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There are only a few platforms that integrate multiple omics data types,
bioinformatics tools, and interfaces for integrative analyses and visualization
that do not require programming skills. Here we present iLINCS (http://ilincs.
org), an integrative web-based platform for analysis of omics data and sig-
natures of cellular perturbations. The platform facilitates mining and re-
analysis of the large collection of omics datasets (>34,000), pre-computed
signatures (>200,000), and their connections, as well as the analysis of user-
submitted omics signatures of diseases and cellular perturbations. iLINCS
analysis workflows integrate vast omics data resources and a range of analytics
and interactive visualization tools into a comprehensive platform for analysis
of omics signatures. iLINCS user-friendly interfaces enable execution of
sophisticated analyses of omics signatures, mechanism of action analysis, and
signature-driven drug repositioning. We illustrate the utility of iLINCS with
three use cases involving analysis of cancer proteogenomic signatures, COVID
19 transcriptomic signatures and mTOR signaling.

Transcriptomics and proteomics (omics) signatures in response to
cellular perturbations consist of changes in gene or protein expression
levels after the perturbation. An omics signature is a high-dimensional
readout of cellular state change that provides information about the
biological processes affected by the perturbation and perturbation-
induced phenotypic changes of the cell. The signature on its own
provides information, although not always directly discernable, about

themolecularmechanisms bywhich the perturbation causes observed
changes. If we consider a disease to be a perturbation of the homeo-
static biological system under normal physiology, then the omics
signature of a disease are the differences in gene/protein expression
levels between disease and non-diseased tissue samples.

The low cost and effectiveness of transcriptomics assays1–4 have
resulted in an abundance of transcriptomics datasets and signatures.
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Recent advances in the field of high-throughput proteomics made the
generation of large numbers of proteomics signatures a reality5,6.
Several recent efforts were directed at the systematic generation of
omics signatures of cellular perturbations7 and at generating libraries
of signatures by re-analyzing public domain omics datasets8,9. The
recently released library of integrated network-based cellular sig-
natures (LINCS)7 L1000dataset generated transcriptomic signatures at
an unprecedented scale2. The availability of resulting libraries of sig-
natures opens exciting new avenues for learning about the mechan-
isms of diseases and the search for effective therapeutics10.

The analysis and interpretation of omics signatures has been
intensely researched. Numerous methods and tools have been devel-
oped for identifying changes in molecular phenotypes implicated by
transcriptional signatures based on gene set enrichment, pathway, and
network analyses approaches11–13. Directly matching transcriptional
signatures of a disease with negatively correlated transcriptional sig-
natures of chemical perturbations (CP) underlies the Connectivity Map
(CMAP) approach to identifying potential drug candidates10,14,15. Simi-
larly, correlating signatures of chemical perturbagens with genetic
perturbations of specific genes has been used to identify putative
targets of drugs and chemical perturbagens2.

To fully exploit the information contained within omics signature
libraries and within countless omics signatures generated frequently
and constantly by investigators around the world, new user-friendly
integrative tools, accessible to a large segment of biomedical research
community, are needed to bring these data together. The integrative
LINCS (iLINCS) portal brings together libraries of precomputed

signatures, formatted datasets, connections between signatures, and
integrates them with a bioinformatics analysis engine and streamlined
user interfaces into a powerful system for omics signature analysis.

Results
iLINCS (available at http://ilincs.org) is an integrative user-friendly web
platform for the analysis of omics (transcriptomic and proteomic)
datasets and signatures of cellular perturbations. The key components
of iLINCS are: Interactive and interconnected analytical workflows for
the creation and analysis of omics signatures; The large collection of
datasets, precomputed signatures, and their connections; And user-
friendly graphical interfaces for executing analytical tasks and
workflows.

The central concept in iLINCS is the omics signature, which can be
retrieved from the precomputed signature libraries within the iLINCS
database, submitted by the user, or constructed using one of the
iLINCS datasets (Fig. 1a). The signatures in iLINCS consist of the dif-
ferential gene or protein expression levels and associated P values
between perturbed and baseline samples for all, or any subset of
measured genes/proteins. Signatures submitted by the user can also
be in the form of a list of genes/proteins, or a list of up- and down-
regulated genes/proteins. iLINCS backend database contains >34,000
processed omics datasets, >220,000 omics signatures and >109 sta-
tistically significant “connections” between signatures. Omics sig-
natures include transcriptomic signatures of more than 15,000
chemicals andgeneticperturbations ofmore than4400genes (Fig. 1a).
Omics datasets available for analysis and signatures creation cover a

Fig. 1 | Integrative omics signature analysis in iLINCS. a A signature can be
selectedby querying the iLINCS database, submitted by the user, or constructed by
analyzing an iLINCSomics dataset. Signatures in the database include chemical and
genetic perturbation, and a wide range of disease-related signatures. The datasets
cover a wide range of human diseases. b The signature can be analyzed using a
range of systems biology methods (gene set enrichment, pathway and network

analyses). c Signature “connectivity” analyses can be applied to identify cellular
perturbations and biological states of similar signatures. d The analysis of con-
nected signatures, as well as the identity of the perturbed genes and proteins
leading to the connected signatures, can be used to elucidate mechanisms of
action. e Ultimately, the results of the analyses lead to insights and hypotheses
about potential therapeutic targets and therapeutic agents.

