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Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a breathing disorder
associated with cognitive impairment. However, the mechanisms leading to cognitive
deficits in OSAHS remain uncertain. In this study, a mouse model of chronic intermittent
hypoxia (CIH) exposures were applied for simulating the deoxygenation-reoxygenation
events occurring in OSAHS. The conventional adenosine A1 receptor gene (A1R)
knockout mice and the A1R agonist CCPA- or antagonist DPCPX-administrated mice
were utilized to determine the precise function of A1R signaling in the process of OSAHS-
relevant cognitive impairment. We demonstrated that CIH induced morphological
changes and apoptosis in hippocampal neurons. Further, CIH blunted hippocampal
long-term potentiation (LTP) and resulted in learning/memory impairment. Disruption of
adenosine A1R exacerbated morphological, cellular, and functional damage induced by
CIH. In contrast, activation of adenosine A1R signaling reduced morphological changes
and apoptosis of hippocampal neurons, promoted LTP, and enhanced learning and
memory. A1Rs may up-regulate protein kinase C (PKC) and its subtype PKC-ζ through
the activation of Gα(i) improve spatial learning and memory disorder induced by CIH in
mice. Taken together, A1R signaling plays a neuroprotective role in CIH-induced cognitive
dysfunction and pathological changes in the hippocampus.

Keywords: chronic intermittent hypoxia, cognitive dysfunction, adenosine A1 receptor, synaptic plasticity, PKC,
neuroprotection

INTRODUCTION

Childhood obstructive sleep apnea-hypopnea syndrome (OSAHS) is a disease characterized by
repeated episodes of upper airway collapse during sleep which causes hypopneas/apneas that affect
children’s health and growth. It can occur at any age group, especially in pre-school children, having
a prevalence of between 1.2% and 5.7% of the general population (Marcus et al., 2012). OSAHS has
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been implicated in respiratory, cardiovascular, endocrine,
digestive, genitourinary, muscular, and nervous system damage
in adults. In children, it more commonly results in learning
and memory deficits (Xie and Yung, 2012; Yang et al., 2013).
Chronic intermittent hypoxia (CIH) is a featured characteristic
of OSAHS, which plays a cardinal role in impairments in
synaptic plasticity and neurocognition. Recently, we and others
reported that cognitive deficits and apoptosis of hippocampal
CA1 neurons occur in rodents following CIH exposure (Cai
et al., 2014; Wang et al., 2015; Yuan et al., 2015). Accumulating
evidence also shows that CIH exposures suppress long-term
potentiation (LTP) in hippocampal neurons (Payne et al.,
2004; Xie et al., 2010; Wall et al., 2014; Khuu et al.,
2019). Taken together, these findings suggest that CIH is
involved in the cognitive impairment of OSAHS. However, the
precise mechanism (s) underlying the OSAHS-relevant cognitive
dysfunction remains unclear.

Adenosine is an inhibitory neuromodulator in the central
nervous system (CNS; Fredholm et al., 2005). Adenosine
receptors are members of the G-protein coupled receptor
family and have been classified as A1, A2A, A2B, and
A3. Hypoxia-induced accumulation of extracellular adenosine
causes an activity-dependent down-regulation of adenosine
A1 receptors (A1Rs; Coelho et al., 2006; Chen Z. et al., 2014).
Activation of A1RS plays an important role in neuroprotection
predominantly by inhibiting synaptic transmission (Cunha,
2001). A1R activation reduces neuronal excitability and energy
consumption, thereby improving neuronal tolerance to hypoxia
(Giust et al., 2014; Duarte et al., 2016). A1Rs are expressed
throughout the body and the CNS and are found in the
cerebral cortex, hippocampus, cerebellum, thalamus, brainstem,
and spinal cord (Giménez-Llort et al., 2005). These receptors
have the highest affinity for adenosine, link with Gα(i) protein
(Baker and Hill, 2007; Crawford et al., 2011; Draper-Joyce
et al., 2018), and signal via adenylate cyclase (AC)—cyclic
adenosine monophosphate (cAMP)—protein kinase C (PKC)
pathways (Okada et al., 2001; Di-Capua et al., 2003; Rombo et al.,
2016). Accumulating evidence indicates that A1Rs are tightly
associated with cognitive impairments and neural plasticity
(Chen J.-F. et al., 2014; Chen, 2014). Several studies have also
shown that activation of A1Rs has neuroprotective effects in
a mouse hypoxic-ischemic brain injury model (Zamani et al.,
2013; Tregub et al., 2014). However, detrimental effects were
reported in other animal studies (Mioranzza et al., 2011; Chiu
et al., 2012; Düster et al., 2014). Olsson et al. (2004) found that
genetic deletion of A1R in mice does not alter the extent of the
brain or neuronal ischemic lesion. The reason for this can only
be speculated upon, the deletion may have induced processes in
the brain preventing the detrimental consequences of A1R loss
(Olsson et al., 2004). These discrepant findings suggest a complex
role of A1Rs in the CNS, which may be involved in different
signaling pathways underlying the pathogenesis or progression
of the disease. A1Rs have been identified as a key signaling
pathway that mediates brain preconditioning (Heurteaux et al.,
1995; Plamondon et al., 1999; Reshef et al., 2000; Hiraide
et al., 2001), however their prolonged activation desensitizes
adenosine responses (Coelho et al., 2006; Chen Z. et al., 2014).

