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A discovery about the positional 
distribution pattern 
among candidate homologous 
pixels and its potential application 
in aerial multi‑view image 
matching
Ka Zhang1,2,3,4,5*, Wen Xiao6,7, Yehua Sheng1,2,3,4*, Junshu Wang1,2,3,4,7,  
Shan Zhang1,2 & Longjie Ye1,2

In aerial multi-view photogrammetry, whether there is a special positional distribution pattern 
among candidate homologous pixels of a matching pixel in the multi-view images? If so, can this 
positional pattern be used to precisely confirm the real homologous pixels? These problems have not 
been studied at present. Therefore, the study of the positional distribution pattern among candidate 
homologous pixels based on the adjustment theory in surveying is investigated in this paper. Firstly, 
the definition and computing method of pixel’s pseudo object-space coordinates are given, which can 
transform the problem of multi-view matching for confirming real homologous pixels into the problem 
of surveying adjustment for computing the pseudo object-space coordinates of the matching pixel. 
Secondly, according to the surveying adjustment theory, the standardized residual of each candidate 
homologous pixel of the matching pixel is figured out, and the positional distribution pattern among 
these candidate pixels is theoretically inferred utilizing the quantitative index of standardized 
residual. Lastly, actual aerial images acquired by different sensors are used to carry out experimental 
verification of the theoretical inference. Experimental results prove not only that there is a specific 
positional distribution pattern among candidate homologous pixels, but also that this positional 
distribution pattern can be used to develop a new object-side multi-view image matching method. 
The proposed study has an important reference value on resolving the defects of existing image-side 
multi-view matching methods at the mechanism level.

Extracting information of ground objects such as shape, position, size and relationship from images is a hot 
research topic in the fields of geosciences and computer vision1–4. Especially in geographic information science, 
aerial photogrammetry has become the main technique of 3D geospatial information collection because of its 
advantages of low-cost, large coverage and high efficiency5,6. In the process of 3D geospatial information extrac-
tion based on aerial photogrammetry, multi-view image matching is a key step. Homologous pixels of the same 
object in multiple images obtained from this step are fundamental for other technical steps such as automatic 
aerial triangulation7,8, production of geographic information products9–11 and 3D scene reconstruction12–14.
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There are two basic problems in multi-view image matching: one is the matching measure computation, and 
the other is the searching scope identification for confirming the homologous pixel in each searching image15–17. 
The matching measure is the quantitative basis for judging the real homologous pixel from candidate pixels in 
the searching scope, which affects the accuracy and robustness of multi-view image matching. The searching 
scope of the homologous pixel determines how many pixels will be used as candidates in the matching process, 
affecting the reliability and computational efficiency. The existing multi-view image matching studies mainly 
focus on the following aspects: how to enhance the robustness of matching measure computation using pixels’ 
image-side grayscale or feature information; how to use various restriction strategies to reduce the searching 
scope of homologous pixel; and how to optimize the matching process.

In the aspect of matching measure computation, commonly used methods can be divided into two categories 
based on the type of pixels’ attributes utilized in the computing process: grayscale-based models and feature-
based models. The grayscale-based matching measure models use pixels’ image-side grayscale values in red, 
green and blue channels to compute the similarity between two matching windows18. The following functions 
are frequently used in similarity computation, such as sum of squared differences (SSD)19, normalized cross cor-
relation (NCC)20, zero mean normalized cross correlation (ZNCC)21, sum of absolute differences (SAD)22, and 
arithmetic distance23. The feature-based matching measure models will firstly perform a feature transform on 
images, such as scale invariant feature transform (SIFT)24, speeded up robust features transform (SURF)25, Har-
ris transform26, Rank transform27, Census transform28, contourlet and wavelet transform29,30, then use obtained 
feature vectors as attribute values to compute the matching measure. The grayscale-based matching measure 
models have advantages of being simple computation and easy to realize. But they cannot work well in poorly 
or repetitively textured regions of the image such as water bodies and building roofs, and they are also sensi-
tive to factors such as geometric distortions of images, changes of light intensity and contrast. In comparison, 
the feature-based matching measure models have strong adaptability to the changes of geometry and radiation 
among images. But their matching results heavily depend on the quality of feature extraction, which is more 
time-consuming.

In the aspect of defining the searching scope of homologous pixels, current research emphasis is on how to 
use various restriction strategies to reduce the searching scope and decrease the total number of candidate pixels. 
Frequently-used restriction strategies include pyramid hierarchy constraint31, epipolar line constraint32, prior 
object-space knowledge constraint, such as known elevation or DEM33,34, and spatial relation constraint, such 
as disparity continuity35, plane homography36 and geometric invariance37,38. Among abovementioned restric-
tion strategies, except that the epipolar line constraint is generally workable, other constraints are only suitable 
to specific scenes or can be used in certain conditions. For example, the constraint of disparity continuity is not 
valid in disparity fault regions of ground objects (such as edges of buildings). Constraints of plane homography 
and spatial invariance may be invalid due to factors such as shielding relations among objects and geometric 
distortions of objects in the image. Furthermore, these restriction strategies can easily lead to transmission and 
accumulation of mismatched results, and the quality of one pixel’s matching result may be restricted by that of 
its neighbor pixels.

In the aspect of realization and optimization of matching process, according to the different optimizing ways, 
image matching methods can be divided into two types: local matching and global matching39. Local match-
ing methods use the support window centered by the matching pixel to compute the matching cost, and use 
the strategy of “winner take all—WTA” to find the homologous pixels with the minimal cost. Local methods 
have advantages in computation efficiency, so can be used for real-time processing. But they mainly treat the 
matching problem from a local perspective, and are more sensitive to local characteristics of the image, hence 
can easily generate mismatches in the regions with depth discontinuity and occlusion. On the contrast, global 
matching methods use energy minimization to transform the image matching problem into the discrete opti-
mization problem under the constraint of disparity continuity. Energy minimization methods such as dynamic 
programming algorithm40, belief propagation algorithm41,42, graph cut algorithm43 and Markov Random Field 
algorithm44 are often used. The overall matching results of these methods are generally good. However, these 
methods normally need to set many parameters with non-physical meanings, and they have high computational 
cost and poor real-time performance.