Article https://doi.org/10.1038/s41467-022-32205-3

Nature Communications |         (2022) 13:4678 2

http://ilincs.org


wide range of diseases and include transcriptomic (RNA-seq and
microarray) and proteomic (Reverse Phase Protein Arrays16 and LINCS-
targeted mass spectrometry proteomics5) datasets. Datasets collec-
tions include close to complete collection of GEO RNA-seq datasets
and various other dataset collections, such as The Cancer Genome
Atlas (TCGA), GEO GDS microarray datasets17, etc. A detailed descrip-
tion of iLINCS omics signatures and datasets is provided in “Methods”.
Analysis of 8942 iLINCS datasets from GEO, annotated by MeSH
terms18, shows a wide range of disease coverage (Fig. 1a).

iLINCS analytical workflows facilitate systems biology interpreta-
tion of the signature (Fig. 1b) and the connectivity analysis of the sig-
nature with all iLINCS precomputed signatures (Fig. 1c). Connected
signatures can further be analyzed in terms of the patterns of gene/
protein expression level changes that underlie the connectivity with
the query signature, or through the analysis of gene/protein targets of
connected perturbagens (Fig. 1d). Ultimately, the multi-layered sys-
tems biology analyses, and the connectivity analyses lead to biological
insights, and identification of therapeutic targets and putative ther-
apeutic agents (Fig. 1e).

Interactive analytical workflows in iLINCS facilitate signature
construction through differential expression analysis as well as clus-
tering, dimensionality reduction, functional enrichment, signature
connectivity analysis, pathway and network analysis, and integrative
interactive visualization. Visualizations include interactive scatter
plots, volcano and GSEA plots, heatmaps, and pathway and network
node and stick diagram (Supplemental Fig. 1). Users can download raw
data and signatures, analysis results, and publication-ready graphics.
iLINCS internal analysis and visualization engine uses R19 and open-
source visualization tools. iLINCS also facilitates seamless integration
with a wide range of task-specific online bioinformatics and systems
biology tools and resources including Enrichr20, DAVID21, ToppGene22,
Reactome23, KEGG24, GeneMania25, X2KWeb26, L1000FWD27, STITCH28,
Clustergrammer29, piNET30, LINCS Data Portal31, ScrubChem32,
PubChem33 and GEO34. Programmatic access to iLINCS data, workflows
and visualizations are facilitated by the calls to iLINCS API which is

documented with the OpenAPI community standard. Examples of
utilizing the iLINCS API within data analysis scripts are provided on
GitHub (https://github.com/uc-bd2k/ilincsAPI). The iLINCS software
architecture is described in Supplemental Fig. 2.

Use cases
iLINCS workflows facilitate a wide range of possible use cases.
Querying iLINCS with user-submitted external signatures enables
identification of connected perturbations signatures, and answering
in-depth questions about expression patterns of individual genes or
gene lists of interest in specific datasets, or across classes of cellular
perturbations. Querying iLINCS with individual genes or proteins can
identify sets of perturbations that significantly affect their expression.
Such analysis leads to a set of chemicals, or genetic perturbations, that
can be applied to modulate the expression and activity of the corre-
sponding proteins. Queries with lists of genes representing a hallmark
of a specific biological state or process35 can identify a set of pertur-
bations that may accordingly modify cellular phenotype. iLINCS
implements complete systematic polypharmacology and drug
repurposing36,37 workflows, and has been listed as a Bioinformatics
resource for cancer immunotherapy studies38 and multi-omics com-
putational oncology39. Most recently, iLINCS has been used in the drug
repurposing workflow that combines searching for drug repurposing
candidates via CMAP analysis with the validation using analysis of
Electronic Health Records40. Finally, iLINCS removes technical barriers
for re-using any of more than 34,000 preprocessed omics datasets
enabling users to construct and analyze new omics signatures without
any data generation and with only a few mouse clicks.

Here, we illustrate the use of iLINCS in detecting and modulating
aberrant mTOR pathway signaling, analysis of proteogenomic sig-
natures in breast cancer and in search for COVID-19 therapeutics. It is
important to emphasize that all analyses were performed by navigat-
ing iLINCS GUI within a web browser, and each use case can be com-
pleted in less than fiveminutes. Step-by-step instructions are provided
in the SupplementalMaterials (SupplementalWorkflows 1, 2, and 3). In

Fig. 2 | Analysis of LINCS L1000 signatures of genetic and chemical perturba-
tions. aMost frequently perturbed genes among the Consensus Genes Signatures
(CGS) connected to themTOR knockdownCGS. bMost frequent inhibition targets
of chemical perturbagens with signatures connected to the mTOR CGS signature.
c Most enriched biological pathways for the everolimus signature. d Most

frequently perturbed genes among CGSes connected with everolimus signature,
and pathways most enriched by the perturbed genes. e Most frequent inhibition
targets of chemical perturbagens with signatures connected to the everolimus
signature and the pathways most enriched by the genes of the targeted proteins.
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addition, links to instructional videos that demonstrate how to per-
form these analyses are provided on the landing page of iLINCS at
ilincs.org. The same analyses can also be performed programmatically
using the iLINCS API. R notebooks demonstrating this can be found on
the GitHub (https://github.com/uc-bd2k/ilincsAPI).

Use case 1: detecting and modulating aberrant mTOR pathway
signaling
Aberrant mTOR signaling underlies a wide range of human diseases41.
It is associated with age-related diseases such as Alzheimer’s disease42

and the aging process itself41. mTOR inhibitors are currently the only
pharmacological treatment shown to extend lifespan in model
organisms43, and numerous efforts in designing drugs that modulate
the activity ofmTOR signaling are underway41.We usemTOR signaling
as the prototypical example to demonstrate iLINCS utility in identify-
ing chemical perturbagens capable of modulating a known signaling
pathwaydriving the disease process, in establishingMOAof a chemical
perturbagen, and in detecting aberrant signaling in the diseased tissue.
Detecting changes inmTOR signaling activity in transcriptomic data is
complicated by the fact that it is not reflected in changes in expression
of mTOR pathway genes, and standard pathway analysis methods are
not effective44. We show that CMAP analysis approach, facilitated by
iLINCS, is essential for the success of these analyses. Step-by-step
instructions for performing this analysis in iLINCS are provided in
Supplemental Workflow SW1.

