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Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet
many aspects regarding itsmicrobial community and interactionswith pathogens remain unclear. In this studywildD.melanogaster
were collected from tropical fruits in Puerto Rico to test how themicrobiota is distributed and to compare the culturable diversity of
fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species
of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast
Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally
than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria.
The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant
pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum
candidum, Klebsiella oxytoca,Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D.
melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.

1. Introduction

The microbiota of wild Drosophila melanogaster is distinct
from that of flies from laboratory stocks [1–4]. Awide range of
bacteria from Proteobacteria, Firmicutes, and Bacteroidetes
phyla, among others, have been reported from Drosophila [2,
4]. In contrast, fungi are poorly characterized in Drosophila,
with most studies focusing on taxonomy, ecology of yeast in
the gut, and importance in the diet [5–7].

In the early 20th century, some Drosophila species were
considered a potential vector of disease because its fre-
quency near excrement and public toilets [8]. In a recent
study, the Mediterranean fruit flies Ceratitis capitata and
D. melanogaster were shown to transmit Escherichia coli to
intact apple fruits, suggesting they are potential vectors of
pathogens [9, 10]. This is a disturbing conclusion because
D. melanogaster has a worldwide distribution and visits a
wide variety of human foods [11]. Hence, fruit flies have
been considered a common pest in the food industry [12].

In one instance, discovery of a population of fruit flies in
an operating room at a New Jersey hospital resulted in the
disruption of a dozen surgeries [13].

By the start of the 21st century, Drosophila had been
established as a model system for immune studies after
analysis of its genome revealed unsuspected sophistication
and similarity to the mammalian innate immune system
[14–16]. The use of Drosophila for studies of virulence and
pathogen interactions requires a deeper knowledge of its
microbial symbionts and their internal and external distribu-
tions.

In this study, we isolated microorganisms from wild D.
melanogaster to answer the following questions: (1) how
is the microbiota of Drosophila distributed spatially? We
hypothesized that some microorganisms are found in both
external and internal tissues of flies [17]; however, other
bacteria and fungi will be limited to either internal or external
surfaces. (2) Are culturable fungi and bacteria equally diverse
in flies? We hypothesize that bacteria will be more diverse
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than fungi in D. melanogaster because they form stable
relationships with flies in nature and are important food
sources for larvae [4]. (3) Are fruit flies potential vectors of
opportunistic pathogens? Because fruit flies can transport
microorganisms of human concern [9, 10, 18], we hypothesize
that some fungi and bacteria isolated from wild flies will be
potential vectors of plant and animal pathogens.

2. Methodology

2.1. Sampling, CultureMedia, and Isolation ofMicroorganisms.
Wild females of Drosophila melanogaster were collected
in Puerto Rico from tropical fruits (mango, orange, star-
fruit, and jackfruit). Only culturable microorganisms were
included in order to obtain data and isolates for a related
project on probiotics [19]. Flies were attracted using glass jars
with fruit and jars were covered with gauze after enough flies
entered the jar. This was repeated four times at one-month
intervals for a total of 160 flies.

Fungi were isolated on Potato Dextrose Agar (PDA) and
bacteria on Tryptic Soy Agar (TSA); they are common and
nonselective media that provide enough nutrients to encour-
age growth of a range of fungi and bacteria, respectively.
Fungi and bacteria were isolated externally and internally
from 40 flies per sample as follows: 5 flies each were placed
on plates of PDA and TSA and allowed to walk on the
surface for five minutes. Another 10 flies per sample were
then anesthetized with CO

2
, placed in a microcentrifuge

tube with sterile water and Tween 80 (0.01%) and mixed in
a vortex for 1 minute to release microbial cells from body
surfaces [20]. The wash solution was then streaked on the
culture media described above. Another 10 flies were surface-
sterilized in 70% ethanol for 1min, rinsed three times with
sterile water, and placed on PDA and TSA, five per plate. The
guts of another 10 flies surface-sterilized were extracted using
a sterile forceps and needle. Guts were rinsed in sterile water
and streaked with a sterile loop on PDA and TSA (5 guts per
plate). Plates were incubated at 28∘C for seven days to allow
microbial growth.

Microorganisms were isolated every day and plated in
a 2mL glass vial with PDA or TSA. Microorganisms were
grouped by morphospecies based on morphological charac-
teristics, for example, colony size, color, texture, and type of
margin.