Francisco Cayabyab’s lab showed that prolonged A1R activation
during hypoxia or ischemia could contribute significantly to
increased neuronal death by cause clathrin-mediated GluA2 and
GluA1 AMPAR endocytosis and persistent synaptic depression
(Chen Z. et al., 2014). Timing is essential to determine when A1R
activation plays a neuroprotective role. It has been reported that
A1R activation attenuates brain damage when occurring shortly
before or simultaneously during brain insult, but A1Rs may lose
their neuroprotective effects when activated after brain insult
(Lubitz, 1999; Mendonça et al., 2000; Lubitz et al., 2001).

Adenosine is one of many metabolites whose production
is increased under hypoxia. Our previous study has shown
that, in children with moderate-to-severe OSAHS and cognitive
dysfunction, morning plasma adenosine levels were markedly
high (Yan et al., 2013). Given the important role of A1Rs
in CNS diseases, we hypothesize that A1R signaling plays an
important role in the process of OSAHS-relevant cognitive
impairment. Thus, a mouse model of CIH exposures was
applied for simulating the deoxygenation-reoxygenation events
occurring in OSAHS. The precise function of A1R signaling
was investigated via the administration of A1R agonists and
antagonists to wild-type mice and using the conventional A1R
gene knockout mouse.

MATERIALS AND METHODS

Reagents
Dimethyl sulfoxide (DMSO) was obtained from Amresco
Incorporation (USA); 2-chloro-N (6)-cyclopentyl-adenosine
(CCPA), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX),
quick-hardening mounting medium, and mouse anti-β-
tubulin antibody (Cat. T8328) were purchased from Sigma
Corporation (USA); Hematoxylin and Eosin (HE) staining kit
was obtained from Beyotime Institute of Biotechnology (China);
3,3-diaminobenzidine (DAB) was purchased from ZSGB-BIO
Corporation (China); Bicinchoninic acid (BCA) protein assay
Kit and ECL western blotting detection reagent were purchased
from Pierce Corporation (USA); TUNEL assay kit was from
Roche Limited (USA); PCR primer was obtained from Invitrogen
Company (USA); Rabbit anti-caspase-3 antibody (Cat. 9662),
HRP-labeled goat anti-rabbit secondary antibody (Cat. 7074),
and HRP-labeled horse anti-mouse secondary antibody (Cat.
7076) were purchased from Cell Signal Technology (USA);
Rabbit anti-Syntaxin (Cat. ab188583), rabbit anti-PKC (Cat.
ab19031), rabbit anti-PKC-ζ (Cat. ab59364), and rabbit anti-
Gα (i; Cat. ab58916) antibodies were obtained from Abcam
Company (USA). Mouse anti-β-tubulin antibody was purchased
from Beyotime Biotechnology (China).

Animals
All animal use procedures were as per the National Institute of
Health Guide for the Care and Use of Laboratory Animals
and approved by the Ethics Committee of Wenzhou
Medical University. Four-week-old C57BL/6NJ male
mice, weighing 12–20 g, were purchased from Shanghai
Laboratory Animal Center (China). A1R conventional
knockout mice (A1R−/−; Johansson et al., 2001) were
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obtained from the Jackson Laboratory (USA) and bred
on site. The genotype of A1R−/− mice were confirmed
by standard PCR with the following primers: Forward
5′-TACTTCAACTTCTTCGTCTGGGT-3′ and Reverse
5′-CTTGTGGATTCGGAAGGCATAGA-3′ for wild-type
band (339 bp); Forward 5′- GAATTCTTGAAGACGAAAGG-3′

and Reverse 5′-AAGGCTGAGGAGGAACAGTG-3′ for mutant
band (200 bp).

Experimental Groups
A total of 36 C57BL/6NJ wild-type male mice were randomly
divided into six groups: room air control group (A), intermittent
air control group (AC), CIH group (IH), CIH treated with A1R
agonist CCPA group (CCPA), CIH treated with A1Rs antagonist
DPCPX group (DPCPX), and CIH treated with DMSO solvent
control group (DMSO). Six A1R−/− male mice randomly
selected from 10 A1R knockout mice (4 weeks old) were assigned
for CIH exposures (KO). Chronic treatment with the selective
AR1 agonist CCPA enhances spatial learning and memory in
C57BL/6 mice (Von Lubitz et al., 1993), and A1R KO mice show
normal acquisition and retention of spatial reference memory as
well as spatial working memory (Giménez-Llort et al., 2002, 2005;
Lang et al., 2003). Thus we did not recruit A and AC groups with
CCPA, DPCPX, or A1R deletion (KO) as additional controls in
this study.

Administration of A1R Agonist and
Antagonist
The mice in the CCPA, DPCPX, and DMSO groups were injected
intraperitoneally with either CCPA (0.002 mg in 100 µl PBS
containing 5% DMSO, 5 µl/g body weight), DPCPX (0.01 mg in
100 µl PBS containing 5% DMSO, 5 µl/g body weight), or DMSO
(PBS containing 5% DMSO, 5 µl/g bodyweight) just before daily
CIH exposures.