Identifying chemicals that can modulate the activity of a specific
pathway or a protein in a specific biological context is often the first
step in translating insights about disease mechanisms into therapies
that can reverse disease processes. Here we demonstrate the use of
iLINCS in identifying chemicals that can inhibit the mTOR activity. We
use the Consensus Genes Signatures (CGSes) of CRISPRmTOR genetic
loss of function perturbation in MCF-7 cell line as the query signature.
The CMAP analysis identifies 258 LINCS CGSes and 831 CP Signatures
with statistically significant correlation with the query signature. Top
100most connectedCGSes are dominated by the signatures of genetic
perturbations of mTOR and PIK3CA genes (Fig. 2a), whereas all top 5
most frequent inhibition targets of CPs among top 100 most con-
nected CP signatures are mTOR and PIK3 proteins (Fig. 2b). Results
clearly indicate that the query mTOR CGS is highly specific and sen-
sitive to perturbation of the mTOR pathway and effectively identifies
chemical perturbagens capable of inhibiting mTOR signaling. The full
list of connected signatures is shown in Supplemental Data SD1. The
connected CP signatures also include several chemical perturbagens
with highly connected signatures that have not been known to target
mTOR signaling providing new candidate inhibitors.

Identifying proteins and pathways directly targeted by a bioactive
chemical using its transcriptional signature is a difficult problem.
Transcriptional signatures of a chemical perturbation often carry only
an echo of such effects since the proteins directly targeted by a che-
mical and the interacting signaling proteins are not transcriptionally
changed. iLINCS offers a solution for this problem by connecting the
CP signatures to LINCS CGSes and facilitating a follow-up systems
biology analysis of genes whose CGSes are highly correlated with the
CP signature. This is illustrated by the analysis of the perturbation
signature of the mTOR inhibitor drug everolimus (Fig 2c–e). Tradi-
tional pathway enrichment analysis of this CP signature via iLINCS
connection to Enrichr (Fig. 2c) fails to identify the mTOR pathway as
being affected. In the next step, we first connect the CP signature to
LINCS CGSes and then perform pathway enrichment analysis of genes
with correlated CGSes. This analysis correctly identifies mTOR signal-
ing pathway as the top affected pathway (Fig. 2d). Similarly, con-
nectivity analysis with other CP signatures followed by the enrichment
analysis of protein targets of top 100 most connected CPs again
identifies the Pi3k-Akt signaling pathway as one of the most enriched
(Fig. 2e). In conclusion, both pathway analysis of differentially

expressed genes in the everolimus signature and pathway analysis of
connected genetic and chemical perturbagens provide us with
important information about effects of everolimus. However, only the
analyses of connected perturbagens correctly pinpoints the direct
mechanism of action of the everolimus, which is the inhibition of
mTOR signaling.

The connectivity-based pathway analysis shares methodological
shortcomings with the standard enrichment/pathway analyses of lists
of differentially expressed genes, such as, for example, overlapping
pathways. While the MTOR pathway shows the strongest association
with everolimus, other pathways were also significantly enriched. A
closer examination of the results indicates that this is due to the core
mTOR signaling cascade being included as a component of other
pathways andmany of the genes that drive the associations with other
four most enriched pathways are common with the mTOR path-
way (Fig. 3).

One caveat in the results presented above is that the LINCS sig-
natures based on L1000 platform provide a reduced representation of
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the global transcriptome consisting of expression levels of about 1000
“landmark” genes2. The landmark genes are selected in such a way that
they jointly capture patterns of expression of majority genes in the
genome and the computational predictions of expressionof additional
12,000 genes are also made. The relatively low number of measured
genes could sometimes adversely affect the gene expression enrich-
ment analysis of poorly represented pathways. To establish that this is
not the case for mTOR signaling, we repeated the MOA analysis using
the whole genome transcriptional signature of the mTOR inhibitor
sirolimus from the original CMAP dataset15, which is also included in
the iLINCS signature collection. Results of these analyses closely
resemble the results with L1000 everolimus signature with con-
nectivity analysis clearly pinpointing mTOR pathway and enrichment
analysis of differentially expressed genes failing to do so (Supple-
mental Results 4).

To verify that mTOR signaling modulation is also detectible in
complex tissues we used iLINCS to re-analyze the effect of rapamycin

in aged rat livers45 (GEO dataset GSE108978). The rapamycin signature
was constructed by comparing expression profiles of livers in eight
rapamycin-treated rats to the nine vehicle controls at 24months of age
(Fig. 4, heatmap). The signature correlated strongly with CP signatures
of chemicals targeting mTOR pathway genes (Fig. 4, bar plot).

Use case 2: proteo-genomics analysis of cancer driver events in
breast cancer
Contrasting transcriptional and proteomic profiles of different mole-
cular cancer subtypes has long been a hallmark of cancer omics data
analysis when seeking targets for intervention46. Constructing sig-
natures by comparing cancer with normal tissue controls usually
results in a vast array of differences characteristic of any cancer (pro-
liferation, invasion, etc.)47, and are not specific to the driver mechan-
isms of the cancer samples at hand. On the other hand, comparisons of
different cancer subtypes, as illustrated here, is effective in eliciting
key driver mechanisms by factoring out generic molecular properties

Fig. 4 | CMAP analysis of rapamycin (RAD001) signature in rat livers. The
heatmap shows the centered expression levels of differentially expressed genes

and thebarplot shows thenumbersof connected chemical perturbation signatures
for top five targets.

