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Abstract

Motivation: Integration of different omics data could markedly help to identify biological signa-

tures, understand the missing heritability of complex diseases and ultimately achieve personalized

medicine. Standard regression models used in Genome-Wide Association Studies (GWAS) identify

loci with a strong effect size, whereas GWAS meta-analyses are often needed to capture weak loci

contributing to the missing heritability. Development of novel machine learning algorithms for

merging genotype data with other omics data is highly needed as it could enhance the prioritiza-

tion of weak loci.

Results: We developed cNMTF (corrected non-negative matrix tri-factorization), an integrative

algorithm based on clustering techniques of biological data. This method assesses the inter-

relatedness between genotypes, phenotypes, the damaging effect of the variants and gene net-

works in order to identify loci-trait associations. cNMTF was used to prioritize genes associated

with lipid traits in two population cohorts. We replicated 129 genes reported in GWAS world-wide

and provided evidence that supports 85% of our findings (226 out of 265 genes), including recent

associations in literature (NLGN1), regulators of lipid metabolism (DAB1) and pleiotropic genes for

lipid traits (CARM1). Moreover, cNMTF performed efficiently against strong population structures

by accounting for the individuals’ ancestry. As the method is flexible in the incorporation of diverse

omics data sources, it can be easily adapted to the user’s research needs.

Availability and implementation: An R package (cnmtf) is available at https://lgl15.github.io/cnmtf_

web/index.html.

Contact: lgl15@imperial.ac.uk or m.sternberg@imperial.ac.uk
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1 Introduction

Polygenic diseases result from the contribution of multiple loci but

only those with large effect size are detected by traditional methods

for Genome-Wide Association Studies (GWAS) (Arkin et al., 2014;

Bush and Moore, 2012). Although regression models (RMs) have

been useful for discovering significant single nucleotide variant

(SNV) associations, most of these variants explain just a fraction of

the phenotypic variability and several loci with a small effect size on

the trait are not being captured (Auer and Lettre, 2015; Zuk et al.,

2012). It is also evident that genotyping data alone cannot expand

our understanding on how SNVs alter protein sequences, mRNA

transcript stability, transcription factors and ultimately, the

observed phenotypes. Instead, data integration frameworks must be

developed to analyze other sources of omics data and for pinpoint-

ing variants that associate additively with the trait.

Here, we address the problem that causal loci are underpowered

in single-SNV analysis because few subjects carry the same causal

variants. Thus, for most of the subjects, different causal variants

are observed within the gene region and in genes participating in

related cellular functions (Leiserson et al., 2013). This problem is of

particular interest in the area of network-assisted analysis of GWAS

data (Jia and Zhao, 2014), where the prioritization of candidate

genes is enhanced by aggregating GWAS summary statistics onto

protein–protein interactions (PPI) or metabolic pathways, followed

by searching connected modules within the network (Lee et al.,

2011; Leiserson et al., 2013; Liu et al., 2017a, b; Rossin et al.,

2011). Despite of their applications, these methods ignore the pres-

ence of confounding variables in the input data (e.g. subjects’ genetic

background), and the information lost by aggregating SNV-

association signals into the gene level.

Taking into account these limitations and the need of integrative

frameworks for GWAS and omics data, we developed cNMTF

(corrected non-negative matrix tri-factorization). Based on the prin-

ciple that causal genes participate in similar cellular functions,

cNMTF uses the PPI network (PPIN) to share genotyping informa-

tion among SNVs and identifies novel genes closer to known loci.

The method relies on machine learning techniques for clustering,

which have been used for studying high-dimensional heterogeneous

data in systems biology (Gligorijevi�c and Pr�zulj, 2015; Gligorijevi�c

et al., 2014, 2016a, b; Hwang et al., 2012; Xiao et al., 2018; �Zitnik

and Zupan, 2015). Our algorithm is itself an extension of non-

negative matrix factorization (NMF) into the context of GWAS,

allowing the clustering of subjects with common phenotypes, and

simultaneously, the prioritization of data entries (e.g. genes, SNVs)

acting jointly on the phenotype.

