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Paris Sciences et Lettres University, Laboratoire de Neurosciences Cognitives, Group for Neural Theory,

Paris, France, 3 Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases,

Magdeburg, Germany, 4 Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany, 5 Center for

Behavioral Brain Sciences (CBBS), Magdeburg, Germany

* vanya.lzr@gmail.com (IL); stasenko@neuro.nnov.ru (SS)

Abstract

Experimental studies highlight the important role of the extracellular matrix (ECM) in the reg-

ulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn,

the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-

called critical period of neural development, stabilizing the efficient configurations of neural

networks in the brain. ECM is locally remodeled by proteases secreted and activated in an

activity-dependent manner into the extracellular space and this process is important for

physiological synaptic plasticity. We ask if ECM remodeling may be exaggerated under

pathological conditions and enable activity-dependent switches between different regimes

of ECM expression. We consider an analytical model based on known mechanisms of inter-

action between neuronal activity and expression of ECM, ECM receptors and ECM degrad-

ing proteases. We demonstrate that either inhibitory or excitatory influence of ECM on

neuronal activity may lead to the bistability of ECM expression, so two stable stationary

states are observed. Noteworthy, only in the case when ECM has predominant inhibitory

influence on neurons, the bistability is dependent on the activity of proteases. Excitatory

ECM-neuron feedback influences may also result in spontaneous oscillations of ECM

expression, which may coexist with a stable stationary state. Thus, ECM-neuronal interac-

tions support switches between distinct dynamic regimes of ECM expression, possibly rep-

resenting transitions into disease states associated with remodeling of brain ECM.

Introduction

Understanding the principles and mechanisms of information processing in the central ner-

vous system is among the main objectives of neuroscience. For a long time, the main role in

this process was assigned to neurons. Recent studies have shown that, in addition to neurons,

an important role in the processing of information also belongs to glial cells and to the ECM

[1–4].
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The neural ECM, particularly in the form of perineuronal nets, is accumulated during the

critical period of postnatal development [4]. Experiences at this time induce the stabilization

of functional microcircuits in the brain to support vital brain functions. It is thought that the

mature chondroitin sulfate-rich ECM, formed at the end of the critical period, serves as an

inhibitory ‘barrier’ that restrains structural plasticity. In a number of experimental studies, it

was shown that the ECM molecules in the mature brain are capable of modulating the effi-

ciency of synaptic transmission and neuronal excitability. It is assumed that these mechanisms

play a key role in the homeostatic regulation of neuronal activity at relatively long time scales

[1,2]. The homeostatic forms of plasticity supported by ECM are thought to prevent pathologi-

cal hypo- and hyperexcitation of neurons, which may lead to neuronal dysfunction and/or

cell death. For example, such a known mechanism as the synaptic scaling allows neurons to

maintain neuronal firing rate in a certain range in response to various alterations of afferent

inputs or modulation of excitability [5,6]. The synaptic upscaling involves an increase in the

concentration of ECM receptors (integrins) on postsynapses, which leads to elevated synaptic

expression of AMPA receptors and, hence, to the increased efficiency of excitatory synaptic

transmission [1]. Another cascade of regulation involves changing the Ca2+ influx into neu-

rons through interaction between hyaluronic acid and L-type calcium channels (L-VDCC) [7].

Experimental data demonstrate dynamic changes in cortical and hippocampal ECM during

the critical period of development, in response to learning, day-night oscillations in the lateral

hypothalamus, long-lasting downregulation of hippocampal and cortical ECM in epilepsy and

schizophrenia, and upregulation of ECM in aging, dementia, and depression [1,4,8]. Regula-

tion of ECM concentration is implemented not only via the control of synthesis and secretion

of ECM molecules into the extracellular space, but also by the activity of proteases (e.g., tissue

plasminogen activator, plasmin, matrix metalloproteinases 2 and 9, aggrecanases 1 and 2, and

neurotrypsin), which are released pre- and postsynaptically, as well as from glial cells, to cleave

the ECM molecules [4]. As seen in experimental studies on hippocampal interneurons, ECM-

neuron interactions involving neuronal Kv channels effectively lead to modulation of the

action potential generation threshold, so that a deficit in ECM facilitates firing of interneurons

