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Abstract: Infants’ limb movements evolve from disorganized to more selectively coordinated during
the first year of life as they learn to navigate and interact with an ever-changing environment more
efficiently. However, how these coordination patterns change during the first year of life and across
different contexts is unknown. Here, we used wearable motion trackers to study the developmental
changes in the complexity of limb movements (arms and legs) at 4, 6, 9 and 12 months of age in
two different tasks: rhythmic rattle-shaking and free play. We applied Multidimensional Recurrence
Quantification Analysis (MdRQA) to capture the nonlinear changes in infants’ limb complexity. We
show that the MdRQA parameters (entropy, recurrence rate and mean line) are task-dependent only
at 9 and 12 months of age, with higher values in rattle-shaking than free play. Since rattle-shaking
elicits more stable and repetitive limb movements than the free exploration of multiple objects, we
interpret our data as reflecting an increase in infants’ motor control that allows for stable body
positioning and easier execution of limb movements. Infants’ motor system becomes more stable and
flexible with age, allowing for flexible adaptation of behaviors to task demands.

Keywords: complexity; motor development; multidimensional recurrence quantification analysis;
infants; limb movements

1. Introduction

One of the fascinating phenomena in human development is how quickly infants
learn new motor skills. Infants’ movements advance from being disorganized to having a
more recognizable adult-like pattern in the first years of life [1]. The development of motor
behavior involves learning through practice as infants improve their skills over time and
learn to optimize their actions to the demands of any specific task. However, how motor
coordination patterns emerge in development and across different actions is unknown.

Initially, reflexes and general movements are controlled at the spinal and brain stem
levels during the neonatal period. Later, motor control at the subcortical level of the central
nervous system emerges and matures mainly throughout the first year of life, followed
by the activation of the cortical level of motor control [2]. The increase in motor control
allows for body positioning and stability, which also facilitates the execution of limb
movements [3,4]. Initially, the pattern of spontaneous movements seems to involve all
the limbs simultaneously, and it refines to a more selective inter-limb coordination with
age [5,6]. The dissociation between arms and legs mainly emerges in the second half of the
first year [7], facilitating object manipulation and playing with toys [8]. Moreover, the leg
activity becomes more stable with age, while the inverse pattern is observed in the arms [9].
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Additionally, the increase in postural control allows for using upper limbs for purposes
other than the stabilization of body position. Infants aged 6 and 7 months present trunk
control mostly in the thoracic region [10], and the acquisition of trunk control in the lumbar
region between 4 and 6 months of age has a positive impact on the quality of reaching
behavior [11]. Full trunk control is presented by infants from 8 to 9 months of age [10].
The emerging postural control is also characterized by increasing complexity, where the
upper limbs become more involved in skilled manual reaching and less in stabilizing the
body posture [12]. During the first three or four months after birth, infants’ head and trunk
control are poor, and they mainly lie down if not supported. Around 6 months of age,
infants begin to gain sufficient stability to sit independently, allowing them to move their
arms more freely. Later, around 8–9 months of age, most infants learn the first ways of
locomotion, such as crawling. Finally, towards the end of their first year, infants stand
freely and walk around, opening new possibilities to explore the environment.

Motor control development always occurs in a rapidly changing environment consist-
ing of constant constraints (e.g., gravity) and variable and constantly changing elements,
such as objects or people. Thus, to understand the development of the complexity of limb
movements, we need to consider that they are embedded in a given context and constrained
by situational demands [13]. On the one hand, particular contexts may encourage highly
structured and repetitive patterns of limb movements—for example, rhythmic activities
such as drumming or rattle shaking. Infants’ movements during drumming become faster
and more regular with age [14], and the rhythmic synchronization is usually not limited to
arm movements but diffuses throughout the body [15]. This increase in the regularity of
movements may result in a developmental decrease in the complexity of limb movements.
On the other hand, the lack of structure in unconstrained free play may be related to a de-
velopmental increase in the complexity of limb movements as older infants can selectively
use hands in varied ways to manipulate objects while using legs to stabilize their position
or move around. Thus, the context and task demands are also important when evaluating
the complexity of limb movements.