A first major feature of cNMTF resides in the integration of het-

erogeneous sources of information: genotypes, phenotypes, subjects’

ancestry, the predicted deleteriousness effect of SNVs and PPIs. The

integration is performed using raw genotyping data rather than

aggregated GWAS statistics, so there is no loss of information when

moving into the gene level. A second novelty of cNMTF is its ability

for correcting the results against population structures via kernel

functions. To our knowledge, cNMTF is the first framework that

brings together matrix factorization and kernel methods to solve the

problem of confounding factors in heterogeneous data analysis, and

adheres to similar improvements for support vector machines

(SVMs) (Li et al., 2011).

Our algorithm was tested on three lipid traits: low-density

lipoproteins cholesterol (LDL-C), high-density lipoproteins

cholesterol (HDL-C) and triglycerides (TG) levels. A number of

studies have placed these traits as strong determinants of

cardiovascular disease risk; however, the genetic architecture of

lipid metabolism is far from understood (Paththinige et al.,

2017). This offers an opportunity to identify new variants and

loci using cNMTF.

We obtained genotyping data from two consortia to evaluate our

method: The Northern Finland Birth Cohort 1966 (NFBC1966), a

relatively genetically homogeneous cohort of Finnish individuals

with lipid traits associations reported by Sabatti et al. (2009); and a

cohort of white American subjects of diverse European ancestry

obtained from the Electronic Medical Records and Genomics net-

work (eMERGE) (McCarty et al., 2011).

Across cohorts, cNMTF significantly prioritized a mean of 93

variants and 44 genes per trait (PcNMTF < 0.005), replicating a total

of 23 variants from prior studies. We showed that cNMTF comple-

ments results of RMs by capturing patterns of association that do

not reach statistical significance in the single-SNV methods. In add-

ition, we proved the capabilities of our algorithm for identifying

population structures in the data and correcting the results against

false positive associations.

2 Materials and methods

2.1 Input matrices
cNMTF is a data integration framework that scores SNV-trait asso-

ciations and finds clustering patterns in the genotypes of subjects. Its

search is guided with prior knowledge on the phenotypes, subjects’

ancestry and molecular SNV data (Fig. 1).

The algorithm takes a matrix of genotypes, Rðn�mÞ, that encodes

the number of recessive allele copies carried by the m subjects

across n SNVs. Considering Gi;j, the genotype of patient j in the

SNV i with alleles A and B; then, Ri;j ¼ 0 if Gi;j ¼ AA; Ri;j ¼ 1 if

Gi;j ¼ AB and Ri;j ¼ 2 if Gi;j ¼ BB. Thus, we set Rðn�mÞ to contain

the genotypes under an additive genetic model (Lewis and Knight,

2012).

We decompose the relationship matrix R in three low-

dimensional matrices U ðn�k1Þ; V ðm�k2Þ and Sðk1�k2Þ:

R ffi USVT (1)

This dimensional reduction is provided by rank parameters k1

and k2 ðk1 � n;k2 � mÞ, which are chosen a priori. Both U ðn�k1Þ
and V ðn�mÞ can be seen as cluster indicator matrices for SNVs and

subjects, respectively, where k1 and k2 are the number of clusters.

For example, each subject is assigned to a cluster by finding the

maximum entries in the rows of V (i.e. the values in each row of V

represent the importance or ‘learned weights’ of a given subject

with respect to a subject cluster). On the other hand, Sðk1�k2Þ is a

compressed version of R that describes the importance of a given

SNV cluster with respect to a subject cluster (Gligorijevi�c and Pr�zulj,

2015).

One of the novelties of cNMTF resides in the definition of three

sources of information to guide the solution of U, V and S as

follows:

2.1.1 Subjects’ phenotypes (Vo)

The solution of V is guided with prior knowledge about subjects’

clinical phenotypes. That information is added through a phenotype

matrix Voðm�k2Þ, of m subjects by k2 phenotype categories. We set

k2 ¼ 2 because we are studying binary phenotypes or cases–control

designs. The entries of this matrix are Vo½j;1� ¼ 1 if patient j is a con-

trol (Vo½j;1� ¼ 0 otherwise) and Vo½j;2� ¼ 1 if patient j is a case

(Vo½j;2� ¼ 0 otherwise).
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2.1.2 SNV–SNV network (LU )

The solution of U is guided with prior knowledge about the SNV po-

tential to disrupt the function of interacting proteins. Our hypoth-

esis is that SNVs do not act independently but their effects are

dependent on other polymorphisms elsewhere in the genome.