Fig. 5 | Proteo-genomics analysis of cancer driver events in breast cancer.
a Most differentially expressed proteins in the proteomics signatures constructed
by comparing RPPA profiles of Her2E and Luminal-A BRC samples. b Gene
expression profile of the genes corresponding to proteins in (a) based on RNA-seq

data. cThe transcriptional signature consisting of all highly differentially expressed
genes (unadjusted, two-tailed P value<10−10). d Enrichment analysis of genes
upregulated in Luminal A, and upregulated in Her2E tumors via Enrich (unadjusted
Fisher Exact Test P values).
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of a cancer48. Here, we demonstrate the use of matched preprocessed
proteomic (RPPA) and transcriptomic (RNA-seq) breast cancer data-
sets to identify driver events which can serve as targets for pharma-
cological intervention in two different breast cancer subtypes. The
analysis of proteomic data can directly identify affected signaling
pathways by assessing differences in the abundance of activated (e.g.,
phosphorylated) signaling proteins. By contrasting proteomics and
transcriptomic signatures of the same biological samples, we can dis-
tinguish between transcriptionally and post-translationally regulated
proteins, and transcriptional signatures facilitate pathway enrichment
and CMAP analysis. Step-by-step instructions for performing this
analysis in iLINCS are provided in Supplemental Workflow SW2.

We analyzed TCGA breast cancer RNA-seq and RPPA data using
the iLINCS “Datasets” workflow to construct the differential gene and
protein expression signatures contrasting 174 Luminal-A and 50 Her2
enriched (Her2E) breast tumors. The results of the iLINCS analysis
track closely the original analysis performed by the TCGA
consortium48. The protein expression signature immediately impli-
cated known driver events, which are also the canonical therapeutic
targets for the two subtypes: The abnormal activity of the estrogen
receptor in Luminal-A tumors, and the increased expression and
activity of the Her2 protein in Her2E tumors (Fig. 5a). To further vali-
date the strategy of directly comparing two subtypes of tumors, we
compared our results with the analysis results when different subtypes
are compared to normal breast tissue controls (Supplemental
Results 5). The result of these analyses are muchmore equivocal, with
Her2 and ERalpha proteins now superseded in significance by several
more generic cancer-related proteome alterations, common to both
subtypes (Supplemental Results 5).

The corresponding Luminal A vs Her2E RNA-seq signature, con-
structing by differential gene expression analysis between 201
Luminal-A and 47 Her2E samples, showed similar patterns of expres-
sion of key genes (Fig. 5b). All genes were differentially expressed
(Bonferroni adjusted P value < 0.01) except for EGFR, indicating that
the difference in expression levels of the EGFR protein with the
phosphorylated Y1068 tyrosine residue (EGFR_pY1068) may be a
consequence of post-translation modifications instead of increased
transcription rates of the EGFR gene.

Following down the iLINCS workflow, the pathway analysis of 734
most significantly upregulated genes in Luminal-A tumors (P value <
1e-10) (Fig. 5c) identified the Hallmark gene sets35 indicative of Estro-
gen Response to be the most significantly enriched (Fig. 5d) (See
Supplemental Data SD2 for all results). Conversely, the enrichment
analysis of 665 genes upregulated in Her2E tumors identified the
Hallmark gene sets of proliferation (E2F Targets, G2-M Checkpoint)
and the markers of increased mTOR signaling (mTORC1 signaling).
This reflects a known increased proliferation of Her2E tumors in
comparison to Luminal-A tumors49. The increase in mTOR signaling is

consistent with the increased levels of the phosphorylated 4E-BP
protein, a common marker of mTOR signaling50.

The CMAP analysis of the RNA-seq signature with LINCS CP sig-
natures (Fig. 6) shows that treating several different cancer cell lines
with inhibitors of PI3K,mTOR, CDK, and inhibitors of someothermore
generic proliferation targets (e.g., TOP21, AURKA) (see Supplemental
Data SD3 for complete results) produces signatures that are positively
correlatedwith RNA-seq Luminal A vs Her2E signature, suggesting that
such treatments may counteract the Her2E tumor driving events.

The detailed analysis of 100 most connected CP signatures
showed that all signatures reflected proliferation inhibition as indi-
cated by the enrichment of the genes in the KEGG Cell cycle pathway
among the genes downregulated across all signatures (Fig. 6a). How-
ever, the analysis also showed that a subset of the signatures selec-
tively inhibited expression of themTORC1 signalingHallmark gene set,
and the same set of signatures exhibited increased upregulation of
Apoptosis gene sets in comparison to the rest of the signatures. This
indicates that the increased proliferation of in Her2E tumors may be
partly driven by the upregulation in mTOR signaling.

We also used iLINCS to identify de novo all signatures enriched for
the mTOR-associated genes from Fig. 6a. The most enriched sig-
natures (top 100) were completely dominated by signatures of mTOR
inhibitors (Fig. 6b). Themost highly enriched signature was generated
by WYE-125132, a highly specific and potent mTOR inhibitor51. Using
the iLINCS signature group analysis workflow we also summarized the
drug-target relationships for the top 100 signatures (Fig. 6c) which
recapitulate the dominance of mTOR inhibitors along with prolifera-
tion inhibitors targeting CDK proteins (Palbociclib and Milciclib).