2.2. DNAExtraction. One fungal isolate from eachmorphos-
pecies was cultured in Potato Dextrose Broth (PDB), filtered,
and macerated in liquid nitrogen. DNA was extracted using
a phenol-chloroform method [21]. The same procedure was
used for Drosophila. One bacterial isolate from each mor-
phospecies was cultured in liquid Nutrient broth for 24–48
hours, cells were then lysed by heat-shock and suspended
in 1mL of sterile distilled water, and DNA was diluted to
4–30 ng/𝜇L for PCR.

2.3. Polymerase Chain Reaction and Sequencing. For fungi,
the nuclear ribosomal Internal Transcribed Spacer (ITS) was
amplified using primers ITS 1F and ITS 4 [21, 22]. For
bacteria, part of the 16S ribosomal gene was amplified using
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Figure 1: Species accumulation curves for fungal and bacterial
morphospecies isolated from female Drosophila melanogaster in
Puerto Rico. Species order was randomized 100 times. Fungal
and bacterial species are represented with dashed and solid lines,
respectively.

primers fD1 and rP2 [23]. For Drosophila, the mitochondrial
cytochrome oxidase subunit I was amplified with primers
LCO1490 and HCO2198 [24]. Amplicons were 600–1300
nucleotides for bacteria, 200–500 nucleotides for fungi, and
∼600 nucleotides forDrosophila. PCR products were cleaned
using Exo-Sap (Fermentas) and sequenced in the Sequenc-
ing and Genotyping Facility (SGF) at UPR-RP. Sequences
from flies, bacteria, and fungi (GenBank accession numbers
KU238836–KU238862) were correctedwith Sequencher soft-
ware and identified by BLASTn searches in GenBank. Names
assigned were based on >98% identity (Table 1).

2.4. Statistical Analysis. EstimateS (version 9.1.0 forMac) was
used to compare the richness (Chao 1), diversity (Shannon
index), and composition (Bray-Curtis index) of communi-
ties in flies (http://viceroy.eeb.uconn.edu/estimates/). Species
accumulation curves were obtained using the variable 𝑆
(est). Chi square (𝜒2) tests were used to compare differences
between external versus internal microbial communities.

3. Results

3.1. Distribution andDiversity ofMicroorganisms Isolated from
Drosophila melanogaster. We isolated 314 microorganisms
from wild Drosophila melanogaster, including 171 fungi and
143 bacteria, which were grouped into 18 and 12 morphos-
pecies, respectively (Table 1). The most abundant fungus
identified was the yeast Candida inconspicua which repre-
sented 49% of fungi isolated. The most common bacterial
genus was Klebsiella (22%).

Species richness estimated as Chao 1 was 20 and 12,
in fungal and bacterial communities, respectively. Species
accumulation curves showed that for bacteria sampling was
sufficient, assuming that our morphospecies did not contain
cryptic species. For fungi the sampling was insufficient
(Figure 1). The microbial diversity estimated with Shannon’s
index (𝐻󸀠) was 1.87 for fungi and 2.23 for bacteria.

Only the yeast Issatchenkia hanoiensis (𝜒2 = 6.2, 𝑃 <
0.013) was significantly more common in fly guts than
external surfaces (Table 1). The remaining microorganisms

http://viceroy.eeb.uconn.edu/estimates/
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did not differ significantly in frequency between external and
internal origin (𝑃 > 0.05).

The species composition did not differ significantly
between internal and external microbiotas, either for fungi
(Bray-Curtis = 0.68) or for bacteria (Bray-Curtis = 0.71).

3.2. Potential Opportunistic Pathogens Isolated from Dro-
sophila melanogaster. Bacteria and fungi isolated from Dro-
sophila melanogaster included opportunistic pathogens of
humans and animals, includingKlebsiella oxytoca,Alcaligenes
faecalis, Microbacterium oxydans, Stenotrophomonas malto-
philia, Aspergillus fumigatus, A. flavus, and A. niger (Table 1).
Also, A. flavus, A. niger, Fusarium equiseti/oxysporum, and
Geotrichum candidum are considered opportunistic plant
pathogens (Table 1).