Therefore, we constructed an SNV–SNV network containing two

kinds of nodes: damaging variants and candidate variants

(Supplementary Fig. S1). The set of damaging variants correspond

to SNVs with high or moderate impact in the genome according to

ENSEMBL (e.g. frameshift variant, stop gained variants). In add-

ition, SNVs annotated as deleterious by Sift or Polyphen (VEP-

ENSEMBL query, McLaren et al., 2016) and SNVs known to be

associated with the trait in the GWAS catalogue were labelled as

damaging variants. All the remaining SNVs were labelled as candi-

date variants. Then, we connected two SNVs in the network if both

SNVs are harboured by the same gene. Damaging SNVs from differ-

ent genes were also connected because they are more likely to dis-

rupt the PPI (BioGrid multi-validated interaction list). The number

of candidate and damaging variants is reported in Table 1.

Afterwards, the network was weighted to give preference to

edges between damaging variants. The weighting aims to reduce

bias in the node degree when genes harbour thousands of variants,

so the edges were divided by N � 1, where N is the number of var-

iants in the gene.

2.1.3 Subjects’ ancestry (A)

The solution of V is corrected for the individual’s ancestry or popu-

lation origin. We used the Hilbert–Schmidt independence criterion

(HSIC), which has been previously used for correcting SVMs (Li

et al., 2011).

The HSIC is a measure of statistical independence between two

random variables (X and Y) computed in terms of kernel functions

(Li et al., 2011). Let X be a random variable from the domain X ,

with feature space F and associated kernel k : X � X ! R. Let Y be

a random variable from the domain Y, with feature space G and

associated kernel a : Y � Y ! R. The empirical estimator of HSIC

for a finite sample of points x and y is shown to be:

HSICðX;YÞ / trðKHAHÞ (2)

where K and A are the kernel matrices on the random variables X

and Y, given by: K i;j ¼ kðxi;xjÞ and Ai;j ¼ aðyi; yjÞ. H is a centring

matrix: H ¼ di;j � 1
m, where di;j ¼ 1 if i¼ j and di;j ¼ 0 otherwise.

The size of these matrices is m�m.

Because small values of HSIC are expected when X and Y are in-

dependent, we define the following kernel matrices:

• Kernel matrix K i;j: Suppose m subjects with clustering informa-

tion vectors (v1; . . . ; vm). The K i;j ¼ kðvi; vjÞ is a kernel matrix

generated by the linear kernel k on the clustering information:

K ¼ VVT

• Kernel matrix Ai;j: Generated by the kernel a on the population

structure information. The population origin is frequently un-

known, so it must be inferred via principal components analysis

using the similarity between subjects in the principal components

space.

2.2 The objective function
To obtain U, S and V, we solve an optimization problem denoted by

the objective function, JcNMTF:

minU�0;S�0;V�0 JcNMTF ¼ jjR� USVT jj2F
þc1 � trðUTLU UÞ
þc2 � jjV�Vojj2F
þc3 � trðVVTHAHÞ

(3)

where jj � jj2F refers to the Frobenius norm, trð�Þ is the trace of a ma-

trix and �T is the transpose of a matrix. The goal in Equation (3) is

to minimize the difference between the genotyping data (R) and the

Fig. 1. Main steps in cNMTF. Step 1: The algorithm takes four sources of data in the input: R is a relationship matrix for the genotyping data. LU is the Laplacian

matrix of an SNV–SNV network. Vo is a phenotype matrix. A is a kernel similarity matrix encoding the population origin of the subjects. Step 2: The R matrix is

approximated as the product of low-dimensional matrices U, V and S. Here, we use LU ; Vo and A to penalize the factorization and guide the solutions of U and V.