In addition, with the booming development of deep learning and its extensive applications in the field of 
geosciences45, deep neural networks are also applied in some stages of image matching to improve the efficiency 
and accuracy of existing matching methods, such as the learning of matching cost46, the learning of the direct 
process from stereopair to disparity map47,48. However, the methods based on neural networks still do not make 
any substantive improvements in the existing matching algorithms in term of the principle. Besides, they have 
the following obvious shortages: the matching performance depends on sufficient training data, and the trained 
neural network is often difficult to obtain the same matching effect when applied to unfamiliar scenes.

Overall, existing image matching methods can all be summarized as image-side methods. They only use 
image-side information (such as grayscale values, feature vectors, relations among pixels, etc.) of pixels in the 
matching window to compute the matching measure and to restrict the searching scope of homologous pixels. 
But the image-side information is not unique or invariable. When this information is used alone, it is difficult to 
construct one certain distinctive feature to accurately express the similarity between pixels, and especially dif-
ficult to precisely confirm the fine searching scope of homologous pixels. Therefore, existing matching methods 
cannot overcome the problem of low robustness of the matching measure caused by the phenomenon of "dif-
ferent spectrum of the same object" or "different objects of the same spectrum" in the image, nor the problem of 
the change of spatial relation among pixels caused by object occlusions and perspective distortions. When these 
methods are applied in difficult matching regions with repetitive or week textures, discontinuous disparity and 
geometric deformation, they manifest drawbacks of low efficiency and poor reliability.
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Furthermore, existing research paid little attention to following questions: whether there is a certain posi-
tional distribution pattern among candidate homologous pixels of the matching pixel in multi-view images? 
How to quantitatively describe this positional distribution pattern? Can this pattern be used to further refine the 
searching scope of candidate homologous pixels, or even to exclusively confirm the homologous pixels during 
multi-view image matching? Thorough investigation of these questions will prospectively enhance the accuracy, 
efficiency and robustness of multi-view image matching from the aspect of matching mechanism, and it has the 
utmost significance in resolving shortcomings of existing image matching methods.

Therefore, this paper proposes a new conception of pseudo object-space coordinates and its computing model, 
which transforms the positional distribution pattern among candidate homologous pixels of a matching pixel 
into a problem of surveying adjustment. On this basis, a new method of studying the positional distribution 
pattern among candidate homologous pixels based on surveying adjustment theory is established, and actual 
aerial multi-view images are used to carry out experiments for verifying the proposed method. It is found that 
there is a specific corresponding relationship between the standardized residuals of candidate homologous pixels 
and the positional distribution pattern among these pixels, and this positional distribution pattern can be used 
to develop a new multi-view image matching method without utilizing the image-side grayscale information.

The remainder of the paper is organized as follows. “Method” section details the principle of the proposed 
method of the positional distribution pattern among candidate homologous pixels. “Experiment and discussion” 
section presents detailed experimental results and discussions. Finally, conclusions and potential future work 
are presented in “Conclusion” section.

Method
General idea.  To study the positional distribution pattern among candidate homologous pixels of the 
matching pixel in multi-view images, the first thing is to transform the problem of seeking homologous pixels 
into a problem of surveying adjustment. As all know, in photogrammetry, although the image-space results of 
multi-view image matching are a group of homologous pixels identified from many candidate pixels in multiple 
target images corresponding to the matching pixel in the reference image, the final aim is to compute the object-
space 3D geospatial coordinates of the ground object using image-space 2D row and column coordinates of the 
homologous pixels. Therefore, considering the fact that the ground object corresponding to the homologous 
pixels has unique object-space 3D coordinates, this paper proposes a new concept of pseudo object-space coor-
dinates to express the object-space information computed with all candidate pixels referring to the conception 
of pseudo distance in GNSS data processing. Based on this new concept, the paper transforms the problem of 
multi-view image matching into a problem of surveying adjustment of pseudo object-space coordinates accord-
ing to the theories of surveying error adjustment.

The diagram of the proposed method is shown in Fig. 1. Firstly, experimental data are prepared as follows: N 
images with known interior and exterior orientation parameters (N ≥ 2 is the total number of multi-view images), 
and one group of real homologous pixels in these images (one pixel is used as the matching pixel). Secondly, 
based on the proposed model of pseudo object-space coordinates, adjustment of the matching pixel’s pseudo 
object-space coordinates is carried out. Thirdly, according to the adjustment results of pseudo object-space 
coordinates, the standardized residual of each candidate pixel in the searching scope of homologous pixels is 
computed. Fourthly, based on the fact that errors in observations will strongly distort the adjustment results, the 
standardized residual is used as a quantitative index to depict the positional feature of each candidate pixel, and 
a theoretical inference about the positional distribution pattern among candidate homologous pixels based on 
the surveying adjustment theory is hypothesized. Lastly, the experimental data are used to draw the curve of the 
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Figure 1.   The general flow diagram of the proposed research.
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relationship between the position of each candidate pixel and its standardized residual for verifying the inference, 
and to further test the application effect of the positional distribution pattern in multi-view image matching.

To describe the subsequent content conveniently, for N (N ≥ 2) multiple images with known interior and 
exterior orientation parameters obtained by automatic aerotriangulation software, one of N images used to pick 
the matching pixel is named as the base image I0, and the remaining N−1 images as searching images I1, …, Ik, …, 
IN-1 (k = 1, 2, …, N−1). Projection centers of the base image and searching images are denoted as S0 and Sk, and 
respective exterior orientation parameters are denoted as (X0, Y0, Z0, φ0, ω0, κ0) and (Xk, Yk, Zk, φk, ωk, κk). The 
row and column numbers of the pixel are denoted as (r, c), and corresponding image plane coordinates are (x, y).

Definition and computation of pseudo object‑space coordinates.  The definition of proposed 
pseudo object-space coordinates is as follows: for a matching pixel p in the base image I0, the 3D coordinates, 
which are calculated with the pixel p and all candidate pixels in the searching scope of its homologous pixels 
in the N−1 searching images, are defined as the pseudo object-space coordinates of the pixel p. Seen from the 
definition, the pseudo object-space coordinates have the form of 3D coordinates (X, Y, Z), but are not true 3D 
coordinates of ground object corresponding to the pixel p, hence named as pseudo coordinates.