Use case 3: drug repurposing for COVID-19
The ongoing COVID-19 pandemic has underscored the importance of
rapid drug discovery and repurposing to treat and prevent emerging
novel pathogens, such as SARS-CoV-2. As part of the community-wide
efforts to identify novel targets and treatment options, the transcrip-
tional landscape of SARS-CoV-2 infections has been characterized
extensively, including the identification of transcriptional signatures
from patients as well as model systems52,53. CMAP approach has been
extensively used to explore that space of potential therapeutic agents
with the search of Google Scholar website listing 662 studies for the
covid AND “connectivity map” search. In iLINCS, 105 COVID-19-related
datasets are organized into a COVID-19 collection, facilitating sig-
nature connectivity-based drug discovery and repurposing in this
context.

We used iLINCS to construct a SARS-CoV-2 infection signature by
re-analyzing the dataset profiling the response of various in vitro
models to SARS-CoV-2 infection52 (GEOdataset GSE147507). The useof
multiple models, which respond differently to the virus infection,
would make the signature created by direct comparisons of all

Fig. 6 | Connectivitymap analysis of Luminal A vs Her2E signatures. b Top 100
connected CP signatures. b Signatures enriched for genes in the gray box. The
GSEAplot for themost significantly enriched signature and the summary of targets

for top 100 most enriched signatures. c Chemical perturbagens and their targets
for CP signatures in (a).
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“Infected” vs all “Mock infected” samples too noisy. The main
mechanism implemented in iLINCS for dealing with various con-
founding factors is filtering samples by levels of possible confounding
factors, which is the approach that is most used in the omics data
analysis. In this case, we filtered samples to construct a signature by
differential gene expression analysis of infected vs mock-infected
A549 cell line, which was genetically modified to express ACE2 gene to
facilitate viral entry into the cell. This left us with the comparison of
three “Infected” and three “Mock infected” samples. Filtering of sam-
ples and the analysis using iLINCS GUI is demonstrated in the Sup-
plemental workflow SW3.

The resulting signature comprises many upregulated chemo-
kines and other immune system-related genes, including the EGR1
transcription factor that regulates inflammation and immune sys-
tem response54,55, and the pathway analysis implicates TNF signaling
and NK-kappa B signaling as the two pathways most enriched for
upregulated genes (Fig. 7a). CMAP analysis against the LINCS gene
overexpression signatures in A549 cell line identified the signature
of LYN tyrosine kinase as the most positively correlated with the
SARS-CoV-2 infection signature (Fig. 7b). LYN is a member of SRC/
FYN family of tyrosine kinases has been shown to be required for
effective MERS-CoV replication56. The enrichment of genes with
positively correlated overexpression signatures in A549 cell line,
identified NF-kappa B signaling pathway as the most enriched
(Fig. 7b), confirming mechanistically the role of NF-kappa B signal-
ing in inducing the infection signature. Finally, CMAP analysis
identified CDK inhibitors and the drug Avlodicip as the potential
therapeutic strategies based on their ability to reverse the infection
signature (Fig. 7c). Alvocidib is a CDK9 inhibitor with a broad anti-
viral activity and it has been suggested as a potential candidate for
COVID-19 drug repurposing57.

These results agree with the previous study utilizing iLINCS to
prioritize candidate FDA-approved or investigative drugs for
COVID-19 treatment58. Of the top 20 candidates identified in that
study as reversing SARS-CoV-2 transcriptome signatures, 8 were
already under trial for the treatment of COVID-19, while the
remaining 12 had antiviral properties and 6 had antiviral efficacy
against coronaviruses specifically. Our analysis illustrates the ease
with which iLINCS can be used to quickly provide credible drug
candidates for an emerging disease.

Discussion
iLINCS is a unique integrated platform for the analysis of omics sig-
natures. Several canonical use cases described here only scratch the
surface of the wide range of possible analyses facilitated by the inter-
connected analytical workflows and the large collections of omics
datasets, signatures, and their connections. All presented use cases
were executed using only a mouse to navigate iLINCS GUI. Each use
case can be completed in less than 5min, as illustrated in the online
help and video tutorials. The published studies to date used iLINCS in
many different ways, and to study a wide range of diseases (Supple-
mental Results 3).

In addition to facilitating standard analyses, iLINCS implements
innovative workflows for biological interpretation of omics signatures
via CMAP analysis. In Use case 1, we show how CMAP analysis coupled
with pathway and gene set enrichment analysis can implicate
mechanism of action of a chemical perturbagen when standard
enrichment analysis applied to the differentially expressed genes fails
to recover targeted signaling pathways. In a similar vein, iLINCS has
been successfully used to identify putative therapeutic agents by
connecting changes in proteomics profiles in neurons from patients
with schizophrenia; first with the LINCS CGSes of the corresponding
genes, and then with LINCS CP signatures59. These analyses led to the
identification of PPAR agonists as promising therapeutic agents cap-
able of reversing bioenergetic signature of schizophrenia, which were
subsequently shown to modulate behavioral phenotypes in rat model
of schizophrenia60.

The iLINCS platform was built with the flexibility to incor-
porate future extensions in mind. The combination of optimized
database representation and R analysis engine provide endless
opportunities to implement additional analysis workflows. At the
same time, collections of omics datasets and signatures can be
extended by simply adding data to backend databases. One of
the important directions for improving iLINCS functionality will
be the development of workflows for fully integrated analysis of
multiple datasets and different omics data types. In terms of
integrative analysis of matched transcriptomic and proteomic
data, iLINCS facilitates the integration where results of one omics
dataset informs the set of genes/proteins analyzed in the other
dataset (Use case 2). However, the direct integrative analysis of
both data types may result in more informative signatures61. At

Fig. 7 | SARS-Cov-2 infectionofA549cells expressingACE2. aUpregulatedgenes
(unadjusted, two-tailed P value < 10−10) in top two enriched KEGG pathways
(unadjusted Fisher exact test P values shown in the table). b Top KEGG pathway in
the enrichment analysis (unadjusted Fisher exact test P values shown in the table)
of signatures of gene overexpressionmimicking infection in the A549 cell line. The

list of six most positively correlated overexpression signatures (unadjusted, two-
tailed weighted correlation P values are shown in the table) and the scatter plot of
the LYN overexpression signature against the SARS Cov-2 infection signature.
c Chemicals reversing the infection signatures and their protein targets.
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the same time, addition of more proteomics datasets, such as the
Clinical Proteomic Tumor Analysis Consortium (CPTAC)
collection62, will extend the scope of such integrative analyses.