Step 3: The dimensional reduction provides information for clustering tasks, so U and V are taken as cluster indicator matrices for SNVs and subjects, respective-

ly. Simultaneously, we compute the product of U and S to generate a score matrix X. This matrix summarizes the effect of single SNVs on clusters of subjects

with specific phenotypes and can be used to prioritize the SNVs. When SNV scores are compared between clusters we observe the relative importance of each

SNV on a trait; therefore, those SNVs with high delta score, DX, can be prioritized for further analysis
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new matrices using the Frobenius norm, while guiding the solution

with the penalization terms:

• The phenotype matrix Vo maximizes the separation between sub-

jects with different phenotypes in the term jjV � Vojj2F, while c2

weights the influence of the phenotype.
• The SNV–SNV network is integrated in the form of a graph

Laplacian, LUðn� nÞ ¼ DUðn� nÞ �WUðn�nÞ, where WU is the

weighted adjacency matrix and DU is the diagonal degree matrix

of WU . Hence, a new term, trðUTLUUÞ, guides the solution of U

in the objective function and c1 weights the influence of the net-

work. We also tested the algorithm when using a normalized

graph Laplacian: LU ¼ I �DU
�1

2WUDU
�1

2, where Iðn�nÞ is the

identity matrix with ones on the main diagonal.
• The HSIC term trðVVTHAHÞ is added to correct for population

structures and parameter c3 weights that regularization.

In Supplementary File S1, Sections S4–S6, the optimization prob-

lem is solved using iterative update rules (Lee and Seung, 2000). We

show how to achieve unique solutions and robust prioritizations for

the different traits by running the algorithm multiple times with dif-

ferent initializations, extracting the clustering solutions from each

repetition and combining these results to conform a consensus solu-

tion. The computational complexity of this minimization problem is

shown to be quadratic in the number of SNVs, Oðn2Þ.

2.3 Delta scores, DX
The minimization of the objective function (Equation (3)) allows us

to find the clusters of subjects from V. Simultaneously, we use U and

S to prioritize SNV-trait associations. We summarize the number of

copies of recessive alleles and the connectivity patterns of the net-

work into an SNV score, Xs;l, which tells how important is the vari-

ant s for a given cluster of subjects l (Equation (4)).

Xðn�k2Þ ¼ US (4)

After comparing the SNV scores between clusters enriched in

controls and cases (Equation (5)), we can prioritize variants

DXs ¼ Xs;controls �Xs;cases (5)

The delta score captures the overall effect of the SNV in the clus-

ter of controls. For instance, a positive DXs means a protective effect

of the recessive allele B, because the controls are carrying more cop-

ies of the recessive allele when compared with the cases. In contrast,

negative DXs mean that recessive alleles are detrimental and prefer-

entially observed in cases.

2.4 Significance of the Delta scores, DX
We assessed the significance of the observed DX in order to com-

pare objectively our results [i.e. a P-value for the SNV-trait associ-

ation is provided (PcNMTF)]. For each trait, the null distribution of

DX was generated by running cNMTF with 1 000 randomizations

of phenotypes. We set a significance level, a ¼ 0:01, to prioritize

approximately 100 variants in the tails of the distribution. Thus,

cut-off points at a
2 ;1� a

2

� �
are obtained from the cumulative distri-

bution function (Supplementary Fig. S3). These cut-off points are

estimated for every genetic dataset, trait and setting of the

algorithm.