[9–11]. On the other hand, recent experimental findings for pyramidal neurons suggest that

fewer spikes are generated after ECM attenuation due to activation of small-conductance cal-

cium-activated potassium (SK) channels [12]. Thus, the considered regulations mediated by

the ECM molecules may lead to excitation or inhibition of neuronal activity. In this study we

aim to investigate, using a mathematical model of ECM-neuronal interactions, how different

regulation mechanisms involved in these interactions shape the dynamics of ECM production

and degradation.

A phenomenological model describing the homeostatic regulation of neuronal activity by

ECM molecules was first proposed by Kazantsev and colleagues [2]. The model employed a

kinetic activation-function description of ECM activity and described the effects of modula-

tion of synaptic transmission and spiking threshold. The activation functions were taken in

the simplest possible form reflecting the presence of saturation level what was quite a natural

assumption for quasi stationary processes considered at very long time scales. The activation

functions are taken in a sigmoidal form [13,14]. The published model predicted the bistability

in neuronal firing for particular set of parameters describing ECM-neuronal interaction. In

the present work, we further investigated how changes in the polarity of the ECM influence on

neurons affects the ECM and neuronal dynamics. In addition to the bistability, the modified

model predicted possibility of oscillations. It means that the ECM to neuron crosstalk may

induce self-oscillations and, hence, rhythmicity in facilitation/depression of ECM expression

at the protein level.

Modelling of ECM-neuron interactions, oscillations of the brain extracellular matrix
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Reductions of the original model of ECM dynamics were done in order to enable the

analytical tractability of the resulting model. The polarity of ECM-neuron interactions was

changed according to newly available experimental data, showing that that fewer spikes are

generated after ECM attenuation due to activation of SK channels [12] compared to the previ-

ous model [2]. Importantly, we systematically considered how the prevalence of particular

mechanisms of ECM-neuronal interactions might determine the dynamics of ECM concentra-

tion levels. We demonstrate that bistability with stable stationary states may be observed

regardless of the polarity of ECM influence on neurons—it may be either inhibitory or excit-

atory. However, in the case when ECM has inhibitory influence on neuronal activity, we pre-

dict that bistability is dependent on the activity of proteases, while it is not the case when ECM

is excitatory. We show how the excitatory ECM-neuron interaction may lead to spontaneous

self-oscillations of ECM molecule concentration, which can coexist with a stable stationary

state.

Methods

Mathematical model of ECM expression and activity

The processes of ECM synthesis and degradation in a neuronal network are described by the

phenomenological approach developed in [2]. The description of neural activity is in accor-

dance with the mean-field Wilson-Cowan type model [15]. Due to the fact that the characteris-

tic timescales of neural dynamics are significantly shorter than those of ECM molecule

concentration changes, we set the mean firing rate of the neural population equal to the sta-

tionary value, which is a function of the ECM molecule concentration Q = Qinf(Z). We assume

here a single stationary value of the mean firing rate, e.g. we do not consider bistability induced

by E-I interactions in the Wilson-Cowan model [15]. Depending on the polarity of ECM-neu-

ron interactions, the function Qinf(Z) can be either monotonically increasing or decreasing.

The key variables describing ECM activity are the ECM concentration Z, the concentration of

ECM receptors R, and the concentration of proteases P. The dynamical model consists of the

following equations

dZ
dt
¼ � ðaZ þ gPPÞZ þ bZHZðQinfðZÞÞ ð1Þ

dP
dt
¼ � aPP þ bPHPðQinfðZÞÞ ð2Þ

dR
dt
¼ � aRRþ bRHRðQinfðZÞÞ ð3Þ

Here the activation functions HZ,P,R all assumed to have a sigmoid shape. An increase in the

protease concentration P is assumed to be linearly related to the speed of ECM degradation,

e.g. αZ� = αZ + γPP. If the ECM-neuronal interactions involve synaptic scaling [16], then sta-

tionary neuronal firing rate might also depend on the concentration of postsynaptic ECM

receptors. We assume that the resultant extent of the synaptic scaling effect is proportional to

the product of ECM molecule concentration and ECM receptor concentration ZR since pro-

duction of ECM molecules and receptors is assumed to be a statistically uncorrelated process.