The rapid evolution of wearable devices has opened new avenues for recording
and analyzing infant movement, which might help to understand the changes in the
complexity of infants’ spontaneous movements during different activities in greater detail.
Advanced wearable sensors—Inertial Motion Units (IMUs)—combine information from
accelerometers, gyroscopes and magnetometers, resulting in a more precise estimation
of the position and orientation of body parts. Given the portability, mobility, small size
and low weight of this wearable technology, it is becoming widely used in infant studies
(e.g., [16–21]). Although wearable sensors may cause some discomfort in clinical pediatric
populations (as suggested in [22]), studies in typically developing infants have reported that
wearables do not affect infant movement (e.g., [23]). An alternative method is using marker-
less algorithms to detect movements from videos (e.g., [24–28]). However, this approach
is challenging in multi-person set-ups with older infants that move around freely since
obtaining a clear view of them at all times remains difficult and the resulting occlusions
may significantly limit the accuracy of tracking ([26]). Therefore, the IMUs can currently
be considered a gold standard for quantifying infants’ 3D kinematics in multi-person and
unconstrained settings.

In this study, we use wearables to investigate the developmental changes in the
complexity of limb movements in two tasks that differ in the level of structuring—more
constrained rattle-shaking and free play with a larger set of toys. Parent–infant dyads
were invited to the lab four times: when infants were around 4, 6, 9 and 12 months age, as
these ages reflect significant changes in motor control and gross motor development. As
Abney et al. [9] demonstrated, infant development can be studied as a complex system with
the analytical tools derived from nonlinear dynamics. Studies on motor development have
traditionally focused on quantifying changes in individual limb movements (i.e., reaching
hand) or in pairs (either hands or legs). Since the pattern of spontaneous movements
initially involves all the limbs shifting simultaneously and it refines with age, in this paper,
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we focus on the changes in the movement complexity of all limbs together. To achieve this,
we use the Multidimensional Recurrence Quantification Analysis (MdRQA, [29]). Many
methods of inferring complexity measures from a time series allow for the inclusion of a
maximum one (e.g., fractals, recurrence quantification analysis, entropy measures) or two
(e.g., cross-recurrence quantification analysis) time series and cannot be used to determine
potential higher-level interactions in the movement of all limbs together. MdRQA, in
contrast to other methods, is a dynamical systems method that allows for quantifying the
dynamics of a multidimensional system at different levels of description by combining
information from multiple variables (n > 2) and can be used to infer the shared dynamics
of multiple time series [29]. Those shared dynamics are later summarized in a series of
parameters that provide information about the complexity of the time series (see description
in Section 2.5). Here, we combine wearable motion trackers and MdRQA to study the
developmental trajectories of the complexity of infants’ limb movements in two play
contexts: rattle-shaking and free play. To our knowledge, the coordination between all four
limbs has not been previously studied simultaneously in a longitudinal design and across
tasks that differ in their level of constraints. We hypothesize that the trajectories of the
complexity of limb movements will differ between the tasks, with the age-related decrease
in complexity in the rattles task and the increase in complexity in the free play task.

2. Materials and Methods
2.1. Participants

Participants were 26 mother–infant dyads from an ongoing longitudinal study. Par-
ticipants were invited to the lab when infants were around 4 (T1), 6 (T2), 9 (T3) and 12
(T4) months old. Four infants contributed data at all four time points, whereas nineteen
infants missed one visit (mostly due to COVID-19 related restrictions). Therefore, 12 infants
contributed data at T1, T2 and T3; 7 at T2, T3 and T4; and 3 at T1, T3 and T4 (see Table 1 for
an overview of sample characteristics). Participants were from predominantly middle-class
families living in a city with >1.5 million inhabitants. The majority of the mothers had
completed higher education: 22 held a master’s degree, 2 held a bachelor’s and 2 completed
high school. For their participation, infants received a diploma and a small gift (a baby
book). The study received clearance from the local institution’s ethics committee.

Table 1. Sample Characteristics.

Time Point N Mean Age in
Months (SD)

Min Age in
Months

Max Age in
Months

T1 19 4.41 (0.30) 4.00 5.20
T2 21 6.57 (0.36) 6.00 7.20
T3 26 9.14 (0.41) 8.60 10.20
T3 17 12.14 (0.46) 11.60 13.10

2.2. Equipment

Infants’ and caregivers’ movements were recorded at 60 Hz using wearable motion
trackers (MTw Awinda, Xsens Technologies B.V., Enschede, The Netherlands): an Awinda
station receiver (Xsens Technologies B.V.) and MT Manager Software (Xsens Technologies
B.V.). Overall, 12 sensors were used (on infant’s arms, legs, head and torso, see Figure 1,
and on caregiver’s arms, head and torso), but in this paper, we report data only from 4
sensors placed on infant’s arms and legs.
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Figure 1. Placement of infant’s motion trackers: legs, hands, torso, head. Signed permission of the
caregiver was acquired for the publication of the image.