2.5 Parameters selection
There are two sets of parameters to be chosen sequentially. In a first

step, we explore the structure of the data to select the number of

clusters of SNVs and subjects, k1 and k2, respectively. We selected

k2 ¼ 2 because we follow a case–control study design. On the other

hand, the selection of k1 is based on a grid search while tracking the

cluster stability. We used a dispersion coefficient to summarize the

Table 1. Results of cNMTF applied on serum lipid levels

Procedure Variable Finnish White American

LDL-C HDL-C TG LDL-C HDL-C TG

Pre-processing

phenotype data

Cut-off level for controls (mg/dl) <100 >60 <150 <100 >60 <150

Cut-off level for cases (mg/dl) �160 <40 �200 �160 <40 �200

Number of subjects in the input: 1711 1920 3780 446 605 1300

Number of controls 1344 1775 3635 308 202 1214

Number of cases 367 145 145 138 403 86

Pre-processing

genetic data

Number of SNVs in the input: 6945 7158 7620 9888 12 476 8662

Candidate variants 6703 6910 7407 9626 12 179 8446

Damaging variants 242 248 213 262 297 216

Number of genes in the input: 510 724 389 536 773 441

Seed genesa 136 180 123 142 193 139

Candidate genes in the PPIN 374 544 266 394 580 302

Results Number of SNVs prioritized: 87 80 93 110 117 71

Number of genes prioritized: 40 41 25 54 65 40

Prioritized candidate genes 21 14 6 36 33 26

Top candidate

gene prioritizedb

Gene name PDS5B IKZF5 DOCK8 BIRC2 LGR4 MLLT1

SNV rs590383 rs13353058 rs10968671 rs12275349 rs7936621 rs8099971

Alleles (A, B) C, T A, G G, T G, A G, A T, C

PcNMTF 3� 10�4 1� 10�3 7� 10�6 3� 10�4 2� 10�4 1� 10�4

DX 3.7 �3.8 �5.3 4.4 4.0 4.0

aRefers to associations reported in GWAS catalogue under the genome-wide significance threshold P < 1� 108.
bThis section shows the most significant novel gene not reported in GWAS catalogue. It lists the SNVs with the lowest P-value within each gen (PcNMTF) and

their delta score (DX). The complete list of prioritized genes and SNVs is annexed in Supplementary Files S2 and S3.
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consistency of clustering assignments throughout repetitions of the

algorithm (Kim and Park, 2007) (Supplementary Fig. S5.A).

The second step is to explore the contribution of data sources (R,

Lu, A and Vo), while changing the thresholding parameters. Here,

the optimal c1 maximizes the number of known loci-trait associa-

tions in the results, whereas optimal c2 and c3 maximize the separ-

ation of case–controls. See Supplementary File S1, Sections S8 and

S9 and Figure S4 for details on the grid search and how we quanti-

fied the transference of information.

2.6 Genotyping data and phenotypes
Array genotyping data and clinical variables from 5 402 Finnish and

6 100 white American subjects (NFBC1966 and eMERGE cohorts)

were pre-processed as described in Supplementary File S1 and

(Section S1). We also simulated genotyping data with embedded

population structures.

With regards to the phenotypes, we focussed on three lipid traits:

LDL-C, HDL-C and TG. For each individual we obtained the fol-

lowing clinical variables which are potential confounders of the

associations: age, alcohol consumption, smoking status, body mass

index (BMI), BMI at birth, pregnancy and use of oral contraceptives

(Supplementary Table S1).

As our method is aimed at the study of categorical phenotypes,

we categorized the trait by using cut-off levels and compared sub-

jects at extreme categories. For LDL-C, we divided our cohort in

controls (subjects with LDL-C<100 mg/dl) and cases (subjects with

LDL-C>160 mg/dl). These cutoffs were chosen following the opti-

mal and high LDL-C levels for cardiovascular risk prevention

(Supplementary Table S2, ATP III guidelines). Similarly, for the

other traits, subjects were divided in cases and controls using the

cutoffs reported in Table 1. Subjects with intermediate lipid levels

were excluded from our analysis.

We subtracted the effect of confounders from the phenotype by

fitting a multiple RM. The residuals of the model were used as a cor-

rected phenotype that is explained by the genetic component of the

subjects rather than by the confounders (Supplementary File S1 and

Section S3). Notably, the confounding effect from subjects’ ancestry

is corrected simultaneously within the cNMTF algorithm, constitut-

ing one of the main contributions of this work.

2.7 A subset of SNVs in the relationship matrix (R)
We aimed at reducing the universe of variants to a meaningful sub-

set that could explain the phenotype. This pre-selection of SNVs

reduces the data noise, increases the performance of the method and

alleviates the computational complexity during the matrix opera-

tions (Fig. 2).

First, we queried the GWAS catalogue for all known variants

associated with the trait (under the genome-wide significance

threshold P < 10�8) (MacArthur et al., 2017) (available at: www.

ebi.ac.uk/gwas, accessed 1 August 2018, version 1.0.2). These var-

iants can be seen as a seed group that will be expanded to a larger

group of variants. To achieve this, we identified the genes har-

bouring known associations (seed genes) and mapped them onto a

PPIN (BioGrid interactions validated by multiple publication sour-

ces and experimental systems; available at: https://thebiogrid.org,

accessed 1 August 2018, version 3.4.162). Please note that seed

genes with no interactions in the PPIN are analyzed as well (i.e.

isolated nodes).

Then, variants located in the region of seed genes and variants

located in the interacting gene partners (first neighbourhood in the

PPIN) were selected to form the subset of SNVs. The gene region is

determined by the start and stop genomic coordinates of the gene.

Hence, the final genotyping data input, R, contained on average

8 800 SNVs per trait-cohort analyzed.