Many complex diseases, including cancer, consist of multiple,
molecularly distinct, subtypes63–65. Accounting for these differences is
essential for constructing effective disease signatures for CMAP ana-
lysis. In Use case 2, we demonstrate how to use iLINCS in contrasting
molecular subtypes when the information about the subtypes is
included in sample metadata. An iLINCS extension that allows for de
novo creation of molecular subtypes using cluster analysis, as is the
common practice in analysis of cancer samples63, is currently under
development. Another future extension under development is the
workflow for constructing disease signatures using single cell
datasets66. iLINCS contains a number of single cell RNA-seq (scRNA-
seq) datasets, but their analysis is currently handled in the sameway as
the bulk RNA-seq data. A specialized workflow for extracting disease
signatures from scRNA-seq data will lead to more precise signatures
and more powerful CMAP analysis66.

With many signatures used in CMAP analysis, and a large
number of genes perturbed by either genetic or chemical per-
turbations, one has to carefully scrutinize results of CMAP-based
pathway analyses to avoid false positive results and identify most
relevant affected pathways. Limitations of standard gene enrich-
ment pathway analysis related to overlapping pathways are
important to keep in mind in the signature-similarity-based
pathway analysis, as discussed in Use case 1. In addition, the
hierarchical nature of gene expression regulation may lead to
similar transcriptional signatures being generated by perturbing
genes at different levels of the regulatory programs (e.g., signal-
ing proteins vs transcriptional factors). Perturbations of distinct
signaling pathways leads to modulation of the proliferation rates
in cancer cell lines, and it is expected that resulting transcrip-
tional signatures share some similarities related to up- and down-
regulation of proliferation drivers and markers. At the same time,
signatures corresponding to perturbation of proteins regulating
the same sets of biological processes are likely to exhibit a higher
level of similarity. The analysis of the top 100 chemical pertur-
bagen signatures negatively correlated with Her2E breast cancer
signature in Use case 2 reveals that they all contain the “pro-
liferation” component. However, a subset of the most highly
correlated signatures is more specifically associated with mTOR
inhibition, indicating that the proliferation is affected in part by
modulating mTOR signaling. The association with perturbations
that modulate cellular proliferation, while real, could also be
considered spurious as it is relatively non-specific. The associa-
tion with mTOR signaling is more specific and provides a higher-
level mechanistic explanation for differences in proliferation
rates. iLINCS provides mechanisms for scrutinizing expression
profiles of genes in signatures identified in CMAP analysis that is
required for assessing these fine points (Use case 2), and they are
essential for interpreting the results of a CMAP analysis.

Several online tools have been developed for the analysis and
mining LINCS L1000 signature libraries. They facilitate online queries
of L1000 signatures67–69 and the construction of scripted pipelines for
in-depth analysis of transcriptomics data and signatures70. The LINCS
Transcriptomic Center at the Broad Institute developed the clue.io
query tool deployed by the Broad Connectivity Map team which
facilitates connectivity analysis of user-submitted signatures2. iLINCS
replicates the connectivity analysis functionality, and indeed, the
equivalent queries of the two systems may return qualitatively similar
results (see Supplemental Results 1 for a use case comparison). How-
ever, the scope of iLINCS is much broader. It provides connectivity
analysis with signatures beyond Connectivity Map datasets and pro-
vides many primary omics datasets for users to construct their own
signatures. Furthermore, analytical workflows in iLINCS facilitate deep

systems biology analysis and knowledge discovery of both, omics
signatures and the genes and protein targets identified through con-
nectivity analysis. Comparison to several other web resources that
partially cover different aspects of iLINCS functionality are summar-
ized in Supplemental Results 2.

iLINCS removes technical roadblocks for users without a pro-
gramming background to re-use of publicly available omics datasets
and signatures. The user interfaces are streamlined and strive to be
self-explanatory to most scientists with conceptual understanding of
omics data analysis. Recent efforts in terms of standardizing71 and
indexing72 are improving findability and re-usability of public domain
omics data. iLINCS is taking the next logical step in integrating public
domain data and signatures with a user-friendly analysis toolbox.
Furthermore, all analyses steps behind the iLINCS GUI are driven by
API which can be used within computational pipelines based on
scripting languages73, such as R, Python and JavaScript, and to power
the functionality of other web analysis tools30,69. This makes iLINCS a
natural tool for analysis and interpretation of omics signatures for
scientists preferring point-and-click GUIs as well as data scientists
using scripted analytical pipelines.

Methods
Statistics
All differential expression and signature creation analyses are per-
formed onmeasurements obtained from distinct samples. All P values
are calculated using two-sided hypothesis tests. The specific tests
depend on the data type and are described in detail in the rest of the
methods and the Supplemental Methods document. The accuracy of
the iLINCS datasets, signatures and analysis procedures were ascer-
tained as described in the Supplemental Quality Control document.
The versions of all R packages utilized by iLINCS are provided in the
Supplemental Data SD4.