2.3. Procedure

Interactions were recorded in a laboratory room on a carpeted play area. Upon the
family’s arrival, an experimenter explained the study protocol and obtained parental
consent. Once the infant was familiarized with the laboratory, the wearable motion trackers
attached to the elastic bands were put on the infant’s and caregiver’s bodies. Then, a set of
parent–child interaction tasks with different sets of age-appropriate toys took place. The
sets for infants aged 4 and 6 months were slightly different from those for infants aged 9 and
12 months to maintain their interest in a given task (see Figure 2). There were 6–7 different
tasks during each meeting, but here, we report data comparing two of them—free play and
rattle-shaking. In a rattle-shaking task, which lasted approx. 5 min, the dyads were given
two maracas rattles and two rattles of different types (the barbell rattles for younger infants
and teddybear rattles for older ones). In a free play task, which lasted approx. 10 min,
the younger infants were offered a large, standard set of toys that included baby books,
teethers, rattles, rubber blocks and plush toys. The set for older infants included block
sorter, cars, stackable cups, rubber blocks, puppets, rattles, plush toys and a wooden box
with a drawer and a ball. Caregivers were instructed to play with their infants using each
set of toys in their preferred way, as they usually do at home.

Figure 2. Photos of the toys used in the free play at T1 and T2 (a) and T3 and T4 (b) and the rattle-
shaking task at T1 and T2 (c) and T3 and T4 (d). Signed permission of the caregiver was acquired for
the publication of the images.
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2.4. Data Pre-Processing

IMU data from sensors placed on both wrists and ankles of an infant were processed
in Matlab (Mathworks, Inc., Natick, MA, USA) using in-house scripts. First, missing values
were identified and interpolated using the interp1 function with a Spline interpolation that
applies a cubic interpolation of the values at neighboring grid points. Then, we collapsed
the three-dimensional acceleration data obtained from the IMUs to a one-dimensional
overall acceleration time series by calculating the magnitude of acceleration for each three-
dimensional data point. Next, data were smoothed using the medfilt1 function that applies
a third-order median filter to remove one-point outliers by replacing each value with the
median of three neighboring entries (see Figure 3a for an example of the sensor time series).
Finally, to avoid the possibility that data from any limb with higher variance may bias
the outcome of the complexity analysis and because we were interested in the sequential
properties of the data, each individual time series was z-scored before further analysis.

IMUs record gyroscopic and magnetometer data, providing more detailed orienta-
tion information. Combining this information with accelerometer data, one can create
quaternions [30], an alternate way to describe orientation or rotations on limb movements.
Supplementary data using quaternions are included to test the robustness of the IMUs data
(see Supplementary Information 1.1–1.3).

Figure 3. Cont.
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Figure 3. Examples of the sensor time series for all limbs during a play with rattles (a) and its
correspondent recurrence plot (b). Recurrences in the plot are marked by a white dot, while non-
recurrences are marked by a black dot.

2.5. Complexity Analysis

We used MdRQA [29] to quantify the simultaneous coupling of four limbs’ time
series. MdRQA is a multivariate extension of Recurrence Quantification Analysis that
captures recurring patterns within a multidimensional time series. This is achieved by
calculating the distances between all coordinate pairs of data points (e.g., using Euclidean
distance norm) in a multidimensional time series and by thresholding this distance matrix,
where distances below the threshold are treated as recurrent, and distances exceeding the
threshold are treated as nonrecurrent [31]. That thresholded matrix is called the recurrence
plot, where values are coded as 1 or 0 depending on whether the values are recurrent or
not for each of the values within the all time series (see Figure 3b for an example). From
the final recurrence plot, we extracted three main measures:

• Entropy (Ent): it is the Shannon entropy of the distribution of the diagonal lines on
the recurrence plot, capturing repeating movement patterns;

• Recurrence Rate (RR): it is the density of recurrence points in a recurrence plot, and it
corresponds to the probability that a specific state will recur;

• Mean Line (ML): it is the average length of repeating patterns in the system, which
can be understood as a measure of overall system’s stability.