Chronic Intermittent Hypoxia Exposures
The mouse model of CIH was developed and reported
previously (Wang et al., 2011) with modifications. Mice were
placed in the intermittent hypoxia chamber, a computer-
controlled nitrogen/oxygen gas delivery system (Scientific
Research Center of Wenzhou Medical College, Zhejiang,
China), to produce hypoxia-reoxygenation episodes following
the protocol previously reported (Cai et al., 2014). Briefly, O2
concentration in the intermittent hypoxia chamber fluctuated
from 21.0± 0.5% to a nadir of 8.0%± 1.5% (30 s for 8.0% O2 and
18 s for 21.0% O2) in 90 s per cycle, 40 cycles per hour, 7 h a day
during the light cycle, for a total 4 weeks. Ambient temperature
was kept at 22 ± 2◦C. The AC group had the same treatment
conditions as CIH groups except that they were exposed to the
compressed air, and the A group were exposed to room air.

8-arm (4-arm Baited) Radial Maze Test
Spatial memory was assessed using the eight-arm radial maze
with four baited arms as described in our previous report (Cai
et al., 2014). The maze was located in a testing room maintained
at 22 ± 2◦C, the humidity of 50–70%, and 12 h light/dark cycle.
During the entire experiment, six male mice in each experimental
group were fed a quantitative diet to maintain their body weight

at 80–85% of their free-feeding weight, but water was offered
ad libitum. This test was accomplished without harm or pain
to the mice except for the injections of the drug at the same
frequency. We recorded the body weight of mice and observed
the spirit, diet, and activity of mice in the experiment process.
The experiment was conducted between 17:00 and 20:30 daily.
Throughout the entire training and testing sessions, food pellets
were provided in arms 2, 4, 6, and 8 only. Each mouse was placed
at the center of the maze with all arm entries closed. Fifteen
seconds later, the entries of all arms were opened and the mouse
was allowed to explore freely. The training was ended after all the
pellets were consumed, or after 5 min, depending on which one
occurred first. A correct choice occurred if the mouse chose an
arm with food and consumed it. Other choices were considered
as wrong and noted as the total errors (TE). When a mouse
revisited the arms in which the bait had been obtained before,
this was scored as working memory errors (WME). Entry into
the arm without the bait was scored as reference memory errors
(RME). The time for the mouse to complete the training was
recorded as the total time (TT). Mice were subjected to 28 days
of H/R and the behavioral training started on day 21 to day
27 after daily CIH exposures. All mice were trained for 7 days.
The 8-arm radial maze test was performed immediately after the
last hypoxia-reoxygenation cycle and initiation on day 28 The
test of radial maze performance. and WME, RME, TE, and TT
were recorded.

Brain Tissue Collection
Following the entire CIH procedure or 8-arm radial maze test,
mice were anesthetized with 2% sodium pentobarbital (45 mg/kg
body weight) by intraperitoneal injection. Then brains were
dissected into an ice-cold cutting solution (sucrose 225 mM, KCl
2.5 mM, NaH2PO4 1.25 mM, NaHCO3 28 mM, glucose 7 mM,
CaCl2•2H2O 0.5 mM, MgCl2•6H2O 7 mM) at 4◦C in 95% O2,
5% CO2 gas mixture. The right and left brain hemispheres were
separated along the midline. The right hemispheres from six mice
each group were used for electrophysiology to detect LTP. The
left hemispheres were either fixed in 4% paraformaldehyde for
HE staining and TUNEL assay or dissected to collect flash-frozen
hippocampi for Western blots.

Hippocampal Slice Preparation and LTP
Measurement
The right hemisphere was quickly removed, rinsed in chilled
artificial cerebrospinal fluid (aCSF: NaCl 125 mM, KCl
2.5 mM, NaH2PO4 1.25mM, NaHCO3 25 mM, glucose 25 mM,
CaCl2•2H2O 2 mM, MgCl2•6H2O 1 mM, pH: 7.35–7.45),
and mounted for vibratome sectioning. The coronal cortico-
hippocampal slices were prepared at 300 µm thickness and
allowed to recover for at least 1 h in a chamber perfused
continuously with warm (33◦C), oxygenated (95% O2/5%
CO2), aCSF at 1 ml/min. Then, slices were transferred to the
recording chamber, which was superfused with aCSF aerated
with carbogen (95% O2/5% CO2). The aCSF-filled recording
electrode (2–3 M�) was placed in the CA1 pyramidal cell
body layer, and the stimulating electrode was placed onto the
Schaffer collateral pathway. The extracellular recordings of the
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field excitatory postsynaptic potential (fEPSP) in the pyramidal
cell body layer were obtained from the recording electrode. The
stimulus to elicit 40–50% of the maximum fEPSP was used for
the baseline recordings. The pre-LTP baseline fEPSP response
to a test pulse was measured and recorded every minute for
30 min after the baseline had stabilized. LTP was then elicited
by high-frequency stimulations (HFS) consisting of three trains
of 1 s at 100 Hz with 20 s intervals. Subsequent fEPSPs were
recorded for more than 1 h post-HFS induction at the test pulse
rate and intensity. Percent changes in the initial slope of the
fEPSP before and after HFS were quantified.