We further compared the results of the algorithm when clumping

SNVs in high linkage disequilibrium (LD) from the input. The SNV

clumping is a pre-processing step where a proxy SNV is chosen to

represent a gene region in high LD (r2 > 0:5) whereas non-proxy

SNVs are excluded from that gene region. The proxy variant is not

selected at random but we select the variant most associated with

the trait using Logistic Regression Models (LRM) (Euesden et al.,

2018). For purposes of the SNV–SNV network construction, non-

proxy SNVs are removed but their functional impact (i.e. damaging

variant) is inherited to the proxy SNV in the network, so this infor-

mation is not lost during the clumping. On average, this pre-process-

ing step reduces the data input to 	7 800 SNVs.

3 Results

The dispersion of delta scores for LDL-C is displayed in

Supplementary Figure S7, where the prioritized variants are those

above and below the significance cut-off points. The delta score

indicates the trend of the association: (þ) protective effect of the re-

cessive allele B towards optimal conditions of LDL-C; (�)

Fig. 2. Defining a subset of SNVs to analyze with cNMTF. (1) Reported SNV-

trait associations are queried from GWAS catalogue and (2) mapped to genes

in a PPIN. (3) The list of genes is expanded using their interactions in the first

neighbourhood of the PPIN. (4) All variants located in the expanded list of

genes were selected to conform the subset of SNVs, and later included in the

SNV–SNV network
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detrimental effect of the recessive allele B leading to abnormal con-

ditions of high LDL-C.

We mapped the prioritized variants to genes and ranked the

genes using the variant with lowest PcNMTF. A mean of 93 variants

and 44 genes was prioritized per cohort and trait (Table 1).

3.1 Prioritization of SNVs
We replicated a total of 23 genome-wide significant associations

from GWAS catalogue (P < 10�8) using smaller sample sizes than

the original studies. For LDL-C, we replicated two out of four sig-

nificant associations reported by Sabatti et al. (2009) in the Finnish

cohort: rs174546, rs1535; and two more associations reported in

other studies (rs2228671, rs10490626) (Aulchenko et al., 2009;

Teslovich et al., 2010). For HDL-C and TG, the numbers were

broadly similar; our method recalled 7 and 12 known associations

in both cohorts, respectively (Supplementary Figs S8–S11).

We compiled the information for prioritized SNVs, including

their delta score, PcNMTF, minor alleles, genes and consequences on

the transcript (Supplementary File S2). It was found that 19 out 23

variants conserve the trend reported in the original GWAS. This re-

sult supports the codification of recessive alleles in the input matrix

R, and the mathematical formulation of the scores from low-

dimensional matrices, because there is an agreement between the

sign of the delta score and the sign of beta coefficients from RMs.

In the formulation of the SNV–SNV network, we labelled the

variants as damaging or candidates. The set of prioritized variants

contains 7% damaging variants, compared to 3% in the input net-

work. Thus, an enrichment of damaging variants is observed in the

results (P ¼ 8� 10�8), but still a large proportion of prioritized var-

iants have no evidence of impact in the protein (e.g. synonymous

variants). In fact, most of the SNVs are located in intronic regions or

affect non-coding transcripts with no further consequences in the

protein (Supplementary Fig. S12). Among the SNVs with high im-

pact are rs2228671, a stop gain variant in the LDL receptor

(LDLR), and 18 missense mutations (Supplementary File S2).

The LD structure among variants was considered in the pre-

processing steps and we compared the lists of prioritized genes with/

without SNV clumping. We found that results are highly robust in

the trait-cohort analyses, where 	90% of prioritized genes were pre-

served between both settings (Supplementary Fig. S17 and File S6).

This can be explained by the clustering of SNVs taking place in ma-

trix U (Equation (1)). Therefore, SNVs in LD are clustered and

weighted together because their profiles are analogous in cases/con-

trols and they also reside in the same gene region (they are connected

in the SNV–SNV network). For example, rs174556 and rs1535 are

in LD (r2 ¼ 0:92) in gene FADS1. Their prioritization scores (with-

out clumping) are 4.004 and 3.444, respectively, for association

with LDL-C in Finnish individuals. If clumping is performed, rs1535

is filtered out from the input. The proxy SNV is rs174556, whose

score slightly changes from 4.004 to 4.006 and FADS1 is still

prioritized (PcNMTF ¼ 3� 10�4). In general, the method achieves

similar performance with either a set of high LD SNVs in the input

or just proxy SNVs representing the same loci.

