Leads I, V5, and V6).
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Figure 4. 12-lead ECG signal preprocessing. Details are provided in seven steps. Before converting the 12-lead
ECG images into the signal, it was necessary to confirm the target area of the ECG signal and then crop the
region containing the ECG image and transform the RGB image into a grayscale image. Image binarization
could convert the color of the signal and background into black or white. Then, the pixel bits of each lead signal
were regarded as coordinates: X, regarded as time, and Y, regarded as relative size, were independently accessed.
The squares on the 12-lead ECG images were used as the basis for determining the length of time required to
reconstruct the original signal. Finally, the interpolated signal was used to compare the relative position of the
pixel to the time required to reconstruct the electrical signal and the signal’s size.
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Training
set Validation | Testing set
(n=1260) | set (n=140) | (n=186) P value

Female, n
(%)

Age, years | 70.5+£10.9 | 69.7£11.0 |70.2+11.1 |0.46

629 (49.9) | 59 (42.1) 65 (34.9)

Age
group,n | - - - -
(%)
<40 40 (3.2) 7 (5.0) 10 (5.4) -
40-49 72 (5.7) 8(5.7) 14 (7.5) -

50-59 275(21.8) |34(242) |42(226) |-
60-69 373(29.6) |41(29.3) |49(264) |-
70+ 500 (39.7) |50(358) |71(38.1) |-
MeanEF |323+4.6 |31.8+48 |326+34 |025
Diabetes | 467 (37.0) | 54(38.5) |69 (37.1) | 0.11

Hyperlipi-

doper 545(432) | 64(45.7) |79(42.4) |0.26
Hyperten- | (1) (48.5) |71(507) |82(441) | 0.09
sion

Renal 189 (15.0) |20 (14.3) |31(16.6) |0.23
disease . - . -
Myo-

cardial | 462 (36.7) |51(364) |73(39.2) |0.16
infarction

Table 2. Characteristics of the training, validation, and testing sets.

0.5, the individual EF is in the normal range (2 50%). By contrast, a summation score below 0.5 indicates that
the individual has low EF (<50%).

Statistical method. Descriptive continuous data were presented as mean + standard deviation if normal
distributed or otherwise as median/IQR. Ejection fraction measured by echocardiography were compared
with comprehensive scoring and 12-lead 2D-CNN scoring predictions using accuracy, sensitivity, specificity,
and f1 score formulas. These formulas can be used to evaluate the predictive capability of the 12-lead ECG,
2D-CNN model as well as the true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) rates!!. These formulas are written as follows: accuracy= (TP + TN)/(TP + TN + FP + FN), sensitivity = TP/
(TP +EN), specificity =TP/(TP + FN), precision =TP/(TN + FP), recall=TP/(TP + FN) and f1 score = (2 x preci-
sion x recall)/(precision + recall).

The receiver operating characteristic curve (ROC) was used as an evaluation method in this study. The ROC
curve is a common analysis method for evaluating deep learning models. Using ROC curves, the graphical display
of true positives (as the y-axis) versus false positives (as the x-axis) can be observed and compared directly. The
area under the ROC curve (AUC) represents the equivalent of the probability when randomly selecting a sample.
The classifier ranks a randomly chosen positive sample higher than a randomly chosen negative sample. The
AUC value ranges between 0 and 1, and if the AUC value is in the range of 0.5 < AUC < 1, it means the classifier
has more effective predicting ability than random guesses'2.

Results

Systolic HF prediction results. The 12-lead ECG data of the 900 HF patients and the 900 individuals
without HF were transformed into CWT spectra. The baseline data of individuals with and without systolic HF
are listed in Table 1. Furthermore, Table 2 presents the characteristics of the training, validation, and testing sets.
In the testing dataset (n=186), the mean LVEF was 32.6 +3.4%, and 73 (39.2%) patients had myocardial infarc-
tion, 82 (44.1%) had hypertension, and 69 (37.1) had diabetes. Those values were similar to those in the train-
ing dataset (LVEF =32.3 4.6, p=0.25; myocardial infarction 36.7%, p=0.16; hypertension 48.5%, p=0.09, and
diabetes 37.0%, p=0.11). Figure 5 illustrates the original ECG data from the JPG image and the CWT spectra.
The CWT spectra can concentrate the unobvious ECG linear features into 2D image, which can enhance specific
features of HF for machine learning classification. Also, the tenfold cross validation had been applied to our
model, and demonstrated that the V6 had the highest average accuracy of 89.07% (Table S3).