Hematoxylin and Eosin (HE) Staining
Morphological changes of cells in the hippocampal CA3-CA1
region were detected by HE staining. Briefly, the sections were
deparaffinized in xylene for 15 min and rehydrated in descending
grades of ethyl alcohol (100%, 95%, 85%, and 70%) and distilled
water for 5 min each. Then, the sections were stained with 0.1%
hematoxylin-eosin solution until the desired staining achieved,
followed by being gradually dehydrated in 95% and 100% ethyl
alcohol twice and 5 min each. After processing and dehydration,
the slides were mounted with Eukitt Quick-hardening mounting
medium and hippocampal neurons were observed under a light
microscope (OLYMPUS 1X70-SIF2, Japan).

Detection of Apoptosis by TUNEL
The TUNEL assay was performed to detect apoptosis. The
paraffin-embedded hippocampus was sectioned at a thickness
of 4 µm for TUNEL staining. After dewaxing, tissue sections
were incubated with 3% hydrogen peroxide for 15 min and
rinsed with PBS, then incubated with Protease K for 20 min and
rinsed with PBS. After incubation with TUNEL assay mixture
for 60 min and Peroxidase (POD) for 40 min, sections were
treated with 3,3′-Diaminobenzidine (DAB), counterstained with
Novocastra hematoxylin dye, dehydrated with alcohol, washed
twice in xylene, and mounted. The positive cells detected by
TUNEL were characterized as: cell nucleus aggregation, brown
soma staining, chromatin condensation, and brownish yellow
particles in the nucleus. The number of apoptotic cells restricted
within the long-range of 1 mm in the middle of the hippocampal
CA1 region was counted under the light microscope with 400×
magnification. An apoptotic index (AI) was calculated as the
number of TUNEL positive cells/total cells×100.

Western Blots
Western blotting assays were performed as described in a
previous report (Cai et al., 2014). Hippocampal tissues were
lysed using ice-cold radioimmunoprecipitation assay buffer
(150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate,
1% SDS, 50 mM Tris–HCl, pH 8.0) supplemented with protease
inhibitor mixture (Roche, Espoo, Finland). Equal amounts of
protein (40 µg) were subjected to SDS-PAGE and blotted
onto nitrocellulose filters. Blots were probed and recognized
with the following primary and secondary antibodies: mouse
anti-syntaxin (1:7,000), mouse anti-protein kinase C (PKC,
1:400), rabbit anti-protein kinase C-ζ (PKC-ζ, 1:500), rabbit anti-
Gα(i); (1:1,000), rabbit anti-caspase-3 (1:1,000), mouse anti-β-
tubulin (1:1,000), and HRP-labeled goat anti-rabbit or horse

anti-mouse secondary antibody (1:1,000). Signals were detected
by using enhanced chemiluminescence with ECL Western
blotting detection reagent. The optical density (OD) of protein
bands were analyzed using the BIO-RAD ChemiDocTM Touch
Imaging System (Bio-Rad, USA). The ODs for specific proteins
were normalized to the corresponding β-tubulin levels, and these
values were expressed as the fold relative to the control.

Statistical Analyses
All data are presented as mean ± standard deviation (SD). The
data were all normally distributed. Comparisons between the
groups with different treatments were analyzed by analysis of
variance (ANOVA), followed by the LSD or Dunnett’s T3 post
hoc analysis. All statistical analyses were undertaken using the
SPSS software (IBM Corp., Armonk, NY, USA). The significance
level was set at 0.05 for all comparisons.

RESULTS

CIH-Induced Cognitive Dysfunction
Alleviated by A1R Signaling Activation but
Exacerbated by Its Blockage
The 8-arm radial maze was used to measure spatial learning
and memory capabilities. During the experiment, the mice
did not appear to weight loss, exhibit any mental malaise, or
die. We have made comparisons in the manuscript. Repeated-
measures ANOVA showed that WME, RME, and TE in all
groups significantly decreased throughout training sessions
(Figures 1A–C). Furthermore, significant differences in the
numbers of WME, RME and TE were present between groups
at the same testing days after 6-day training (Figure 1D, RME:
F(6,35) = 17.675, p ≤ 0.01; WME: F(6,35) = 17.368, p ≤ 0.01; TE:
F(6,35) = 24.596, p ≤ 0.01, n = 6 mice per group). A significant
increase in RME, WME, and TE existed in the mice exposed
to CIH for 4 weeks (RME: p ≤ 0.01 IH vs. A or AC group;
WME: p ≤ 0.01 IH vs. A or AC group; TE: p ≤ 0.01 IH vs. A
or AC group, n = 6 mice per group). However, the A1R agonist
CCPA attenuated these CIH-induced cognitive deficits (RME:
p ≤ 0.05 CCPA vs. IH or DMSO group; WME: p ≤ 0.05 CCPA
vs. IH or DMSO group; TE: p ≤ 0.05 CCPA vs. IH or DMSO
group, n = 6 mice per group), which were exacerbated by the A1R
antagonist DPCPX or A1R gene deletion (RME: p≤ 0.05 DPCPX
or KO vs. IH or DMSO group; WME: p ≤ 0.05 DPCPX or KO
vs. IH or DMSO group; TE: p ≤ 0.05 DPCPX or KO vs. IH or
DMSO group, n = 6 mice per group). No statistical difference was
detected between A and AC (RME: p = 0.763; WME: p = 1.000;
TE: p = 0.849, n = 6 mice per group), IH and DMSO groups
(RME: p = 1.000; WME: p = 0.730; TE: p = 0.849, n = 6 mice per
group), or IH and KO groups (RME: p = 0.763; WME: p = 1.000;
TE: p = 0.849, n = 6 mice per group).