Perturbation signatures
All precomputed perturbation signatures in iLINCS, as well as sig-
natures created using an iLINCS dataset, consist of two vectors: the
vector of log-scale differential expressions between the perturbed
samples and baseline samples d = (d1,…,dN), and the vector of asso-
ciated P values p = (p1,…,pN), where N is the number of genes or pro-
teins in the signature. Signatures submittedby theuser can alsoconsist
of only log-scale differential expressions without P values, lists of up-
and downregulated genes, and a single list of genes.

Signature connectivity analysis
Depending on the exact type of the query signature, the connectivity
analysis with libraries of precomputed iLINCS signatures are com-
puted using different connectivitymetrics. The choice of the similarity
metric to beused in different contextswas driven bybenchmarking six
different methods (Supplementary Result 2).

If the query signature is selected from iLINCS libraries of pre-
computed signatures, the connectivity with all other iLINCS signatures
is precomputed using the extreme Pearson’s correlation74,75 of signed
significances of all genes. The signed significance of the ith gene is
defined as

si = sign di

� �
* �log10 pi

� �� �
, f or i= 1, . . . ,N, ð1Þ

and the signed significance signature is s = (s1,…,sN). The extreme
signed signature e = (e1,…,eN) is then constructing by setting the signed
significances of all genes other than the top 100 and bottom 100 to
zero:

ei =
si, if si ≥ s

100 or si ≤ s
�100

0, otherwise

( )

ð2Þ
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Where s100 is the 100th most positive si and s−100 is the 100th most
negative si. The extremePearson correlation between two signatures is
then calculated as the standard Pearson’s correlation between the
extreme signed significance signatures.

If thequery signature is created froman iLINCSdataset, or directly
uploaded by the user, the connectivity with all iLINCS signatures is
calculated as the weighted correlation between the two vectors of log-
differential expressions and the vector of weights equal to [-log10(P
valueof thequery)−log10(P valueof the iLINCS signature)]76.When the
user-uploaded signature consists of only log-differential expression
levels without P values, the weight for the correlation is based only on
the P values of the iLINCS signatures [−log10(P values of the iLINCS
signatures)].

If the query signature uploaded by the user consists of the lists of
up- and downregulated genes connectivity is calculated by assigning
−1 to downregulated and +1 to upregulated genes and calculating
Pearson’s correlation between such vector and iLINCS signatures. The
calculated statistical significance of the correlation in this case is
equivalent to the t test for the difference between differential
expression measures of iLINCS signatures between up- and
downregulated genes.

If the query signature is uploaded by the user in a form of a gene
list, the connectivity with iLINCS signatures is calculated as the
enrichment of highly significant differential expression levels in iLINCS
signature within the submitted gene list using the Random Set
analysis77.

Perturbagen connectivity analysis
The connectivity between a query signature and a “perturbagen” is
established using the enrichment analysis of individual connectivity
scores between the query signature and set of all L1000 signatures of
the perturbagen (for all cell lines, time points, and concentrations).
The analysis establishes whether the connectivity scores as a set are
“unusually” high based on the Random Set analysis77.

iLINCS signature libraries
LINCS L1000 signature libraries (Consensus gene knockdown sig-
natures (CGS), Overexpression gene signatures and Chemical per-
turbation signatures): for all LINCS L1000 signature libraries, the
signatures are constructed by combining the Level 4, population
control signature replicates from two released GEO datasets
(GSE92742 and GSE70138) into the Level 5 moderated Z scores
(MODZ) by calculating weighted averages as described in the pri-
mary publication for the L1000 Connectivity Map dataset2. For CP
signatures, only signatures showing evidence of being reproducible
by having the 75th quantile of pairwise spearman correlations of
level 4 replicates (Broad institute distil_cc_q75 quality control
metric2) greater than 0.2 are included. The corresponding P values
were calculated by comparing MODZ of each gene to zero using the
Empirical Bayes weighted t test with the same weights used for
calculating MODZs. The shRNA and CRISPR knockdown signatures
targeting the same gene were further aggregated into Consensus
gene signatures (CGSes)2 by the same procedure used to calculate
MODZs and associated P values.

LINCS-targeted proteomics signatures. Signatures of chemical per-
turbations assayed by the quantitative targeted mass spectrometry
proteomics P100 assaymeasuring levels 96 phosphopeptides andGCP
assay against ~60 probes that monitor combinations of post-
translational modifications on histones5.

Disease-related signatures. Transcriptional signatures constructed
by comparing sample groups within the collection of curated public
domain transcriptional dataset (GEO DataSets collection)34. Each sig-
nature consists of differential expressions and associated P values for

all genes calculated using Empirical Bayes linear model implemented
in the limma package.

ENCODE transcription factor-binding signatures. Genome-wide
transcription factor (TF) binding signatures constructed by applying
the TREGmethodology to ENCODE ChiP-seq78. Each signature consists
of scores and probabilities of regulation by the given TF in the specific
context (cell line and treatment) for each gene in the genome.

Connectivity map signatures. Transcriptional signatures of pertur-
bagen activity constructed based on the version 2 of the original
Connectivity Map dataset using Affymetrix expression arrays17. Each
signature consists of differential expressions and associated P values
for all genes when comparing perturbagen-treated cell lines with
appropriate controls.

DrugMatrix signatures. Toxicogenomic signatures of over 600 dif-
ferent compounds79 maintained by the National Toxicology Program80

consisting of genome-wide differential gene expression levels and
associated P values.

Transcriptional signatures from EBI Expression Atlas. All mouse, rat
and human differential expression signatures and associated P values
from manually curated comparisons in the Expression Atlas8.