In the case of synaptic scaling, it was shown [2] for a Hodgkin-Huxley-type model that the

resultant stationary firing rate Qinf can be approximated by a linear function of ZR. The time-

scales of ECM receptor dynamics are at least an order of magnitude shorter than those of ECM

molecules and receptors in the original model [2], so that variable R can be approximated by
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its steady-state value Rinf(Q). For other ECM-neuron interaction mechanisms there is no

dependence on the ECM receptor concentration R, as shown in further sections. In any case

the dynamical system might be reduced to a two-dimensional one, so that it is rather analyti-

cally tractable.

Results

ECM bistability

The presented first-order relaxation kinetics model for ECM proteins and proteases concen-

trations can be viewed as an approximation of a more detailed model of ECM degradation and

remodeling (e.g., developed in [17]). To avoid the dynamic effects induced by the incorpo-

ration of specific biophysical processes, we only define parameters that have direct biophysical

interpretation in relation to the kinetics. These parameters are namely the rate of concentra-

tion decay and activity-induced production rate of ECM proteins and proteases.

Let us consider the case when the ECM-neuron interaction feedback loop involves either

clustering of Kv potassium channels (inhibitory ECM effect) or inhibition of small-conduc-

tance calcium-activated SK potassium channels (excitatory ECM effect). In these cases, ECM-

neuron interactions are independent of postsynaptic ECM receptor concentration R, since the

regulation mechanism involves modulation of somatic membrane receptors of the neuron.

Hence, the stationary firing rate of neurons depends only on the ECM concentration.

We assume the effect of ECM concentration on neuronal firing rate might be approximated

by a linear dependence Qinf = Q0 + αQZ. This is a fair assumption when the AP firing threshold

is being modulated by ECM [2], and we use the same description when neuronal firing is mod-

ulated through SK channel activation. We arrive at the following system of equations describ-

ing ECM dynamics:

dZ
dt
¼ � ðaZ þ gPPÞZ þ bZĤZðZÞ ¼ ẐðZ; PÞ ð4Þ

ĤZðZÞ ¼ Z0 �
Z0 � Z1

1þ expðK � 1
Z ðQ0 þ aQZ � yZÞÞ

� �

ð5Þ

dP
dt
¼ � aPP þ bPĤPðZÞ ¼ P̂ðZ; PÞ ð6Þ

HPðZÞ ¼ P0 �
P0 � P1

1þ expðk� 1
P ðQ0 þ aQZ � yPÞÞ

� �

ð7Þ

Let us first qualitatively show that ECM concentration might be bistable in this system

regardless of the sign of αQ. The equilibrium curves in the ECM-concentration firing rate

phase plane (Z, Q) are shown in Fig 1.

It is apparent that there are cases of bistability, which correspond to the line Qinf = Q0 +

αQZ intersecting the Zinf curve in three points, two stable and one unstable stationary solu-

tions, correspondingly. Note that depending on the sign of the αQ parameter, which controls

whether ECM influence on neurons is inhibitory or excitatory, the bistability effect is induced

by different mechanisms. When the ECM-neuron interaction is excitatory, and hence the

slope of the Qinf(Z) line is positive, there can exist bistable solutions regardless of whether the

curve Zinf(Q) has a”bump” at intermediate values of Q. A monotonically increasing sigmoid

form of Zinf(Q) (which corresponds to the absence of protease effect on ECM, e.g. αP = 0)

would be enough to yield a set of bistable solutions. On the other hand, if the ECM-neuron
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effect is inhibitory (negative αQ), bistable solutions only exist in the presence of the bump

in the equilibrium curve Zinf(Q). This bump occurs because when neuronal firing rate Q
increases, the synthesis of ECM molecules is upregulated, but the concentration of proteases