CIH-Induced Pathological Changes of
Cellular Morphology in the Hippocampus
To determine the pathological changes in the specific brain
regions related to CHI-induced cognitive dysfunction, we
focused on the hippocampal CA1 region using HE staining
(Figure 2). The hippocampal neurons in the CA1 region were
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FIGURE 1 | The 8-arm (4-arm baited) radial maze test in mice without or with treatments from air control groups (A and AC), IH exposed groups (IH and DMSO),
CCPA-administrated group, DPCPX-administrated group, and A1R global knockout group (KO). (A–C) The numbers of WME, RME, and TE on different training
days, respectively. N = 6 mice per group. (D) The numbers of memory errors of WME, RME, and TE in the testing session. *p ≤ 0.01 vs. A or AC; &p ≤ 0.05 vs. IH
or DMSO; n = 6 mice per group. Error bar: standard deviation. A, room air; AC, intermittent air; IH, intermittent hypoxia; DMSO, IH with DMSO treatment; CCPA, IH
with 2-chloro-N(6)-cyclopentyl-adenosine treatment; DPCPX, IH with 8-cyclopentyl-1,3-dipropylxanthine treatment; A1R, adenosine A1 receptor; KO, IH with A1R
knockout; WME, working memory errors; REM, reference memory errors; TE, total errors.

neatly arranged with normal size and shape in groups A
and AC. The nuclear morphology was normal with a little
heterochromatin and clear border of the nucleolus, mostly in the
center of the cell body. In contrast, swollen and heterologous
neurons with clear nuclei were visible in groups IH and DMSO
(arrows) although the cellular size, shape, and structure were
normal and intact. For the DPCPX group and KO group,
heterologous and pyknotic neurons were distributed throughout
the hippocampal CA1 region with blurred nuclei accompanied by
anachronisms or even vacuolation. Compared with hippocampal
neurons in the IH group, neurons in the CCPA group were
neatly arranged while nuclear heterogeneity and cell swelling
were reduced.

CIH-Induced Apoptosis in Hippocampus
Reduced by A1R Signaling Activation
To further determine whether CIH results in cell apoptosis in
the hippocampus, TUNEL-positive cells (arrows) were detected
and the index of apoptosis was calculated by TUNEL staining

(Figure 3A, F(6,35) = 4.399, p ≤ 0.01, n = 6 mice per group).
Compared to TUNEL-positive cells in mice of A or AC groups,
more TUNEL-positive cells in the hippocampal CA3–CA1 region
were observed in mice of all IH groups (red arrows). The
apoptotic index (AI) was significantly different in all IH groups
compared to that in A group or AC group (p ≤ 0.01 vs. A or
AC). Compared with the AI in IH or DMSO group, AI was
significantly increased in both the DPCPX group and the KO
group (p ≤ 0.05 vs. IH or DMSO), whereas AI in the CCPA
group was much lower than that in the IH or DMSO groups
(p ≤ 0.05 vs. IH or DMSO). There was no statistically significant
difference between A and AC groups (p = 0.940) or between IH
and DMSO groups (p = 0.753). These results were corroborated
by increased levels of cleaved caspase 3 (Figure 3B).

Activation of A1R Signaling Prevents
CIH-Induced Decline of Hippocampal LTP
LTP represents a long-lasting increase in synaptic strength,
which is considered one of the major cellular mechanisms
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FIGURE 2 | Neuronal morphology in the hippocampal CA3–CA1 region
detected by hematoxylin and eosin staining. Arrows indicate swollen and
heterologous neurons with clear nuclei. Bar: 20 µm. A, room air; AC,
intermittent air; IH, intermittent hypoxia; DMSO, IH with DMSO treatment;
CCPA, IH with 2-chloro-N (6)-cyclopentyl-adenosine treatment; DPCPX, IH
with 8-cyclopentyl-1,3-dipropylxanthine treatment; KO, IH with A1R
knockout.

that underlie learning and memory. To determine whether
CIH affects synaptic plasticity, LTP was measured in the
CA3–CA1 region of the hippocampus. Significant differences
were observed in hippocampal LTP among the experimental
groups (Figure 4 and Table 1, F(6,35) = 70.61, p < 0.01,
n = 6 mice per group). The magnitude of LTP in IH
(increase by 68.45 ± 15.36% compared to baseline) and DMSO
(increase by 62.92 ± 11.07% compared to baseline) groups
were much lower than those in A (increase by 142.58 ± 2.91%
compared to baseline) and AC (increase by 139.14 ± 10.99%
compared to baseline) groups (p < 0.01 vs. A or AC) which
were dramatically exacerbated by the A1R antagonist DPCPX