Systolic HF prediction results for individual leads. A total of 1400 ECG training data and 186 ECG
testing data were used in this study. The accuracy, sensitivity, specificity, and f1 score of the test dataset are
revealed in Table 3. The ECG results for individual ECG leads were favorable for the classification of patients
with systolic HE Each lead had accuracy ranging from 0.71 to 0.93. In particular, lead V6 exhibited the highest
accuracy (0.93), specificity (0.97), and f1 score (0.94). The full results are presented in Table 3A.
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Figure 5. Illustration for the CWT of the 12-lead ECG. The original image of the ECG JPG file and CWT
spectra were showed.

Scientific Reports|  (2021) 11:1948 | https://doi.org/10.1038/s41598-021-81374-6 natureresearch



www.nature.com/scientificreports/

Accuracy Sensitivity Specificity Flscore

(A) 12-lead ECG each lead

aVF 0.80 0.78 0.82 0.81
aVR 0.77 0.82 0.72 0.80
aVL 0.84 0.96 0.70 0.87
Lead I 0.82 0.89 0.74 0.85
Lead II 0.80 0.83 0.77 0.82
Lead III 0.71 0.75 0.67 0.74
Vi 0.77 0.79 0.76 0.79
V2 0.81 0.76 0.87 0.81
V3 0.76 0.93 0.56 0.81
V4 0.80 0.85 0.74 0.82
V5 0.81 0.88 0.73 0.84
A 0.93 0.97 0.89 0.94
Average 0.80 0.85 0.75 0.83

Accuracy Sensitivity Specificity flscore

(B) 12-lead ECG comprehensive scoring method

12-lead with equal weight | 0.88 0.96 0.79 0.90
Lead I+V5+V6 0.90 0.94 0.84 0.91
LeadI+V6 0.93 0.97 0.90 0.95
V5+V6 0.94 0.97 0.89 0.94

Table 3. 2D-CNN classification results. (A) reveals the results of the 12-lead ECG scoring methods. (B)
presents the results of four comprehensive 12-lead ECG scoring methods.

ROC analysis and comprehensive scoring results. The ROC curve of our 12-lead ECG (with individ-
ual lead results) and comprehensive scoring results are detailed in Fig. 6. In Fig. 6A, the individual lead 2D-CNN
models reveal AUC values between 0.76 and 0.96. Figure 6B reveals that the four AUC values for comprehensive
scoring are between 0.96 and 0.98; these are higher than for any individual leads. The purpose of the compre-
hensive 12-lead ECG scoring method is to obtain one precise diagnostic index for systolic HF classification from
12 CNN models. Thus, the four comprehensive scoring methods were designed. The comprehensive scoring
method’s accuracy, sensitivity, specificity, and f1 score are illustrated in Table 3B. The four comprehensive scor-
ing method results include the “12-leads with equal weighting,” “Lead I, V5, and V6,” “Lead I and V6,” and “Lead
V5 and V6. In Table 3B, Lead V5 and V6 reveals the highest accuracy of 0.94, sensitivity of 0.97, specificity of
0.89, and an f1 score of 0.94. The four comprehensive scoring methods all showed higher accuracy, sensitivity,
specificity, and f1 score than the average 12-lead ECG results.

Discussion

A pre-screening systolic HF was established in this study. However, prospective testing of this method is still
needed. The novel and comprehensive 12-lead ECG scoring method can achieve higher classification perfor-
mance than individual leads. The individual leads had an average accuracy, sensitivity, and specificity of 0.75
and an f1 score of 0.83. However, the accuracy (0.94), specificity (0.97), sensitivity (0.89), and f1 score (0.94) all
improved when the comprehensive 12-lead ECG scoring method was used.