Cancer therapeutics response signatures. These signatures were
created by combining transcriptional data with drug sensitivity data
from the Cancer Therapeutics Response Portal (CTRP) project81. Sig-
natures were created separately for each tissue/cell lineage in the
dataset by comparing gene expression between the five cell lines of
that lineage that weremost and five that were least sensitive to a given
drug area as measured by the concentration-response curve (AUC)
using two-sample t test.

Pharmacogenomics transcriptional signatures. These signatures
were created by calculating differential gene expression levels and
associated P value between cell lines treated with anti-cancer drugs
and the corresponding controls in two separate projects: The NCI
Transcriptional Pharmacodynamics Workbench (NCI-TPW)82 and the
Plate-seq project dataset4.

Constructing signatures from iLINCS datasets
The transcriptomics or proteomics signature is constructed by com-
paring expression levels of two groups of samples (treatment group
and baseline group) using Empirical Bayes linear model implemented
in the limma package83. For the GREIN collection of GEO RNA-seq
datasets84, the signatures are constructed using the negative binomial
generalized linear model as implemented in the edgeR package85.

Analytical tools, web applications, and web resources
Signatures analytics in iLINCS is facilitated via native R, Java, JavaScript,
and Shiny applications, and via API connections to external web
application and services. Brief listing of analysis and visualization tools
is provided here. The overall structure of iLINCS is described in Sup-
plemental Fig. 2.

Gene list enrichment analysis is facilitated by directly submitting
lists of gene to any of the three prominent enrichment analysis web
tools: Enrichr20, DAVID21, ToppGene22. The manipulation and selection
of list of signature genes is facilitated via an interactive volcano plot
JavaScript application.

Pathway analysis is facilitated through general-purpose enrich-
ment tools (Enrichr, DAVID, ToppGene), the enrichment analysis of
Reactomepathways via Reactomeonline tool23, and internal R routines
for SPIA analysis86 of KEGG pathways and general visualization of sig-
natures in the context of KEGG pathways using the KEGG API24.
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Network analysis is facilitated by submitting lists of genes to
Genemania25 and by internal iLINCS Shiny Signature Network Analysis
(SigNetA) application.

Heatmap visualizations are facilitated by native iLINCS applica-
tions: Java-based FTreeView87,modified version of the JavaScript-based
Morpheus88 and a Shiny-based HeatMap application, and by connec-
tion to the web application Clustergrammer29.

Dimensionality reduction analysis (PCA and t-SNE89) and visuali-
zation of high-dimensional relationship via interactive 2D and 3D
scatter plots is facilitated via internal iLINCS Shiny applications.

Interactive boxplots, scatter plots, GSEA plots, bar charts, and pie
charts used throughout iLINCS are implemented using R ggplot90 and
plotly91.

Additional analysis is provided by connecting to X2K Web26 (to
identify upstream regulatory networks from signature genes),
L1000FWD27 (to connect signatures with signatures constructed using
the Characteristic Dimension methodology92), STITCH28 (for visuali-
zation of drug-target networks), and piNET30 (for visualization of gene-
to-pathway relationships for signature genes).

Additional information about drugs, genes, and proteins are
provided by links to, LINCS Data Portal31, ScrubChem32, PubChem33,
Harmonizome93, GeneCards94, and several other databases.

Gene and protein expression dataset collections
iLINCS backend databases provide access to more than 34,000 pre-
processed gene and protein expression datasets that can be used to
create and analyze gene and expression protein signatures. Datasets
are thematically organized into eight collections with some datasets
assigned tomultiple collections. User can search all datasets or browse
datasets by collection.

LINCS collection. Datasets generated by the LINCS data and signature
generation centers7.

TCGA collection. Gene expression (RNASeqV2), protein expression
(RPPA), and copy number variation data generated by TCGA project63.

GDS collection. A curated collection of GEO Gene Datasets (GDS)34.

Cancer collection. An ad hoc collection of cancer-related genomics
and proteomic datasets.

Toxicogenomics collection. An ad hoc collection of toxicogenomics
datasets.

RPPA collection. An ad hoc collection of proteomic datasets gener-
ated by Reverse Phase Protein Array assay95.

GREIN collection. Complete collection of preprocessed human,
mouse, and rat RNA-seq data in GEO provided by the GEO RNA-seq
Experiments Interactive Navigator (GREIN)84.

Reference collection. An ad hoc collection of important gene
expression datasets.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the analyses is already in the public domain. The
datasets can be downloaded from iLINCS, or from the original sources
which are provided on the dataset and signature landing pages in
iLINCS GUI. The source LINCS L1000 datasets are GSE92742 and
GSE70138, the aging rat rapamycin treatment dataset is GSE108978

and the SARS-Cov-2 infectiondataset is GSE147507. TheTCGAdatasets
were downloaded from Genomic Data Commons [https://portal.gdc.
cancer.gov/] using the TCGAbiolinks R package [https://bioconductor.
org/packages/release/bioc/html/TCGAbiolinks.html]. Supplemental
Use Cases describe how to use iLINCS GUI to access all signatures and
datasets used in the analyses.

Code availability
All analyses in iLINCS are based on standard, previously described, and
implemented statistical and bioinformatics procedures. All proce-
dures used in iLINCS are implemented in the standard R packages and
detailed Supplemental Methods. We also provide RStudio scripts that
demonstrates the use of iLINCS API and the R script that provides off-
line implementation of various connectivity metrics (Supplemental
Quality Control) used in iLINCS in the GitHub repository (https://
github.com/uc-bd2k/ilincsAPI), and the compressed archive is pro-
vided in the Software Supplement.
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