FIGURE 3 | Neuronal apoptosis in the hippocampal CA3–CA1 region.
(A) Apoptotic neurons detected by TUNEL-DAB staining. Arrows indicate
apoptotic neurons. *p ≤ 0.01 vs. A or AC; &p ≤ 0.05 vs. IH or DMSO;
#p < 0.01 vs. CCPA; n = 6 mice per group. Bar: 20 µm. AI: apoptotic index.
(B) Relative levels ratio (vs. A) of cleaved caspase 3. *p ≤ 0.01 vs. A or AC; #p
≤ 0.01 vs. IH or DMSO; n = 6 mice per group. A, room air; AC, intermittent
air; IH, intermittent hypoxia; DMSO, IH with DMSO treatment; CCPA, IH with
2-chloro-N(6)-cyclopentyl-adenosine treatment; DPCPX, IH with
8-cyclopentyl-1,3-dipropylxanthine treatment; KO, IH with A1R knockout.
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(increase by 39.88 ± 15.38% compared to baseline) or A1R
gene disruption (increase by 37.12 ± 6.20% compared to
baseline; p < 0.01 vs. IH or DMSO). However, A1R agonist
CCPA (increase by 95.44 ± 11.69% compared to baseline)
prevented the decline of hippocampal LTP from CIH exposures
(p < 0.01 vs. IH or DMSO). Differences between A and AC
groups (p = 0.643) or between IH and DMSO groups (p = 0.453)
were not significant.

Downstream Molecules PKC, PKC-ζ, Gα(i),
and Syntaxin Responding to Modulation of
A1R Signaling in the Hippocampus After
CIH Exposures
To further confirm the neuroprotective effects of A1R signaling
on cognitive impairment induced by CIH, we examined the levels
of four downstream proteins—PKC, PKC-ζ, Gα(i), and syntaxin
in the hippocampus after CIH (Okada et al., 2001; Di-Capua
et al., 2003; Crawford et al., 2011; Rombo et al., 2016). Levels of
PKC, PKC-ζ, Gα(i), and syntaxin were significantly different in
all experimental groups (Figure 5, PKC: F(6, 63) = 4.320, p≤ 0.01;
PKC-ζ: F(6,63) = 4.947, p ≤ 0.01; Gα(i): F (6,63) = 4.725, p ≤ 0.01;
syntaxin: F(6,63) = 14.187, p ≤ 0.01; n = 6 mice per group).
Consistent with changes of cognition, apoptosis, and LTP in
hippocampal regions, levels of PKC, PKC-ζ, and Gα(i) were
significantly declined while levels of syntaxin were dramatically
up-regulated in IH and DMSO groups (PKC: p ≤ 0.01; PKC-
ζ: p ≤ 0.01; Gα(i): p ≤ 0.01; syntaxin: p ≤ 0.01; IH or DMSO
vs. A or AC), and more severe change was observed in DPCPX
and KO groups (PKC: p ≤ 0.01, PKC-ζ: p ≤ 0.01, Gα(i):
p ≤ 0.01 vs. IH or DMSO; syntaxin: p ≤ 0.05 vs. IH or DMSO).
The altered levels were partially rectified when the A1R agonist
CCPA was administrated (PKC: p ≤ 0.05, PKC-ζ: p ≤ 0.05,
Gα(i): p ≤ 0.05 vs. IH or DMSO; syntaxin: p ≤ 0.01 vs. IH
or DMSO).

DISCUSSION

OSAHS-Featured Chronic Intermittent
Hypoxia-Induced Pathological and
Functional Changes in the Hippocampus
Learning and memory are fundamental brain functions
and different brain areas play different roles in this process
(Benfenati, 2007). Extensive studies have shown that
intermittent hypoxia induces damage in the frontal cortex
and hippocampal CA1 area (Goldbart et al., 2003; Row et al.,
2003). Our study used an eight-arm maze and a modified
computer-controlled CIH model to confirm the adverse
effect of CIH on learning and memory function in mice.
The results showed that the reference RME, WME, and TE
were gradually reduced with training. Following the learning
and memory processes, these data quantify the formation
of spatial memory throughout training (Figures 1A–C).
CIH exposures significantly increased RME, WME, and TE
consistent with learning and memory impairment in the mice
(Figure 1D).

Working memory is a form of short-term memory. After
a certain period of training, spatial reference memory has
changed from short-term memory into long-term memory.
The hippocampus mediates this process. Hippocampus and
prefrontal cortex are the main anatomical locations of learning
and memory (Zheng and Zhang, 2015), and the hippocampal
CAl region is associated with spatial memory (Mehta, 2015).
We found CIH caused neuronal damage in the hippocampus,
apparent in degenerative changes in morphology and increased
apoptosis (Figures 2, 3).