The sketch for displaying the relation between a pixel’s real object-space 3D coordinates and its pseudo 
object-space coordinates is shown in Fig. 2. In this figure, the point p represents the matching pixel in the base 
image, and its real homologous pixels in N−1 searching images are denoted as [b1, …, bN−1]. Two endpoints of 
the searching range of homologous pixel in the kth searching image are marked as bk

1 and bk
2 (that are on the 

epipolar line, and the method of confirming which can be referred to in “Analysis of the positional distribution 
pattern among candidate homologous pixels based on the adjustment of pseudo object-space coordinates”), and 
the jth candidate pixel on this epipolar line is labeled as bk

j . Then, the coordinates (XP, YP, ZP) computed by the 
pixel p and its real homologous pixels [b1, …, bN-1] are real object-space 3D coordinates, and the coordinates (XC, 
YC, ZC) computed by the pixel p and all its candidate pixels {[b1

1, …, b1
j, …, b1

2], …, [bN−1
1, …, bN−1

j, …, bN−1
2]} 

in N−1 searching images are pseudo object-space coordinates. In addition, the dashed arrow pointing to the 
pseudo coordinates is used to represent the participated matching pixel and its candidate homologous pixels, 
and the hollow arc on each searching image is used to represent all candidate pixels.

To compute the pseudo object-space coordinates, the method of multi-view forward intersection in photo-
grammetry is used. For the matching pixel p and its Mt =

∑N−1
k=1 Mk candidate homologous pixels in N−1 search-

ing images (Mk is the total number of candidate homologous pixels in the kth searching image Ik), the pseudo 
object-space coordinates of pixel p is computed by the following steps: firstly, the error equation matrix used 
to solve the pseudo object-space coordinates is formed as V = AX − L according to the principle of multi-view 
forward intersection. In this error equation matrix, V is the residual matrix of 2(Mt + 1) image plane coordinates 
(its dimensions are 2(Mt + 1) rows × 1 column); X = [dX, dY, dZ]T is the coordinate corrections matrix of unde-
termined pseudo object-space coordinates (its dimensions are 3 rows × 1 column); A and L are the coefficient 
matrix and the constant matrix (their dimensions are 2(Mt + 1) rows × 3 columns and 2(Mt + 1) rows × 1 column 
respectively), and detailed formulas for computing the elements in each row of A and L can be referred to in any 
photogrammetry textbooks49. Secondly, using the principle of least squares, the error equation matrix is solved 
by equation X = (ATA)−1(ATL) to obtain the corrections (dX, dY, dZ) of the initial coordinates (X0, Y0, Z0). Then, 
the pseudo object-space coordinates (X, Y, Z), of the pixel p, are obtained by add the corrections: X = X0 + dX, 
Y = Y0 + dY and Z = Z0 + dZ.

To be noted, although the computing of pseudo object-space coordinates is based on the principle of multi-
view forward intersection, their computing processes are not identical. In traditional multi-view forward intersec-
tion, only one candidate pixel in each searching image is used in the computing process, and this process needs 
to run iteratively. However, in the computing of pseudo object-space coordinates, all candidate homologous 
pixels in the searching range of each searching image corresponding to the matching pixel are used, and correc-
tions of undetermined coordinates only need to be calculated once. The goal of computing pseudo object-space 
coordinates is not to solve the real object-space 3D coordinates of the matching pixel, but to analyze the posi-
tional distribution pattern among candidate homologous pixels according to the adjustment results of pseudo 
object-space coordinates.

Figure 2.   The relation between pixel’s real object-space 3D coordinates and its pseudo object-space coordinates.
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Analysis of the positional distribution pattern among candidate homologous pixels based on 
the adjustment of pseudo object‑space coordinates.  Seen from above, for a matching pixel in the 
base image, there is a certain correlation between the computation of its pseudo object-space coordinates and 
the multi-view image matching of confirming its homologous pixels. That is, they both need the participation of 
all candidate homologous pixels in the searching range of each searching image. So, the problem of multi-view 
image matching can be transformed into a surveying adjustment problem of pseudo object-space coordinates 
to analyze the positional distribution pattern among candidate homologous pixels in the multi-view images.

Theoretical inference on the positional distribution pattern among candidate homologous pixels.  According to 
the reliability theory of surveying adjustment system50, for n independent observations with a single gross error, 
the standardized residual ωi (i = 1,2,…,n) of each observation after adjustment obeys the normal distribution 
with mean value δ and variance 1, and its distribution is in the shape of a Gaussian bell (shown in Fig. 3a). If 
this theory is applied to the adjustment process of the matching pixel’s pseudo object-space coordinates, and 
the group of real homologous pixels in all candidate pixels corresponding to the matching pixel is seen as one 
“special” gross error, then the problem of multi-view image matching can be regarded as an “special” surveying 
adjustment problem using n independent observations with a single gross error. Therefore, the following theo-
retical inference about the positional distribution pattern among candidate homologous pixels in multi-view 
images is made: after adjustment of pseudo object-space coordinates, the standardized residuals of all candidate 
homologous pixels will also obey one certain distribution pattern, which is in the form of an opposite shape of 
Fig. 3a, like an approximate V-shaped distribution (shown in Fig. 3b).

Computation of standardized residuals for candidate homologous pixels.  Based on the above theoretical infer-
ence, to analyze the positional distribution pattern among candidate homologous pixels of a matching pixel, 
their standardized residuals should be firstly calculated. The computing process is described as follows: (1) For 
matching pixel p, the searching range of its candidate homologous pixels in each searching image is identified 
under the constraint of a predefined elevation range in the object-space; (2) For different searching ranges in 
different searching images, their lengths are refined to a uniform value for uniformly assigning independent 
candidate homologous pixels in different searching images to different groups. (3) The adjustment computation 
of pseudo object-space coordinates of the matching pixel is carried out to obtain the standardized residual of 
each group of candidate homologous pixels.

Determining candidate homologous pixels for the matching pixel based on the constraint of elevation range 
in object space.  As shown in Fig. 4, for matching pixel p in base image I0, its candidate homologous pixels in 
each searching image are determined by the following method under the constraint of object-space approximate 
elevation range.

① According to a priori knowledge interactively input by the operator, the approximate object-space mini-
mum and maximum elevations Zmin and Zmax are assigned to the base image. It is not necessary to be accurate, just 
to ensure that the range [Zmin, Zmax] includes the real elevation of the matching pixel p. Then the ground point P 
corresponding to the pixel p must locate between the line segment PminPmax along the projection line S0P. Utilizing 
the collinearity equation (shown in Eq. (1)), object-space plane coordinates (Xmin, Ymin) and (Xmax, Ymax) of the 
points Pmin and Pmax can be figured out by the image plane coordinates of pixel p and elevations Zmin and Zmax,

where, f is the focal length in the camera’s interior orientation parameters; coefficients (a0
1, a0

2, a0
3; b0

1, b0
2, b0

3; 
c0

1, c0
2, c0

3) are nine direction cosines in the rotation matrix determined by the exterior rotational angles (φ0, 
ω0, κ0) of the base image.