In the individual lead results, V6 had higher accuracy than the other 11 leads. The screening results revealed
that V6 was the representative lead of the 12-leads for pre-screening patients for systolic HE. This might be
because V6 is the lead physically closest to the left ventricle. In comprehensive scoring, the four methods all
had high classification capability. Among them, V5 and V6 had better classification capability than the other
comprehensive scoring methods. In the ROC curve, the comprehensive scoring method exhibited significantly
improved AUC compared with the AUC of the 12 individual leads. Therefore, V6 single lead and the compre-
hensive scoring method can be highly effective for screening patients for systolic HE

In previous EF prediction research, many studies used ECG features and physiological parameters to predict
EF". However, by restricting the ECG features in the method, researchers may have ignored other important
features. A previous study applied Al for predicting EF using the entire 12-lead ECG signal as a matrix and feed-
ing into 2D-CNN for EF prediction'*. But the crucial ECG leads were not identified.

In many ECG AI studies, researchers used 1D-CNN to classify ECG signals, such as for atrial fibrillation
classification*!*. We compare 1D and 2D-CNNss in this study by establishing three simple 1D-CNN models and
applied the 1D-CNN structure of the two papers on our dataset'®!” (Tables S4-S7). According to the above com-
parison, our 2D-CNN shows the highest accuracy in predicting systolic heart failure compared to the other three
1D-CNN models. Although such a result may be limited by the amount of training data, it still reveals that the
2D-CNN model may perform better than the 1D-CNN models when classifying using a single ECG compound.

Another study applied ECG CWT in a 2D-CNN for atrial arrhythmia detection but also focused on only
one lead feature'®. These studies have revealed that ECG CWT is a powerful tool for identifying abnormal ECG
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Figure 6. The ROC curves were presented. (A) presents a comparison of the 12-lead results for each lead and
(B) presents the comprehensive scoring method results.

features. In our research, all ECG leads were used to expand all ECG features to the 2D-CNN to enhance the
systolic HF classification capability. A key lead, useful for pre-screening patients for systolic HF, was identified
by separately training the 12-leads in identical 2D-CNN models. The key lead cannot be identified without
training the 12-leads concurrently.

Several ECG features have been used to assess the LV function, and the presence of prolonged QRS duration
is a strong marker for diminished LV systolic function®®. Our study also supported these findings. Under our
algorithm, the widening of QRS and lower QRS amplitude imply the high probability of poor LVEE. As shown
in supplemental Fig. 1, we also found other specific features that suggested poor contractility, including p wave
amplitude, T amplitude and ST interval, which were also the possible indicators for poor LV contractility?*-.
Our Al-assisted algorithm could combine those features and assess the possibility of LVEF of <50% with good
accuracy. On the other hand, our algorithm aimed to screen patients with reduced LVEF (LVEF < 50%) by using
only 12-lead ECG, which is low-cost and easily-feasible. In many rural areas and developing countries, the dif-
ficult access to cardiologic care and imaging could cause under-diagnosis and treatment for heart failure. Our
algorithm by converting 12-lead ECG to 2D images rather than raw data provides a portable, inexpensive test for
ventricular systolic dysfunction. The early diagnosis of left ventricular dysfunction could permit early institution
of effective therapies, such as beta-blockers, angiotensin receptor antagonists and implantable devices. Along
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with the smartphone-enable electrodes, the single-lead ECG could be acquired by using mobile applications.
Our algorithm could also be incorporated into those applications to assess the ventricular function.

Study limitation. The limitations of this research are deficiencies for patients with systolic HF and noise in
all ECG data. For future studies to further improve screening accuracy, it is imperative to collect training data
from hospitals to enhance the dataset continually. The new data can be used to improve our model’s perfor-
mance. Furthermore, ECG signals should be kept clear and noise-free to prevent ECG slicing issue. Also, in this
study, the prevalence of disease in our study cohort does not reflect prevalence in the general population. Thus,
further research is needed to assess the utility of the given cutoffs in a general, ostensibly healthy population. At
last, our dataset excluded patients with heart failure symptoms but with normal left ventricular systolic function.
Therefore, heart failure patients with preserved LVEF may not be identified by using our algorithm.

Conclusion

In this research, we revealed that ECG CWT spectra can expand all ECG features for 2D-CNN classification.
With the comprehensive 12-lead ECG scoring method, systolic HF screening obtained an accuracy of over 0.94
in Lead V5 and V6 and an AUC of 0.98 in Lead I and V6. In addition, we found that the V6 lead is vital for
detecting systolic HE. Overall, this study provided an effective and accurate screening method for predicting
cardiac contractile dysfunction using 12-lead ECG images.
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