In the nervous system, neurons contact each other by
synapses to form neuronal networks (Flores et al., 2016).
These networks undergo a constant transformation in response
to the activity via mechanisms of synaptic plasticity (Amtul,
2015). One of the most extensively studied forms of synaptic
plasticity is LTP and long-term depression (LTD) in the
hippocampus. They can modify and regulate the synapses,
which are believed to be essential processes for learning and
memory. LTP also enhances synaptogenesis in the developing
hippocampus and enhances structural synaptic plasticity (Hohoff
et al., 2014). Previous studies demonstrated that CIH during
the light phase impairs LTP in the hippocampal CA1 but
not in the dentate gyrus of rat (Wang et al., 2001; Payne
et al., 2004; Wall et al., 2014). Payne et al. (2004) found
that CIH can disturb the excitability of hippocampal neurons
and inhibit the levels of BDNF, leading to a loss of the
magnitude of LTP and memory deficits. PS-LTP induction
and sustenance in vitro can be used as a quantitative
measure of cognitive damage (Payne et al., 2004). It was also
reported that CIH does not affect pair-pulse facilitation but
suppress LTP which can be reversed with BDNF treatment,
suggesting a postsynaptic mechanism (Xie et al., 2010).
Most recently, Khuu et al. (2019) found that CIH induces
both ROS-dependent and ROS-independent effect on adult
neurogenesis and synaptic plasticity in the dentate gyrus,
which can be mitigated by antioxidant treatment, indicating
that oxidative signaling caused by CIH is a significant factor
that impairs synaptic plasticity in the hippocampus (Khuu
et al., 2019). Consistently, in the present study, 4-week
CIH exposures blunted the LTP at CA3-CA1 hippocampal
synapses (Figure 4 and Table 1) which likely underlies the
cognitive impairment (Figure 1). CIH has previously been
shown to impair synaptic plasticity, specifically LTP. However,
the underlying mechanism of IH on synaptic plasticity is
rarely known.

Neuroprotection via A1Rs Signaling on
CIH-Induced Cognitive Dysfunction and
Pathological Changes in the Hippocampus
Previous studies showed that adenosine accumulates
under hypoxia (Rubio et al., 1975; Winn et al., 1981)
and hypoxia-induced synaptic depression is mediated by
the presynaptic neuromodulator adenosine (Lucchi et al.,
1996; Dunwiddie and Masino, 2001; Gervitz et al., 2001;
Brust et al., 2006; Mukandala et al., 2016). Activation of
A1Rs demonstrated neuronal protection in the rodent
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FIGURE 4 | Hippocampal LTPs in mice without or with treatments from air control groups (A and AC), IH exposed groups (IH and DMSO), CCPA-administrated
group, DPCPX-administrated group, and A1R global knockout group (KO). LTP, long term potential; fEPSP, field excitatory postsynaptic potential; A, room air; AC,
intermittent air; IH, intermittent hypoxia; DMSO, IH with DMSO treatment; CCPA, IH with 2-chloro-N (6)-cyclopentyl-adenosine treatment; DPCPX, IH with
8-cyclopentyl-1,3-dipropylxanthine treatment; KO, IH with A1R knockout.

model of acute hypoxia or ischemia-reperfusion (Zamani
et al., 2013; Tregub et al., 2014). The detrimental effects of

A1R activation on neuronal cells, cognition, and synaptic
plasticity were also found in cultured PC12 cells and other
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TABLE 1 | The long-term potentials in hippocampal CA3–CA1 region.

Groups Number of independent LTP
experiments

A 6 142.58 ± 2.91
AC 6 139.14 ± 10.99
IH 6 68.45 ± 15.36∗

DMSO 6 62.92 ± 11.07
CCPA 6 95.44 ± 11.69&

DPCPX 6 39.88 ± 15.38&

KO 6 37.12 ± 6.20&

F 70.61
P <0.01

Data were presented as mean ± SD. ∗p < 0.01 vs. A or AC; and &p < 0.01 vs. IH
or DMSO; n = 6 slices of three mice per group. LTP, long-term potential; A, room air;
AC, intermittent air; IH, intermittent hypoxia; DMSO, IH with DMSO treatment; CCPA, IH
with 2-chloro-N (6)-cyclopentyl-adenosine treatment; DPCPX, IH with 8-cyclopentyl-1,3-
dipropylxanthine treatment; KO, IH with A1R knockout.

neurological diseases such as Alzheimer’s disease and
Parkinson’s disease (Chen, 2014; Giust et al., 2014; Mei
et al., 2018). The Possible reason is long-time exposures
under hypoxia cause a desensitive adenosine response.
However, in vivo functional response of A1Rs signaling
to the OSAHS-featured CIH has not yet investigated.
In this study, A1R agonist- or antagonist-administrated
mice and conventional A1R gene knockout mice were
exposed to CIH to determine the precise function of A1R
signaling. We found that CIH-induced morphological damage
and apoptosis in hippocampal neurons were aggravated
by A1R antagonist or A1R gene deletion but partially
rescued when A1R signaling was activated by the agonist
(Figures 2, 3), correlating to the functional change of
learning and memory (Figure 1). Taken together, these
results provided strong evidence that activation of A1R signaling
protects hippocampal neurons and cognitive function against
CIH insult.

Potential Mechanism (s) Underlying the
Neuroprotection of A1Rs Signaling in
CIH-Induced Cognitive Impairments
Adenosine, as an important central modulator, is widely
distributed in the tissues and organs of the human body.
It modulates synaptic plasticity by binding to the inhibitory
A1 and facilitatory A2A receptors. Adenosine pronouncedly
modulates hippocampal LTP via activation of A2AR rather
in aged than young animals. However, the selective A1R
antagonist DPCPX increased LTP and that effect tends to
be more pronounced in young than in aged rats. Suggesting
that adenosine only regulates hippocampal LTP through A1R
activation in young animals (Costenla et al., 2011). In adult
animals, A2AR mediates the effects of adenosine on memory
dysfunction (Li P. et al., 2015; Laurent et al., 2016; Silva
et al., 2016) which is sufficient to cause a deficit of reference
memory (Li P. et al., 2015). Thus, A1R and A2AR may
play diverse roles in OSAHS-induced cognitive impairments,
which could explain why caffeine (antagonist on both A1R and
A2AR) consumption does not change OSA-induced cognitive
dysfunction (Costenla et al., 2011; Pinheiro et al., 2014). In our

study, we established a model of OSAHS in young mice and
demonstrated that A1R activation controls synaptic plasticity and
memory performance.