(1)







X = X0 + (Z − Z0)
a01x+a02y−a03f

c01x+c02y−c03 f

Y = Y0 + (Z − Z0)
b01x+b02y−b03f

c01x+c02y−c03 f

Figure 3.   The theoretical inference on the positional distribution pattern among candidate homologous pixels 
in multi-view images according to the surveying adjustment theory.
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② Utilizing the collinearity equation (shown in Eq. (2)), the object-space points Pmin(Xmin, Ymin, Zmin) 
and Pmax(Xmax, Ymax, Zmax) are re-projected onto the kth searching image Ik to obtain the corresponding pixels 
bk

min(xk
min, yk

min) and bk
max(xk

max, yk
max). The homologous pixel pk of the pixel p in the image Ik must locate on the 

line segment bk
minbk

max, which is actually a segment of the homologous epipolar line. The segment bk
minbk

max is 
the searching range of the homologous pixel pk in the image Ik, and all Mk pixels located on bk

minbk
max are con-

sidered as candidate homologous pixels. Next, according to the camera’s interior orientation parameters, row 
and column numbers (rk

min, ck
min) and (rk

max, ck
max) of the points bk

min and bk
max are figured out. Then the linear 

equation of epipolar line bk
minbk

max can be defined, based on which the row and column numbers (rk
i, ck

i) of the 
ith candidate pixel pk

i in the image Ik are obtained (i = 1, 2, …, Mk).

where, coefficients (a1, a2, a3; b1, b2, b3; c1, c2, c3) are nine direction cosines in the rotation matrix determined by 
the exterior rotational angles (φk, ωk, κk) of the kth searching image Ik; (Xk, Yk, Zk) are object-space 3D coordinates 
of the projection center of the image Ik.

In Fig. 4, there are two cases of the form of epipolar line in each searching image, and the linear equation of 
each case is confirmed as follows. In following description, int() is the integral function, abs() is the absolute 
value function, min() is the minimum function, and max() is the maximum function.

a.	 If abs(ck
max − ck

min) ≥ abs(rk
max − rk

min), the epipolar line tends to be horizontal (shown in Fig. 4a), and its 
linear equation is rk

i = κ × ck
i + b. Where, κ and b are respectively the slope and intercept of the line, and are 

computed by equations κ = (rk
max − rk

min)/(ck
max − ck

min) and b = rk
max − κ × ck

max. The range of values of variable 
ck

i is [min(ck
max, ck

min), max(ck
max, ck

min)], and the total number of candidate homologous pixels is computed 
by equation Mk = int(abs(ck

max − ck
min) + 1).

b.	 If abs(ck
max − ck

min) < abs(rk
max − rk

min), the epipolar line tends to be vertical (shown in Fig. 4b), and its 
linear equation is ck

i = κ × rk
i + b. Corresponding slope and intercept of the line are computed by equations 

κ = (ck
max − ck

min)/(rk
max − rk

min) and b = ck
max − κ × rk

max. The range of values of variable rk
i is [min(rk

max, rk
min), 

max(rk
max, rk

min)], and the total number is computed by equation Mk = int(abs(rk
max − rk

min) + 1).

Uniformly grouping candidate homologous pixels in searching images.  As seen from above description, for the 
matching pixel p, the total number Mk of its candidate homologous pixels in each searching image are different. 
Furthermore, different candidate pixels in different searching images are independent from each other, and it is 
difficult to construct any relations among these pixels utilizing their serial numbers. Thus, to analyze the distri-
bution pattern among candidate homologous pixels, the total number of candidate homologous pixels in each 
searching image is unified by the following method, which can uniformly assign independent candidate pixels 
to different groups (the sketch is shown in Fig. 5).

① According to the number of candidate homologous pixels in each searching image, the image with the 
maximal number is used as the main searching image (like image I1 in Fig. 5), and remaining N−2 images are 
named as vice searching image It (t = 2, …, N−1). The total number of candidate homologous pixels in the main 
searching image is labeled as Mz, and its value is computed by the equation Mz = max(Mk |k = 1, 2,…, N−1).

② For the ith candidate pixel b1
i(r1

i, c1
i) on the homologous epipolar line b1

1b1
Mz in the main searching image 

(i = 1, 2,…, Mz), the candidate object-space coordinates (Xi, Yi, Zi) are firstly figured out with the pixels p and b1
i. 

Next, using the collinearity equation and the linear equation of homologous epipolar line bt
1bt

Mz in the tth vice 
searching image It, the point Pi is re-projected onto the image It to yield the candidate pixel bt

i corresponding 

(2)

{

x = −f a1(X−Xk)+b1(Y−Yk)+c1(Z−Zk)
a3(X−Xk)+b3(Y−Yk)+c3(Z−Zk)

y = −f a2(X−Xk)+b2(Y−Yk)+c2(Z−Zk)
a3(X−Xk)+b3(Y−Yk)+c3(Z−Zk)

Figure 4.   The sketch of determining candidate homologous pixels based on the object-space elevation range.
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to the pixel b1
i. Then these pixels {b1

i, …, bt
i, …, bN-1

i} are organized as the ith group of candidate homologous 
pixels of the pixel p.

③ After all candidate pixels in the main searching image are processed by the step 2, the number of candi-
date homologous pixels corresponding to the matching pixel p in each searching image will have the same value 
Mz, and the candidate pixels with the same serial number belong to the same group. Therefore, the original 
independent candidate pixels in all searching images is unified into the following Mz groups: {b1

1, b2
1, …, bN-1

1}, 
{b1

2, b2
2, …, bN-1

2}, …, {b1
i, b2

i, …, bN-1
i}, …, {b1

Mz, b2
Mz, …, bN-1

Mz} (the group serial number i is from 1 to Mz).
 To be noted, after completing the unifying process of candidate pixels, except for the main searching image, 

there are repetitive pixels in Mz candidate pixels {bt
1, bt

2, …, bt
Mz} in the tth vice searching image It, and repetitive 

pixels must be neighbor pixels with consecutive serial numbers.