P increases as well, though at slightly higher values of the firing rate. An increase in protease

Fig 1. Examples of equilibrium curves corresponding to Eqs (4)–(6) in the (Z, Q) phase plane for the case of (top)

excitatory ECM-neuron interaction and (bottom) inhibitory ECM-neuron interaction. Both panels show the

existence of bistable solutions regardless of the polarity of ECM-neuron interactions. The intersections of the nullclines

determine the equilibria of the system: blue points are stable, red points are unstable.

https://doi.org/10.1371/journal.pone.0227917.g001
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concentration P leads to ECM degradation, hence the equilibrium value Zinf is smaller at

higher firing rates compared to the intermediate range of Q values. The height of this bump is

determined by the strength of protease-induced ECM degradation (value of αP).

In biophysical terms, we predict that if the prevalent regulation cascade determining ECM-

neuronal interactions restrains neuronal excitability, then ECM bistability can only be imple-

mented if proteases demonstrate a strong effect on ECM degradation. If ECM-neuronal inter-

actions support neuronal excitability, the bistability effect does not depend on the strength of

protease-ECM interaction and might be implemented even in the absence of protease-depen-

dent ECM degradation.

Homeostatic ECM oscillations

Let us more closely consider the case of excitatory ECM-neuron interactions (αQ> 0), for

instance, implemented through inhibition of neuronal SK channels, as seen experimentally.

First, let us study the number and stability of equilibrium states of the Eq. system (4)–(7). As

free parameter we consider the effective firing rate threshold for ECM production θZ.

The number of equilibrium points is determined by the number of intersections of the null-

clines Zˆ(Z,P) = 0 and Pˆ(Z,P) = 0. Fig 2 shows the nullcline intersections for three different val-

ues of θZ: θZ = 5.68, θZ = 6 and θZ = 6.4. It is apparent that changes in θZ only influence the curve

Zˆ(Z,P) = 0 while the Pˆ(Z,P) = 0 curve stays the same. For θZ = 5.68, the intersection of the

curves determines the unique equilibrium of the system that is shown as the green point in Fig

2a. As will be shown later, this point is a stable focus. With increasing θZ, the upper part of the Zˆ

(Z,P) = 0 curve goes down relative to the Pˆ(Z,P) = 0 curve. For θZ = 6, three intersection points

exist. Particularly, in Fig 2b, two of these points are unstable (the red point is of saddle type, the

purple one is an unstable focus) and the blue point corresponds to the stable node. The following

increase of θZ leads to the case with one intersection of the nullclines. In Fig 2c, this point is

shown by blue color. The stability analysis carried out for the linearized equations shows that

this is the stable node. Thus for considered set of the parameters, the system (4)–(7) has three

equilibria within the interval θZ 2 (θZL, θZR) where the left boundary corresponds to coincidence

of blue and red points, while the points denoted by red and purple colors coincide at θZ = θZR.

To investigate the stability of these equilibrium points we consider the Jacobi matrix:

A ¼
� ðaZ þ gPPÞ þ B1 � gPZ

B2 � aP

" #

ð8Þ

where

B1 ¼ �
aQbZðZ0 � Z1Þexpð� k� 1

Z ðQ0 þ aQZ � yZÞÞ
kZð1þ expð� k� 1

Z ðQ0 þ aQZ � yZÞÞÞ
2

B2 ¼ �
aQbPðP0 � P1Þexpð� k� 1

P ðQ0 þ aQZ � yPÞÞ
kPð1þ expð� k� 1

P ðQ0 þ aQZ � yPÞÞÞ
2

ð9Þ

with Z and P taken in the equilibrium point (Z�, P�) obtained from the following system:

ẐðZ�; P�Þ ¼ 0

P̂ðZ�; P�Þ ¼ 0
ð10Þ

Finding the eigenvalues of the matrix (8) as the roots s1 and s2 of the characteristic equation:

s2 þ ½aZ þ aP þ gPP� � B1�sþ aPðaZ þ gPP� � B1Þ þ gPB2Z� ¼ 0 ð11Þ
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the stability of the equilibria (Z�, P�) for various θZ can be determined. Particularly, in Fig 3a,

symbols correspond to the stationary Z� values obtained for various values of the ECM produc-

tion threshold θZ. Different types of equilibrium points are denoted by different symbols. In

addition to stable stationary states, there might exist oscillatory regimes as well, with corre-

sponding limit cycles in the phase space of the system. Blue curves in Fig 3a demonstrate the

minimal Zmin and maximal Zmax values, which Z can achieve on the stable limit cycle for differ-

ent values of θZ. The red curves denote the same, but for unstable limit cycle. The differences

ΔZ = Zmax–Zmin and ΔP = Pmax–Pmin for stable limit cycles as functions of θZ are presented in

Fig 3b.

To discuss the mechanisms of various regimes emergence, we start with the left boundary of

the considered interval of θZ change. Namely, the phase portrait presented in Fig 3c is obtained

for θZ = 5.65. This quiescent monostable regime with the unique attracting set being the stable

focus is observed for small θZ and denoted in Fig 3a by green symbols. For θZ�5.685, a stable

and an unstable limit cycles appear as a result of a fold-limit-cycle bifurcation. Particularly, the

phase portrait for θZ = 5.69 with two limit cycles is shown in Fig 3d. In this figure and others,

the stable limit cycle is drawn in blue, and unstable limit cycle is in red. Note that for θZ = 5.69

we observe the first type of bistability: both the stable focus and the stable limit cycle of large

amplitude are co-exist in the phase space of the system. For θZ� 5.755, as the result of subcriti-

cal Andronov-Hopf bifurcation, unstable limit cycle turns into the equilibrium point, and the

stable focus becomes unstable, as shown in Fig 3e. Within the θZ 2 (5.755, 5.904) interval

the oscillatory monostable regime is observed with the unique attracting set being the stable

limit cycle that disappears through the saddle-node separatrix-loop bifurcation at θZ� 5.904.

The two equilibrium states that appear in the result of this bifurcation (a stable node and a sad-

dle)”walk away” with increasing θZ and, in particular, for θZ� 5.92 the phase portrait of the sys-

tem has a form as shown in Fig 3f. With further increase in the value of θZ, another limit cycle

appears. The mechanism of its appearance is the following: for θZ = 6.1 an unstable separatrix

Fig 2. Nullclines Zˆ(Z,P) = 0 and Pˆ(Z,P) = 0 for three different values of the ECM production threshold θZ: (a)

θZ = 5.68, (b) θZ = 6 and (c) θZ = 6.4. The intersections of the nullclines determine the equilibria of the system: green

(focus) and blue (node) points are stable, red (saddle) and purple (focus) are unstable. Biologically meaningless areas

are indicated as shaded domains. Other parameters are given in Table 1.

https://doi.org/10.1371/journal.pone.0227917.g002

Table 1. Parameters of the model (4–7).

Parameter Values

Q0[arb.u.], αQ[arb.u.] 5, 0.23

αZ [ms−1], kZ [arb.u.], βZ [ms−1] 0.0001, 0.15, 0.01

αP [ms−1],βP [ms−1],θP [arb.u.],kP[arb.u.] 0.001, 0.001, 6, 0.05

https://doi.org/10.1371/journal.pone.0227917.t001
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bends the stable separatrix outside, Fig 3g; the separatrices get closer with increasing θZ, and for

θZ = 6.12 the stable separatrix covers the unstable one. The change in relative position of separa-

trices is taking place with negative saddle value σ = λ1 + λ2 < 0. Therefore, a stable limit cycle

has to appear, which is exactly what is observed: Fig 3h shows the cycle which appeared in the

result of saddle separatrix-loop bifurcation with blue color. It is noteworthy that the amplitude

of this oscillatory state is rather small (for comparison with the large-amplitude cycle that was

observed before, the differences ΔZ and ΔP are also presented in Fig 3b) and its generation

depends on the initial conditions because it co-exists with the stable node in the phase space.