These three measures allow for describing different yet supplementary aspects of
the system’s behavior, such as stability and adaptability. When infants acquire a new
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motor skill, their repertoire becomes more complex allowing for increased adaptability
to situational demands (e.g., [32]). Furthermore, when infants master these new skills,
their motor coordination patterns become more stable over time. In this context, entropy
acts as a measure of the complexity or flexibility of limb movements. An unconstrained
movement signal will carry low entropy since the probability of finding recurrent patterns
would be lower than in a constrained situation with interaction-dominant dynamics, which
postulates that the system’s structure is emergent and context-dependent. In contrast,
component-dominant dynamics proposes that all components (in this case, infants’ limbs)
contribute to the system dynamics in a stable and independent way [33–35]. When infants
are playing in an unconstrained situation (free play task in our study), they adjust their
movements to the needs of the task at hand, i.e., perform various types of movement
(e.g., reaching, banging, touching) with different types of objects. Consequently, their
movements are less regular and form more random patterns. In this case, there will be low
variability in the length of the recurrent states, leading to lower entropy. In the constrained
situation (rattle-shaking task), infants move their arms in a rhythmic way to produce
the sound, and the rattles placed in their hands may reduce the number of degrees of
freedom of movement. Therefore, the rattle-shaking task decreases in complexity as infants
attempt to perform periodic/semi-periodic movements, introducing higher variability in
the patterns of recurrences and increasing the overall entropy. On the other hand, the
recurrence rate and mean line are measures of the stability of the limb movements. In
a constrained situation, such as rattle-shaking, the more the infants’ movements would
follow interaction-dominant dynamics (i.e., the infants learn with age how to move the
rattles synchronously), the more recurrence rate and mean line would increase.

Three critical parameters need to be set to calculate the recurrence plots (see [36]).
First, we estimated the delay of embedding using the mdDelay function, which estimates
the delay in a multidimensional time series using the average mutual information method.
Second, we estimated the embedding dimension using the mdFnn function, which applies
a false nearest neighbor estimation. We obtained an average value of 1 for the delay and 14
for the embedding dimension, which is consistent with the typical values recommended
for biological signals [37]. Finally, we adapted the radius for each infant individually. To
this end, we fixed the recurrence rate sufficiently low (i.e., RR = 5% [38] and used the
embedding dimension and delay previously computed. We carried this out for the first
visit data of each infant and fixed these parameters for the consequent visits to estimate the
changes in complexity over time.

Control analyses were performed using the same approach but with shuffling the
movement data in a random order within each time series. This allows us to compare the
results from the entropy and mean line and prove that temporal dynamics did not arise
randomly (e.g., [39]).

2.6. Statistical Analysis

To assess the repeated-measures effects of age (4) and task (2), we ran the General Esti-
mating Equations (GEEs) with a Bonferroni correction for pairwise comparisons. GEEs are
particularly adequate for longitudinal data because they take into account the dependency
and ordering of the data within subjects in repeated-measures designs. Furthermore, in
the GEE analysis, even if a subject is missing one or more of the repeated measurements,
the remaining data of that subject are used in the analysis (e.g., [40,41]). Data analysis was
conducted in IBM SPSS Statistics 26. Figure 4 was created using R [42] and RStudio [43]
and ggplot2 package [44].
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Figure 4. Boxplots showing entropy in each time point in rattle-shaking (red) and free play (blue).
Horizontal lines represent median value, boxes are drawn from the first quartile to the third quartile,
whiskers indicate min and max value and the dot indicates an outlier.

3. Results
3.1. Complexity Measures
3.1.1. Entropy

The GEE with age (4) and task (2) as within-subjects factors showed a significant
difference in entropy level between rattle-shaking and free play (Wald χ2(1) = 36.888,
p < 0.001; see Figure 4). There was no effect of time point (Wald χ2 (3) = 3.365, p = 0.339), but
the interaction between task and time point was significant (Wald χ2 (3) = 26.634, p < 0.001).
Post hoc pairwise comparisons revealed that there were no task-related differences at T1
and T2. The entropy was higher in rattle-shaking than free play at T3 (p < 0.001) and T4
(p = 0.010). Within free play, entropy was also higher at T2 than at T3 (p = 0.037). See Table 2
for descriptive data.

Table 2. Entropy (Ent), Recurrence Rate (RR) and Mean Line (ML) values at each time point and
each task.