Adenosine A1Rs are widely distributed in the brain and
mediate information transmission through the downstream
Gα(i)-cAMP-PKC pathway. Many studies have shown that
PKC and its subtypes play an important role in maintaining
LTP and synaptic plasticity (Besalduch et al., 2013; Jalil
et al., 2015; Li C. et al., 2015). It was also reported that
PKC is upregulated after chemical LTP induction (Palida
et al., 2015). Here we demonstrated that the levels of
Gα(i), PKC, and its subtype PKC-ζ were significantly
suppressed by CIH. The suppression was exacerbated via
partial or complete blockade of A1R signaling but relieved
via A1R activation (Figure 5A). These data suggest that
A1R signaling modulation is mediated by Gα(i)-cAMP-
PKC pathway.

Previous studies have shown that neuronal activity in
the hippocampus is regulated by the major pathway of
N-type voltage-sensitive Ca2+ channels/calcium-phospholipid-
dependent PKC/syntaxin and the minor pathway of P-type
voltage-sensitive Ca2+ channels/cyclic AMP-dependent protein
kinase (PKA)/synaptobrevin (Okada et al., 2001). Syntaxins are
a family of membrane-integrated proteins at presynaptic
active zones that may mediate Ca2+-triggered synaptic
vesicle exocytosis. Loss of syntaxins results in the impaired
neurotransmitter release and affects synaptic transmission
as well as neural function (Quick, 2006; Shin, 2014). In
our study, the levels of hippocampal syntaxin protein in
different experimental groups supported this observation
(Figure 5B)—the less levels of syntaxin in the hippocampus,
the worse cognitive performance. Syntaxin-1 is not only highly
expressed at the presynaptic active zone but also colocalized
postsynaptically within the nanometer range with NMDA
receptor subunit NR2B, suggesting that syntaxin-1 may be
involved in NR2B vesicular trafficking and enhancing learning
and memory via facilitating synaptic plasticity (Hussain et al.,
2016). Thus, further analysis is imperative to assess the role of
A1Rs in both pre- and post-synaptic function underlying the
CIH-induced cognitive deficits.

OSAHS is a breathing disorder that is associated with
cognitive impairment. While the profile of cognitive impairment
in OSAHS is becoming clearer, the mechanisms of OSAHS-
induced cognitive deficits remain unknown. The predominant
theoretical framework of cognitive impairment focuses on
hypoxia, hypercarbia, and sleep disruption (Beebe and Gozal,
2002; Beebe, 2005). The present study demonstrated that CIH
induces morphological changes and apoptosis in hippocampal
neurons, leading to cognitive dysfunction. Activation of
adenosine A1R signaling plays a neuroprotective role and
modulates the downstream Gα(i)-cAMP-PKC pathway, thus
promoting the formation of LTP and enhancing synaptic
plasticity as well as learning and memory.

One limitation of the present study is that we did not control
the parameters of the peripheral system. Whereas A1R is well
established to modify several peripheral systems, namely body
temperature, cardiovascular parameters, respiratory parameters,
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FIGURE 5 | Levels of A1R downstream molecules PKC, PKC-ζ, Gα(i), and syntaxin in hippocampi dissected from mice without or with treatments from air control
groups (A and AC), IH exposed groups (IH and DMSO), CCPA-administrated group, DPCPX-administrated group, and A1R global knockout group (KO). (A) Relative
Levels ratios (vs. A) of A1R downstream signaling PKC, PKC-ζ, and Gα(i). (B) Relative Levels ratio (vs. A) of synaptic transmission-regulatory membrane
protein—syntaxin. *p ≤ 0.01 vs. A or AC; #p ≤ 0.01 vs. IH or DMSO; &p ≤ 0.05 vs. IH or DMSO; n = 6 mice per group. A, room air; AC, intermittent air; IH,
intermittent hypoxia; DMSO, IH with DMSO treatment; CCPA, IH with 2-chloro-N (6)-cyclopentyl-adenosine treatment; DPCPX, IH with
8-cyclopentyl-1,3-dipropylxanthine treatment; A1R, adenosine A1 receptor; KO, IH with A1R knockout.

and consequently biochemical parameters (pH, pCO2, pO2),
all of which can impact indirectly on brain function. Our
future studies will explore if the presently reported impact
of A1R on cognitive impairment induced by CIH might
indirectly result from an A1R-mediated control of any of
these parameters.

Intense efforts by many pharmaceutical companies and
academicians in the A1R agonist field have entered clinical
trial stages. However, the use of A1R agonists has been met
by limited success due to the cardiovascular side effects and

well-defined desensitization in both animal models and human
trials. Nonetheless, the reduction in CIH-induced cognitive
impairment via A1R agonism may have long-awaited clinical
success soon.
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