Computing standardized residual for each group of candidate homologous pixels based on surveying adjustment 
theory.  According to the surveying adjustment theory, utilizing relevant information during the adjustment of 
pseudo object-space coordinates, the standardized residual of each candidate homologous pixel can be figured 
out and used to analyze the positional distribution pattern among candidate pixels. For Mz groups of candidate 
homologous pixels in searching images: {b1

1, b2
1, …, bN-1

1}, …, {b1
Mz, b2

Mz, …, bN-1
Mz} corresponding to the 

matching pixel p, the standardized residual ωi of the ith group of candidate pixels {b1
i, b2

i, …, bN-1
i} is computed 

as follows:
① Removing repetitive candidate homologous pixels in the searching image. For the Mz candidate pixels {bk

1, 
…, bk

j, …, bk
Mz} (j = 1, …, Mz) in the kth searching image Ik (k = 1, …, N−1), starting from the second candidate 

pixel, each pixel is judged whether it repeats with the previous adjacent pixel one by one. If yes, it will be marked 
as a repetitive pixel. After all Mz candidate pixels are processed by the repeatability judgement,Mk(Mk≤Mz) new 
candidate pixels {qk

1, …, qk
j’, …,qk

Mk
 } (jˈ = 1, …,Mk ) without repetitive pixels are obtained, and the sum of the 

matching pixel p and its candidate homologous pixels is M:M = (1+
∑N−1

k=1 Mk) . Furthermore, the correspond-
ence relation between the original serial number j and the new serial number jˈ is known.

② Constructing the error equation matrix of all M pixels. According to the computing of pseudo object-
space coordinates in "Definition and computation of pseudo object-space coordinates", for the matching pixel 
and its Mk candidate homologous pixels in each searching image, the error equation matrix (shown in Eq. (3)) 
for solving the pseudo object-space coordinates of the pixel p can be formed.

Detailed forms of matrixes A2M×3 and L2M×1 are shown in Eq. (4). Where, the superscript of each element 
(I0, I1, …, IN-1) represents the label of the image, and the number from 1 to M1 or MN−1 in the subscript of each 
element represents the serial number of candidate homologous pixel in different searching image.

(3)V2M×1 = A2M×3X3×1 − L2M×1

Figure 5.   The sketch of uniformly grouping candidate homologous pixels in multi-view images.
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③ Computing the reliability matrix. Utilizing the coefficient matrix A, the constant matrix L, and the weight 
matrix Pll of observations (as all observations in this paper are image plane coordinates of pixels and are obtained 
independently, the weight matrix is a unit matrix E), the reliability matrix R can be derived by the following 
equation.

④ Resolving the error equation matrix. Based on the principle of least squares, the error equation matrix 
shown in Eq. (3) is resolved to obtain the coordinates correction matrix X, the residual matrix V of all observa-
tions and the root mean square error of unit weight σ0.

⑤ Computing the standardized residual ωn of the nth candidate pixel in all M pixels (n ∈ [1, M]). As there 
are two observations of one pixel at the x and y coordinate directions, the standardized residual of each candidate 
pixel is computed by taking the average of standardized residuals of observations x and y, as shown in Eq. (7).

⑥ Computing the standardized residual ω(bk
j) of the jth candidate pixel bk

j in the kth searching image 
Ik. Known from the repeatability judgement of the step (1), serial number j of pixel bk

j corresponds to serial 
number jˈ in the new candidate pixels without repetitive pixels. In addition, the total number of the match-
ing pixel and its candidate pixels in (k−1) searching images processed by the repetitiveness assessment is 
Mˈ:M ′ = (1+

∑k−1

i
′
=1

M
i
′ ) . So, ω(bk

j) is computed as follows.

⑦ Computing the standardized residual ωi of the ith group of candidate homologous pixels. As the ith group 
of candidate pixels consist of N−1 candidate pixels, ωi is computed by taking the average of standardized residuals 
of N−1 candidate pixels, as shown in Eq. (9).
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Experiment and discussion
Experimental data.  To verify the proposed approach, experiments were carried out using two sets of actual 
aerial multi-view images. Figure 6a shows three aerial images of Nanjing, China (captured by Jiangsu Digitalland 
Technology Corporation, Ltd., Co., using an UltraCam metric digital camera in November 2011), and Fig. 6b 
shows three aerial images of Toronto, Canada (public data in the ISPRS benchmark dataset, obtained through 
the ISPRS official website: http://​www2.​isprs.​org/​commi​ssions/​comm3/​wg4). For the two datasets, the base 
image and two searching images are respectively labeled as NJ_I0, NJ_I1, NJ_I2 and ISPRS_I0, ISPRS_I1, ISPRS_I2, 
the approximate elevation ranges of the region covered by these images are respectively [− 28 m, 188 m] and 
[− 20 m, 210 m], the forward overlap of these images is around 60%, and their interior and exterior orientation 
parameters are all known (detailed parameters are listed in Tables 1 and 2). In addition, 100 groups of actual 
homologous pixels were semi-automatically selected by an image-side multi-view matching method based on 
NCC10 for each experimental data, and were used as ground truth for the following two experiments (Part of 
matching pixels in the base image and their homologous pixels in the two searching images are depicted in Fig. 6. 
The yellow cross represents their positions, and the number beside the cross is the serial number). Image-space 
row and column numbers and object-space 3D coordinates of these homologous pixels are respectively labeled 
as (rk

j, ck
j) and (Xj, Yj, Zj) (k = 0, k = 1, k = 2 is respectively the serial number of the based image, the first and the 

second searching images; and j = 1, 2, …, 100).

Figure 6.   Two types of experimental aerial images (Images in sub-figure (a) were captured by our partner 
Jiangsu Digitalland Technology Corporation, Ltd., Co. with an UltraCam metric digital camera in Nanjing 
China in November 2011, and images in sub-figure (b) are internationally public benchmark data in Toronto 
Canada provided by ISPRS Working Group III/4: http://​www2.​isprs.​org/​commi​ssions/​comm3/​wg4).

http://www2.isprs.org/commissions/comm3/wg4
http://www2.isprs.org/commissions/comm3/wg4
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Experimental design.  Utilizing above data, two experiments were designed as follows: experiment I was 
used to verify the theoretical inference on the positional distribution pattern among candidate homologous 
pixels, and experiment II was used to further test whether the positional distribution pattern can be applied in 
multi-view image matching.