T1 T2 T3 T4
Mean
(SD) Min Max Mean

(SD) Min Max Mean
(SD) Min Max Mean

(SD) Min Max

Rattles Ent 5.51
(0.30) 5.10 6.04 5.62

(0.44) 4.78 6.58 5.72
(0.45) 4.72 6.43 5.73

(0.37) 5.14 6.24

RR 5.03
(0.05) 4.93 5.09 7.28

(5.13) 2.07 19.14 9.17
(7.19) 0.69 27.55 7.78

(5.01) 0.95 15.60

ML 19.48
(6.61) 5.07 35.20 23.06

(8.59) 11.96 50.95 23.55
(9.02) 1.66 41.79 23.79

(5.78) 15.13 32.19

Free Play Ent 5.46
(0.20) 5.04 5.82 5.48

(0.42) 4.64 6.29 5.10
(0.59) 3.86 6.14 5.08

(0.42) 4.48 6.01

RR 5.05
(0.04) 4.98 5.09 5.47

(3.84) 0.14 14.54 4.51
(4.79) 0.02 16.26 2.99

(3.52) 0.17 13.28

ML 18.96
(2.75) 14.17 23.79 21.04

(7.36) 10.96 39.05 16.15
(6.28) 7.44 30.03 15.39

(4.53) 9.92 26.78

3.1.2. Recurrence Rate

There was a significant difference in the recurrence rate between rattle-shaking and
free play (Wald χ2 (1) = 11.281, p = 0.001). There was no effect of time-point (Wald
χ2 (3) = 4.353, p = 0.226), but the interaction between task and time-point was signifi-
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cant (Wald χ2 (3) =18.660, p < 0.001) as the recurrence rate in rattle-shaking at T3 was
significantly higher than in free play at T3 (p = 0.001) and T4 (p = 0.029).

3.1.3. Mean Line

There was a significant difference in the mean line between rattle-shaking and free
play (Wald χ2 (1) = 8.919, p = 0.003). The interaction effect between task and time-point
was also significant (Wald χ2 (3) =17.739, p < 0.001) as the mean line in free play at T3 was
lower than in rattle-shaking at T3 (p < 0.001). There was no effect of time-point (Wald χ2

(3) = 3.618, p < 0.306).

3.2. Control Analysis

To check whether the effects did not arise randomly, we compared observed and
shuffled versions using paired t-tests at each time point. At each time point, the observed
versions were significantly different from those shuffled for each measure. At T1: entropy
t(34) = 76.675, p < 0.001; recurrence rate t(34) = 162.090, p < 0.001; mean line t(34) = 21.334,
p < 0.001. At T2: entropy t(45) = 79.094, p < 0.001; recurrence rate t(45) = 9.841, p < 0.001;
mean line: t(45) = 19.053, p < 0.001. At T3: entropy: t(48) = 53.352, p < 0.001; recurrence rate
t(48) = 7.580, p < 0.001; mean line t(48) =16.382, p < 0.001. At T4: entropy t(22) = 43.767,
p < 0.001; recurrence rate t(22) = 5.331, p < 0.001; mean line t(22) =14.276, p < 0.001.

4. Discussion

In this paper, we showed that the complexity of limb movements changes across
infancy. In a longitudinal study, we recorded infants’ limb movements at around 4, 6, 9 and
12 months of age in two tasks that differed structurally—more constrained and repetitive
rattle-shaking and free play with a larger set of toys. To investigate the changes in the
complexity of all four limbs, we applied the Multidimensional Recurrence Quantification
Analysis (MdRQA, [29]). We showed that the complexity measures (entropy, recurrence
rate and mean line) are modulated by task at 9 and 12 months but not at 4 or 6 months
of age. We interpret this finding as reflecting an increase in infants’ motor control that
allows for stable body positioning and easier execution of limb movements. Increased
motor control is related to an overall increase in the motor system’s complexity as the
infant can adjust movements specifically to the task. In our case, higher entropy in the
rattle-shaking task may reflect the capacity to flexibly adapt behaviors to environmental
demands. Furthermore, a longer mean line and a higher recurrence rate suggest that
an infant’s motor system is more stable during rattle-shaking and has a more confined
attractor state.