4. Discussion

4.1. Differences between Bacteria and Fungi Isolated from
Drosophila melanogaster. This study was limited to cultur-
able microorganisms which were used for experiments on
probiotics [19]. However, our protocol excluded the majority
of bacteria and many fungi which are nonculturable or
require specialized media or culture conditions [25].

The richness of fungal morphospecies was higher than
that of bacteria (Figure 1). The accumulation curves for flies
levelled off, suggesting that nearly all the culturable bacterial
species present in flies were detected, but not for fungi.
These results contradict a previous study where the fungal
communities associated with different Drosophila species
sampled around theworldwere less rich that those of bacteria
[26].However, that study only focused on yeasts isolated from
guts of flies, which constitute the vast majority of known
Drosophila-associated fungi.

In contrast, even though the fungal community is richer
in species, the bacteria community is more diverse in D.
melanogaster (𝐻󸀠, fungi = 1.87 versus bacteria = 2.23). This
suggests that the population sizes of different bacterial species
in the flies are more equitable. This is supported by two
studies in which bacterial diversity exceeds fungal diversity
in Drosophila populations [2, 26].

The yeast Issatchenkia hanoiensis was more abundant in
internal parts of flies than externally (𝑃 < 0.013). Yeasts are
common Drosophila symbionts, and some are food sources
for Drosophila [26]. Yeast like Saccharomyces cerevisiae can
survive passage through the digestive tract of flies because the
constituents of spore walls are more resistant than vegetative
cells [27]. It would be interesting to examine if I. hanoiensis
provides any benefit to flies, for example, food source for
larvae, roles in attraction, ovoposition, development, or
protection against pathogens [5, 7, 28–31]. I. hanoiensis was
first described in 2003 from insect frass; it has not previously
been reported from Drosophila [32].

Apart from Issatchenkia, species composition internally
versus externally in flies was similar for fungi (Bray-Curtis =
0.68) and for bacteria (Bray-Curtis = 0.71). This result con-
trasts with a previous microbiome study where the internal
bacterial communities were a reduced subset of the external

bacterial communities, suggesting that flies can control the
microorganisms in the digestive tract and internal tissues [3].

4.2. Drosophila melanogaster as a Potential Vector of Path-
ogens. Drosophila melanogaster can carry opportunistic
pathogens of humans [18]. We isolated the Gram-negative
bacterium Klebsiella oxytoca which has been reported as
a causal agent of hemorrhagic colitis, and Alcaligenes fae-
calis was previously associated with infections in newborns
[33, 34]. Other microorganisms isolated in this study were
also reported as emerging clinical pathogens, for example,
Microbacterium oxydans and Stenotrophomonas maltophilia
[35–38].We also isolated three opportunistic pathogens capa-
ble of causing animal and human aspergillosis: Aspergillus
fumigatus, A. flavus, and A. niger [39–42]. Their presence
is not surprising because they are ubiquitous in nature with
abundant airborne conidia [43].

Fruit flies as sources of contamination could represent a
public health risk, especially to patients with compromised
immune systems. For example, Mediterranean fruit flies
(Ceratitis capitata) exposed to fecal material enriched with
GFP-tagged Escherichia coli are capable of transmitting E. coli
to intact apples in a cage model system [10]. The same was
seen in D. melanogaster [9].

In addition, plant pathogens of agricultural concern were
documented in the sampled flies, for example,A. niger, Fusar-
ium equiseti/oxysporum, and Geotrichum candidum [44–47].
A. flavus causes substantial problems in agriculture as a
source of aflatoxins and frequently enters plants through
insect-induced wounds [40, 48].

Almost one hundred years ago, D. melanogaster, com-
monly found in exposed fruit in grocery stores and houses,
was reported as “not an efficient disease carrier” [8]. This
was based on the fact that D. melanogaster is rarely attracted
to excrement. However, the studies mentioned support our
hypothesis that flies might serve as vectors for opportunistic
pathogens to humans and plants. More experiments are
necessary to clarify the identity and virulence of the oppor-
tunistic pathogens found in this study.

5. Conclusions

The isolation of culturable microorganisms from wild D.
melanogaster suggests that its microbiota is rich, diverse,
and distributed throughout internal and external surfaces.
Issatchenkia hanoiensiswas identified as common component
of the fly microbiota. Other microorganisms are related
to opportunistic human pathogens, which may represent a
public health risk, indicating D. melanogaster is a potential
vector of disease.
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