Experiment I: For each matching pixel in the base image, firstly its initial set of m groups of candidate homolo-
gous pixels in the two searching images are confirmed and their standardized residuals computed, and the stand-
ardized residual curve is depicted to illustrate the positional distribution form among candidate homologous 
pixels. Secondly, if the curve of the initial set of candidate homologous pixels obeys an approximate V-shaped 
form as the theoretical inference, the following process is iteratively performed:

Using the valley point (the point with the minimum standardized residual) on the curve as the boundary, 
divide the initial set of candidate homologous pixels into two subsets, and take the subset including the real 
homologous pixels as a new initial set of candidate pixels (supposing that it has n groups of pixels). ② If n ≠ m, 
compute standardized residuals and draw distribution curve for the new set of n groups of candidate pixels 
again. ③ Judge whether the distribution curve of the new set of candidate pixels still obeys the approximate 
V-shaped form, if yes, perform step ① again; if not, or the total number of pixels in the new set do not change, 
stop the iteration.

According to the characteristic of V-shaped curve, on the standardized residual distribution curve obtained 
in each iteration above, the point with the minimum standardized residual should be located near the middle 
position of all pixels. Furthermore, since two points cannot form a V-shaped curve hence will stop the iteration, 
the total number n of candidate homologous pixels at the last iteration in each searching image should be two 
(one of which is the real homologous pixel). This value of n is much smaller than that of initial m. As the total 
number of candidate homologous pixels decreases gradually in the iterative process, it is considered as the itera-
tive refinement of the searching range of homologous pixels based on the positional distribution pattern among 
candidate pixels. In this iterative refinement process, for each searching image, the output results of each iteration 
before the last are the row and column numbers of two endpoints of the searching range and the position of the 
real homologous pixel on either the left or right side of the pixel with the minimum standardized residual, and 
the output of the last iteration is two candidate pixels.

Experiment II: According to the iterative refinement of the searching range of homologous pixels in experi-
ment I, the total number n of candidate homologous pixels corresponding to the matching pixel in the kth search-
ing image Ik is two. So the average value of the row and column numbers (ri, ci) of these n candidate pixels is used 
as the row and column numbers (rk, ck) of the final homologous pixel in the image Ik: rk =

∑n
i=1ri
n ; ck =

∑n
i=1ci
n  , 

and this process of determining the homologous pixel is considered as a new object-side multi-view matching 
based on the positional distribution pattern among candidate homologous pixels. The reason for adopting Aver-
age operation rather than Max or Min operation is as follows: either the Max operation or the Min operation 
includes the real homologous pixel, the accuracy of this operation for different matching pixel is not guaranteed, 
and its image-space precision of the homologous pixel is 1 pixel or 0. Whereas, the Average operation can ensure 
that the image-space precision is 0.5 pixel.

Therefore, for the 100 matching pixels in experimental images, the new object-side multi-view matching was 
firstly carried out to obtain the row and column numbers (rk

j,O, ck
j,O) (k = 1, 2; j = 1, 2,…, 100) of homologous 

pixels in each searching image. Then based on the image-space matching results, object-space 3D coordinates 
(Xj,O, Yj,O, Zj,O) were figured out according to the principle of multi-view forward intersection. Secondly, utilizing 
obtained image-space/object-space matching results and corresponding ground truth, image-space row error 

Table 1.   Interior orientation parameters of experimental aerial images.

Image type Image-space resolution [pixel] Focal length [mm]

The position of 
principal point 
[pixel]

Pixel size [mm]Row Column

Nanjing aerial images 11,310 columns × 17,310 rows 70.5 8634 5654 0.006

ISPRS benchmark images 11,500 columns × 7500 rows 101.4 3769 5749 0.009

Table 2.   Exterior orientation parameters of experimental aerial images.

Image type and tagID

WGS-84 coordinates of projection centres exterior rotational angles

X[m] Y[m] Z[m] φ [rad] ω[rad] κ[rad]

Nanjing aerial images

NJ_I0 397,361.04579 3,552,859.53939 3718.27647 − 0.008873 0.015662 − 0.014234

NJ_I1 396,163.27625 3,552,863.48668 3718.31694 − 0.007112 0.009475 − 0.011622

NJ_I2 398,558.69302 3,552,849.68689 3718.66453 − 0.008784 0.015934 − 0.017909

ISPRS benchmark images

ISPRS_I0 631,179.232 4,834,062.777 1636.415 0.001505 0.000377 − 1.751372

ISPRS_I1 630,789.997 4,834,064.034 1632.821 0.002248 0.000534 − 1.748176

ISPRS_I2 631,567.432 4,834,062.247 1640.148 0.000473 0.000852 − 1.749056
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∆rk
j and column error ∆ck

j and object-space plane error ∆Pj and elevation error ∆Ej of matching pixels were com-

puted by equations: �rkj = rkj,O − rkj ;�ckj = ckj,O − ckj  , �Pj =

√

(

Xj,O − Xj

)2
+

(

Yj,O − Yj

)2
;�Ej = Zj,O − Zj . 

The curves of image-space and object-space matching errors of all matching pixels were respectively drawn. 
Thirdly, to verify that the object-side multi-view matching method does not depend on image-side grayscale 
information, original searching images were randomly adjusted in grayscale, brightness and hue with Photoshop 
(mainly used to simulate condition such as strong/weak light, repetitive/weak texture, etc.), and were used again 
in object-side multi-view matching. Image-space and object-space errors (∆rk

j, ∆ck
j) and (∆Pj, ∆Ej) of matching 

results were also recalculated. Lastly, to compare the object-side matching method with traditional image-side 
matching method, image-side matching based on NCC was carried out for the adjusted searching images to 
obtain matching results (rk

j,I,ck
j,I) and (Xj,I, Yj,I, Zj,I), and corresponding image-space and object-space errors (∆r’kj, 

∆c’kj) and (∆P’j, ∆E’j) were also computed.

Experimental results.  The proposed method of analyzing the positional distribution pattern among can-
didate homologous pixels in multi-view images was realized using the Visual C#.NET 2015 program language, 
and tested with real aerial images according to the above experimental design. The computer configurations 
for algorithm verification are: ThinkPad T580 laptop, Win10 64-bit operating system, Intel CORE i7 CPU with 
1.99 GHz, and 8G RAM. In the following results, all displayed images were generated by our own program, and 
all statistical graphs were generated by Microsoft Excel 2016.

Results of experiment I.  Using the mode of multi-view images I0-I1-I2, the experiment I were carried out for 
the two types of experimental images. For the 100 matching pixels in Nanjing and ISPRS experimental images 
respectively, corresponding standardized residual distribution curves of initial m groups of candidate homolo-
gous pixels in the initial searching range are shown in Fig. 7a. After processed by the iterative refinement of the 
searching range, standardized residual distribution curves before the last iteration are shown in Fig. 7b, and the 
residual distribution curves at the last iteration are shown in Fig. 7c.