Our results provide further insight into the early developmental organization of motor
actions. The global pattern of inter-limb coordination varies with changing contexts because
the behaviors are adapted and selected to fit a given task [1]. The motor action system
continues to specialize across infancy to respond to particular environmental pressures [45].
In our case, each task qualitatively required different acts—rhythmic body movements
to produce the rattling sound or various reaching and holding acts to explore different
objects—and infants learned how to adjust their behaviors to the specific context with age.
This suggests that limb movement organization becomes context-specific by the end of the
first year of life. This is in line with recent studies showing that less experienced infants
generate multiple inconsistent coordination patterns, while more experienced infants tailor
their coordination patterns to body–environment relations and flexibly switch solutions
(e.g., [32,46,47]).

This study is an important step in understanding changes in the complexity of limb
movements in infancy. We showed that the MdRQA measures are sensitive to changes in
the dynamics of limb movements between tasks and that the observed patterns do not form
randomly, as was shown in comparisons with the shuffled time series. This result is in line
with previous studies suggesting that infants’ development can be studied as a complex
system with the tools from nonlinear dynamics [9]. Moreover, MdRQA goes one step further
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than traditional methods as it allows estimating the complex dynamics of multiple effectors
(n > 2) and, therefore, characterizing the complexity of the developmental organization of
motor actions in more detail. Nevertheless, MdRQA can be further extended to assess the
coupling between multidimensional time series [48]. Therefore, methods such as MdRQA
open new possibilities to understand the role of limb movement for other domains of
development (e.g., vocal production or visual attention) or studying coupling and leader–
follower relationships during parent–infant interactions (e.g., parent limb movements vs.
infant limb movements or parent vocalizations vs. infant limb movements).

Several limitations arise from this study. First, there were some missing values in
the sensor data in 10.1% of cases. However, control analysis with excluded cases with
over 15% of missing data showed the same final pattern of the results (see Supplementary
Information 2.1–2.3). Second, we used only accelerometer data in this study, while IMUs
offer more possibilities (magnetometer and gyroscope data). To establish whether our
results are limited to accelerometric data only, we conducted a supplementary analysis
using quaternion data and showed a similar pattern of results with respect to task modula-
tion and age-related changes (see Supplementary Information 1.1–1.3), but further studies
should consider the possibility of expanding this work and explore not only changes in
acceleration but also rotational movements. Third, in this study, we compared tasks that
differed in overall duration (5 min in rattle-shaking vs. 10 min in free play). Variable length
of analyzed time series are commonly used in studies using RQA-based approaches (see,
for example, [24,49]) since capturing the overall dynamics of the phenomenon is more
important than task duration (and comparison of observed data with shuffled time series
allows checking whether the effects were not random). Fourth, although we observed
different age-related trajectories in the complexity of limb movements over the first year
of life, there is high variability in the way infants develop. Therefore, future longitudinal
studies with more time-points are necessary to more accurately depict the patterns of
variability and the shape of the developmental trajectories of inter-limb coordination. This
is especially important since stable execution of gross motor skills is usually preceded by
many transitions when the skills vacillate between occurrence and absence [50], which
could reflect phase transition periods when the entire motor system undergoes reorga-
nization. Thus, nonlinear methods combined with a more dense sampling of behavior
across development could shed more light on the developmental trajectories of movement
coordination and capture both phase transitions and periods of stability. Fifth, data were
collected in a laboratory room, and therefore, future studies could explore the possibil-
ities of continuous measurement of limb coordination across different contexts “in the
wild”. The wearable motion trackers can be worn for the entire day or multiple days
without the presence of an experimenter and record densely sampled data during infants’
everyday experiences [17,21]. A dense sampling of infants’ daily experiences would help
understand how caregivers scaffold infants’ actions and create “social affordances” [51]
and understand the influence of social influences in context-dependent changes in infants’
inter-limb coordination. Moreover, it could also help to identify atypical patterns of motor
development. Lower complexity of movements might represent more repetitive motor
behaviors, which are diagnostic symptoms of several neurodevelopmental disorders, such
as autism spectrum disorder [52] or developmental delay [53]. Finally, future studies
should investigate whether a similar pattern of results could be observed using other ways
of movement tracking, such as marker-less video-based algorithms (see [24–28]), to make
sure that wearing sensors does not affect infant movement.

5. Conclusions

Our study explored the developmental changes in the complexity of limb movements
in infancy using a multidimensional nonlinear approach (MdRQA). We showed that infants’
movements become more complex with age and that the age-related changes in complexity
are context-dependent. We interpret these changes in the complexity of the motor system
as an increase in motor control that allows the infant to adjust movements specifically to
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the task. These findings may have important implications for the study of atypical patterns
of motor development.
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