This is the second type of bistability: the co-existence of the stable node and the small-amplitude

limit cycle that is observed for θZ 2 (6.11, 6.14). For θZ� 6.14 the stable cycle turns into the

equilibrium point and vanishes through the supercritical Andronov-Hopf bifurcation. The

equilibrium point (focus) becomes stable. The transition to the third type of bistability occurs:

two types of stationary states (the stable focus and the stable node, Fig 3i) co-exist in the phase

space of the system. With further increase of θZ the focus turns into a node and disappears in

the result of another saddle-node bifurcation at θZ� 6.19. For θZ> 6.19, the quiescent mono-

stable regime with the stable node being the unique attracting set in the phase space of the sys-

tem is observed.

In summary, with increasing value of ECM production threshold θZ, we can observe two

areas in the parameter space of the model, where oscillatory dynamics of ECM concentration

levels might occur, either spontaneously (if the limit cycle is the unique attracting set in the

phase space) or as a result of external stimulation (if ECM concentration was initially in a

stationary state). The nature of these ECM oscillations may be understood qualitatively—an

Fig 3. (a) Bifurcation diagram of the system (4)–(7) for varied ECM production threshold value θZ. (b) Differences

ΔZ = Zmax–Zmin and ΔP = Pmax–Pmin as functions of θZ. (c)-(j) Phase portraits of the system for various values of θZ.

Other parameters are given in Table 1.

https://doi.org/10.1371/journal.pone.0227917.g003
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increase in neuronal activity drives an increase in ECM concentration, and further release and

activation of proteases that degrade ECM molecules, which in turn lowers neuronal activity.

Proteases are less active at low neuronal activity levels, and the positive ECM-neuronal firing

feedback loop drives the activity levels up again.

Fig 4 shows neuronal firing-induced switches between oscillations and a stationary ECM

state. Spontaneous changes in the level of neural firing act as an effective stimulus to the ECM-

proteases system, which might drive the system away from the locally stable manifold.

The physical timescale values of the observed ECM oscillations are quite extended in our

model since the key assumption is that ECM dynamics is much slower as compared to neuro-

nal dynamics. Experimentally observed changes in ECM concentration may be on the time-

scale of hours to days [1], but the exact relaxation time values in the model remain to be

estimated.

Influence of ECM receptor dynamics

In the case when the prevalent mechanism of ECM-neuron interactions is through synaptic

scaling, the dynamics of ECM receptors might influence ECM dynamics in general. As

Fig 4. Simulated ECM concentration trace under the conditions when the ECM-protease system exhibits coexistence of a stable limit cycle and a

stable stationary state. Application of an external stimulus (e.g. a spontaneous increase or decrease in neural activity) may induce dynamical switches

between activity states. This is an imposed change in neural activity. Parameter value for θZ = 3.75. Other parameters are given in Table 1.

https://doi.org/10.1371/journal.pone.0227917.g004

Modelling of ECM-neuron interactions, oscillations of the brain extracellular matrix

PLOS ONE | https://doi.org/10.1371/journal.pone.0227917 January 24, 2020 9 / 12

https://doi.org/10.1371/journal.pone.0227917.g004
https://doi.org/10.1371/journal.pone.0227917


mentioned above, typically the characteristic timescales of ECM receptor dynamics is signifi-

cantly shorter than that of ECM molecules and proteases, so that R can be replaced with the

stationary value Rinf(Q). The dynamics of ECM receptors is, however, significantly slower than

that of neuronal activity, so we can set R = Rinf(Qinf). Assuming that the stationary firing rate

level scales linearly with the product ZR, we arrive at

QinfðZÞ ¼
Q0 þ aQR0Z
1þ aQaRZ

ð12Þ

where we also introduced a linear approximation R� R0 − αRQ. It is clear that the slope of

ECM-neuronal interaction curve is now activity-dependent, decreasing with higher levels of

neural activity. This might result in an activity-driven formation of bistable or oscillatory states

of the ECM concentration.