In Fig. 7, the horizontal axis represents the serial number of each group of candidate pixels (the maximal 
total number of candidate pixels for each of the 100 matching pixels was used as the boundary), the vertical axis 
represents the standardized residual of each group of candidate pixels, and the third axis perpendicular to the 
horizontal axis in the plane represents the serial number of each searching range during the iterative refinement 
of the searching range (the searching range at the ith iteration was labeled as “range i”).

Need to be noted, to effectively display the standardized residual distribution form of each groups of candidate 
pixels in each searching range for all matching pixels during the iterative refinement process, the standardized 
residual corresponding to each group serial number in Fig. 7 is the average of standardized residuals of candidate 
pixels with this group serial number. These average standardized residuals can better express the whole positional 
distribution form among candidate homologous pixels during the iterative refinement process.

Furthermore, to clearly demonstrate the positional distribution form among candidate homologous pixels 
for singular pixel, two matching pixels located on building facade and ground from the two experimental data 
were taken as examples, and corresponding experimental results were displayed in detail in Figs. 8 and 9. In 
these figures, the red line in each searching image is the homologous epipolar line defined by the approximate 
object-space elevation range (that is the initial searching range); and in each sub-figure of the standardized 
residual distribution curve, each blue dot represents a group of candidate pixels; serial numbers of the first group 
of candidate pixels, last group of candidate pixels, the group of candidate pixels with the minimum residual and 
the group of real homologous pixels are all marked with note boxes; and the vertical red dotted line indicates 
the position of the group of real homologous pixels.

Results of the experiment II.  According to the design of the experiment II, part of the 100 matching pixels and 
corresponding image-space experimental results of the new object-side multi-view matching method are shown 
in Fig. 10(sub-figure (a) shows positions of partial matching pixels in the base image and corresponding real 
homologous pixels in the two searching images, and sub-figure (b) shows image-space positions of homologous 
pixels obtained by the object-side multi-view matching method.).

After the grayscale information of Nanjing and ISPRS searching images are adjusted, image-space experimen-
tal results of the object-side multi-view matching method for the same matching pixels are respectively shown 
in Fig. 11a,c. As a contrast, corresponding experimental results of an image-side NCC-based matching method 
are respectively shown in Fig. 11b,d.

In addition, to clearly display comparative experimental results of the object-side matching method and tra-
ditional image-side matching method for original and grayscale adjusted images of the two types of experimental 
data, corresponding statistical curves of errors (∆rk

j, ∆ck
j) and (∆Pj, ∆Ej) of the object-side matching results, and 

(∆r’kj, ∆c’kj) and (∆P’j, ∆E’j) of the image-side NCC-based matching results, are respectively shown in Figs. 12 
and 13. In these figures, sub-figures (a) and (b) respectively show statistical curve of image-space errors (∆rk

j, 
∆ck

j) and object-space errors (∆Pj, ∆Ej) of object-side multi-view matching results for original and grayscale 
adjusted experimental images, and sub-figure (c) shows corresponding statistical curve of image-space errors 
(∆r’k

j, ∆c’kj) and object-space errors (∆P’j, ∆E’j) of the image-side NCC-based matching results for grayscale 
adjusted experimental images.

Furthermore, to intuitively display the quantitative effect of the application of positional distribution pattern 
among pixels in multi-view image matching, the rule that the image-space row and column errors of one match-
ing result are both less than or equal to 1 pixel (∆r ≤ 1 &∆c ≤ 1) is used as the judgment criterion of matching 
accuracy. The quantitative comparison results of matching accuracy, image-space and object-space errors for 
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object-side and image-side multi-view matching methods are listed in the Table 3. In addition, the running time 
of the object-side matching method for the two types of experimental data is respectively 125.126 s and 909 s. 
As the total number of candidate pixels in the initial searching range and the number of iterative refinement 
process are not identical, the running time for the two types of experimental data are different. Although the 
efficiency is not high, it is not the emphasis of this study, which is whether the positional distribution pattern 
is valid for confirming the exact homologous pixels in multi-view matching and robust to the distortion of 
image-side grayscale information. In future work, we will try to adopt acceleration techniques such as parallel 
computing, GPU acceleration and code optimization in the algorithm implementation process to improve run-
ning efficiency of our method.

Analysis and discussion.  Seen from above experimental results in Figs. 7, 8, 9 of experiment I, for any 
matching pixel in the base image of Nanjing multi-view images or ISPRS benchmark images (no matter where 
it is located), its candidate homologous pixels in the searching range on each searching image obey the follow-
ing positional distribution pattern: First, when the total number of candidate homologous pixels is more than 
two, the standardized residual distribution curve of all candidate pixels presents an approximate V-shaped form. 
Second, on the V-shaped distribution curve, the valley point with the minimum residual basically locates at the 

Figure 7.   The experimental results of positional distribution form among candidate homologous pixels for all 
matching pixels in Nanjing and ISPRS multi-view images (left figures and right figures are the results for images 
NJ_I0-NJ_I1-NJ_I2 and images ISPRS_I0-ISPRS_I1- ISPRS_I2 respectively, and all these figures were created by 
Microsoft Excel 2016).



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10161  | https://doi.org/10.1038/s41598-021-89501-z

www.nature.com/scientificreports/

middle of all candidate pixels, and the real homologous pixel lies on either the left or right of the valley point 
(including this valley point).

Utilizing the V-shaped distribution pattern among candidate homologous pixels, the iterative refinement of 
searching range in the searching image can be realized. After refinement, the total number of candidate homolo-
gous pixels in each searching image will be reduced from initial hundreds (depending on the size of the initial 
searching range) to final two adjacent pixels containing the real homologous pixel. However, for different images 

Figure 8.   The experimental results of positional distribution form among candidate homologous pixels for one 
matching pixel located on the building facade in Nanjing experimental images NJ_I0-NJ_I1-NJ_I2 (Graphs in (b) 
to (j) were created by Microsoft Excel 2016).
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Figure 9.   The experimental results of positional distribution form among candidate homologous pixels for one 
matching pixel located on the ground in ISPRS experimental images ISPRS_I0-ISPRS_I1-ISPRS_I2 (Graphs in 
(b) to (k) were created by Microsoft Excel 2016).
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or different matching pixels in the same image, the iterative times and the total number of candidate pixels in 
each iteration may be different.