Another limit case is when the dynamics of ECM receptors is slow even in comparison to

characteristic timescales of ECM remodeling (e.g. the period of ECM concentration oscilla-

tions), when the value of R� R� is approximately constant on the timescale of interest. In this

case the analysis would be the same as in the case of SK-channel mediated ECM-neuron inter-

actions, with negligible activity-dependent changes in the system’s dynamics.

Discussion

In summary, we have investigated ECM concentration in a mathematical model of ECM-regu-

lated modulation of neural activity. The model is based on the following key assumptions: (a)

synthesis of ECM molecules and ECM-degrading enzymes is controlled by the level of neuro-

nal activity, (b) changes in ECM levels may, in turn, modulate neuronal activity, in either

excitatory or inhibitory manner, depending on the prevailing mechanism of ECM-neuronal

interaction. Mathematically, the model can be reduced to a set of two or three coupled differ-

ential equations, depending on the assumptions concerning the nature of ECM-neuronal

interactions and characteristic timescales of postsynaptic ECM receptor production. The

inhibitory effect of increased ECM levels on neural activity was observed to induce protease-

dependent bistable dynamics, while the excitatory effect of ECM-neuronal interaction resulted

in a richer repertoire of observable dynamical states. We found that for the excitatory ECM-

neuron interactions, e.g. involving the inhibition of SK-channels or synaptic upscaling, the

ECM concentration levels may exhibit different activity regimes, ranging from neural firing-

induced protease-independent switching between stationary states of the ECM concentration

to spontaneous ECM oscillations, which might coexist with a stationary concentration level. In

terms of neuronal activity, this means that there are different dynamical modes of ultra-slow

firing threshold modulation or modulation of the power of the synaptic scaling effect. Devel-

opment of more detailed network-based models of neural activity subjected to these ultra-slow

modulations might predict the functional effects by which changes in the ECM induced by a

seizure or emotional stress might persistently alter the activity of neuronal circuits.

Obviously, the next step for the development of the model is to compare its predictions

with experimentally observed dynamics of neuronal activity, activities of ECM proteases and

expression of neural ECM components. Ca2+ imaging and multielectrode arrays can be used

in vitro and in vivo to monitor neuronal activity. Live labeling of ECM of perineuronal nets

with Vicia villosa agglutinin is possible in vitro to compare ECM expression at two time-points

[18], but obviously this approach is far from ideal for quantitative analysis of ECM dynamics.

Recently, we introduced adeno-associated viruses expressing fluorescently tagged mutated link

protein Hapln1 for efficient neural ECM labeling in vitro and in vivo (not published). There

are biosensors for MMP-9 proteolytic activity [19], as one of proteases involved in remodeling
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of neural ECM. However, MMP-9 seems to be not the major enzyme for remodeling of ECM

and hence new biosensors for live imaging of aggrecanase activities against aggrecan and/or

other members of the aggrecan family [20], should be first designed and validated before we

can try to fit our models to experimental data. Also, more detailed description of neural net-

works with inhibitory and excitatory neurons, and more differentiated regulations of ECM

associated with these cell types should be introduced in the model. It is surely worth to invest

in these developments as the nature of ECM is such that rapid proteolytic degradation is fol-

lowed by slower recovery of ECM, enabling dramatic long-term switches between ECM levels,

as suggested by the present work. These changes in ECM may reopen the critical transition

period for global readjustment of neural network. Analysis of adaptive and maladaptive values

of these transitions may generate insights into pathogenesis of diverse brain diseases.
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