Furthermore, positional distribution pattern among candidate homologous pixels, which is verified in experi-
ment I, can be used to develop a new object-side multi-view image matching method. This new method does not 
need to construct 2D image-side matching windows and use the grayscale or feature information of pixels in the 
windows to compute the matching similarity at all, but only needs the standardized residual of each candidate 
homologous pixel obtained by the adjustment of pseudo object-space coordinates of the matching pixel. Seen 
from above experimental results in Figs. 10, 11, 12, 13 and Table 3 of experiment II, as the object-side match-
ing method does not depend on the grayscale information of the image, its matching results are identical to 
original results when matching images have nonlinear variation in the grayscale (even the eyes can no longer 
distinguish objects in the images). As a contrast, the matching accuracy of the traditional image-side match-
ing method will decrease greatly in this condition. The reasons for choosing image-side NCC-based matching 
method for comparison are as follows. Firstly, the NCC-based method can obtain better matching result than 
SAD or SSD-based method for images with grayscale distortion. Secondly, the experimental matching pixels and 
their homologous pixels are obtained by the NCC-based method interactively. If the new object-side matching 

Figure 10.   The image-space experimental results of object-side multi-view matching method based on 
positional distribution pattern among candidate homologous pixels for original Nanjing and ISPRS images: 
NJ_I0-NJ_I1-NJ_I2 and ISPRS_I0-ISPRS_I1-ISPRS_I2 (All displayed images in this figure were generated by our 
own program realized using the Visual C#,NET 2015). (a) The real positions of partial matching pixels in the 
base image I0 and their homologous pixels in two searching images I1 and I2 for the two types of experimental 
data (local area). (b) Homologous pixels obtained by object-side multi-view image matching in two searching 
images for the two types of experimental data (local area)
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method is more robust than NCC-based method under the circumstance of gray-scale distortion, it can strongly 
prove the validity of the proposed method.

In addition, the quantitative experimental results in Table 3 show that the new object-side matching method 
can obtain a matching error of less than or equal to 0.5 pixel in the image space, a plane error of less than 0.4 m 
and an elevation error of less than 0.5 m in the object space. These object-space errors have met the plane accu-
racy requirement for large scale digital terrain mapping in China, as well as the elevation accuracy requirement 
of regions with a terrain slope greater than 2°, according to the Chinese surveying and mapping industry stand-
ard of “Digital products of fundamental geographic information 1:500, 1:1000 and 1:2000 digital line graphs” 
(numbered as CH/T 9008.1-2010) (In this industry standard, for 1:500 digital line graphs, depending on the types 
of terrain, the limitations of the plane error are 0.6 m (terrain slope < 6°) and 0.8 m (terrain slope ≥ 6°), and the 
limitations of the elevation error are 0.4 m (terrain slope < 2°), 0.8 m (2° ≤ terrain slope < 6°) , 1.0 m (6° ≤ terrain 
slope < 25°) and 1.4 m (terrain slope ≥ 25°)).

Figure 11.   The comparative image-space experimental results of object-side and image-side multi-view 
matching methods for grayscale adjusted Nanjing and ISPRS images: NJ_I0-NJ_I1-NJ_I2 and ISPRS_I0-
ISPRS_I1-ISPRS_I2 (All displayed images in this figure were generated by our own program realized using the 
Visual C#,NET 2015).
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Conclusion
Considering whether there is a specific positional distribution pattern among candidate homologous pixels of the 
matching pixel in multi-view images, this paper proposes a new conception of pseudo object-space coordinates 
and its adjustment computation model, and a new method of studying the positional distribution pattern based 
on the surveying adjustment theory. Actual aerial images were used to carry out experiments and verify the 
proposed method. Through experiments, it has been found: for candidate homologous pixels in the searching 
range corresponding to the matching pixel in multi-view images, using the standardized residual of each can-
didate pixel obtained by the adjustment of pseudo object-space coordinates as the indicator, their image-space 
positions appear a special V-shaped distribution pattern. Furthermore, this positional distribution pattern can 
be used to realize the iterative refinement of the searching range of the homologous pixel, which can reduce 
candidate homologous pixels from initial hundreds to final two.

In addition, based on the special positional distribution pattern among candidate homologous pixels, this 
paper designs a full object-side multi-view image matching process. In this process, the construction of 2D 
image-space matching windows and the computation of matching similarity between matching windows with 
image-side grayscale information are all not needed. It only uses the positional distribution pattern among 

Figure 12.   The comparative results of statistical curve of image-space errors (left column) and object-space 
errors (right column) of different multi-view matching results for original and grayscale adjusted Nanjing 
images (All these graphs were created by Microsoft Excel 2016).
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candidate pixels to iteratively confirm the homologous pixels in multi-view images corresponding to the matching 
pixel. Whereas, the image-side grayscale information is a required input for traditional region-based matching 
methods. Thus, the proposed object-side matching method has an obvious distinction from traditional match-
ing methods. The experimental results verify that the object-side matching method can achieve an image-space 
matching accuracy of 0.5 pixel, and an object-space positioning accuracy that meets the precision requirement 
of large-scale digital mapping in China.

To our knowledge, this is the first report of positional distribution pattern among candidate homologous 
pixels in multi-view images in the field of photogrammetry, and the proposed research method on this pattern is 
expected to provide a new thought for resolving the problems that existing image-side multi-view image match-
ing methods face, i.e., low reliability of matching results in difficult matching regions (such as large geometric 
distortion, obvious radiometric difference, weak texture or repetitive texture, etc.) at a mechanism level. Thus, 
the research of this paper has great significance on enriching the existing theories and methods of multi-view 
image matching, and has potential application value in improving the computational efficiency and accuracy of 
dense matching for large-scale multi-view images.

Figure 13.   The comparative results of statistical curve of image-space errors (left column) and object-space 
errors (right column) of different multi-view matching results for original and grayscale adjusted ISPRS images 
(All these graphs were created by Microsoft Excel 2016).
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However, the study object of this paper is still limited to central projective aerial images, and further study 
is needed in the following two aspects in the future. First, the proposed method should be applied to more 
types of multi-view images, for example, push-broom multiline space images and close-range images. Second, 
morphological characteristics (such as slope, length, etc.) of the standardized residual distribution curve of 
candidate pixels should be further studied to design a quantitative index for accurately indicating whether the 
real homologous pixel is located to the left side or right side of the valley point on the distribution curve. If this 
quantitative index can be found, a new object-side multi-view image matching method based on the positional 
distribution pattern of pixels, and does not depend on the image quality, can be really realized.
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