3.2 Prioritized genes
We consider that cNMTF is a complementary tool to explore hidden

patterns of association that usually pass undetected with LRM. To

make this a fair comparison between methods, we choose the same

level of significance for SNV prioritization (a ¼ 0:01), and mapped

the SNVs to genes. Then, we compared the performance in retriev-

ing significant genes from the Global Lipids Genetics Consortium

(GLGC, European-ancestry individuals) (Supplementary Fig. S14)

(Willer et al., 2013). For cNMTF, 99 out of 265 prioritized genes

are significant in GLGC (Precision, PR ¼ 37%); whereas for LRM,

136 out of 394 genes are significant (PR ¼ 35%).

In a second step, the results were benchmarked against the lipid-

associated genes in GWAS catalogue, which includes curated infor-

mation from GLGC and all published GWAS world-wide

(Supplementary Fig. S15). The PR increased to 49% and 48% for

cNMTF and LRM, respectively. Among the true positives, there are

45 genes captured exclusively by cNMTF, 105 genes captured only

by LRM and 84 genes in the intersection of both methods (Fig. 3).

This supports our conclusion that cNMTF and LRM results are

complementary and mutually enhance gene discovery for GWAS.

As seen in the dispersion plots of Supplementary Figure S14, one

of the strengths of cNMTF is on leveraging genes with moderate as-

sociation through data integration. We compared the P-values be-

tween both methods and found that 29% of the genes prioritized by

cNMTF nearly reach the significance level in LRM

(0:01 < PLRM < 0:10). These genes would have been disregarded

due to insufficient statistical power in the case–control samples.

cNMTF, on its own, makes use of the PPIN to share association sig-

nals between variants, which is the strength of this machine learning

method over single-SNV analyses.

We searched for additional evidence to support our findings with

different benchmarks (Fig. 4):

1. The benckmarking of cNMTF with GWAS catalogue gave us

evidence for 129 out of 265 genes (49%). We noted that despite

the low proportion of seed genes in the input, a significant en-

richment of them is obtained in most of the outputs

(Supplementary Fig. S13). This means that our results are not

biased by the subset of variants in the input, and that cNMTF is

truly differentiating signals of association from any noise gener-

ated by the PPIN.

2. Further exploration of GWAS catalogue was conducted to in-

clude closely related traits (e.g. ‘hypertriglyceridemia’, ‘total

cholesterol levels’. The complete list of 101 related traits is

annexed in Supplementary File S5). This procedure gave us evi-

dence of association for eight more genes (3%). For instance, the

gene CARM1 is reported with the combined phenotype ‘C-react-

ive protein levels/LDL-C levels (pleiotropy)’ (rs1529711,

P < 10�8) (Ligthart et al., 2016). Also, CARM1 association

with LDL-C was updated recently (rs2304088, P < 10�23,

GWAS catalogue, February 2019, retrospective validation).

Fig. 3. Enhancing gene discovery with cNMTF. Prioritized genes across trait-

cohorts are totalized and intersected with the results of LRM. Only genes

benchmarked against GWAS catalogue are counted. In Supplementary

Figure S15, we present Venn diagrams for specific trait-cohorts
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3. In the remaining genes not reported in GWAS catalogue, we

searched for functional implications in GO, KEGG, Reactome

and OMIM database. We found 45 genes (17%) related to bio-

logical processes/pathways in the lipid metabolism (e.g. fatty

acid biosynthesis). Some of them were significantly enriched in

novel genes (P < 0.05, Supplementary Table S5). No additional

evidence was observed in OMIM for lipid-related traits because

most of the OMIM entries overlap with GWAS catalogue.

4. A literature search was conducted in PubMed to find regulation

and epigenetics evidence that could connect the novel genes with

altered lipid metabolism. We observed evidence in 44 genes

(17%), including regulators of important genes [DAB1-LDLR;

SNTB2-ABCA1 (Bock et al., 2003; Hebel et al., 2015)], and

studies in other organisms [DLGAP1 in mice, NLGN1 in ducks

(Chadwick et al., 2010; Zhu et al., 2019)]. Noteworthy, the as-

sociation of NLGN1 with total cholesterol was reported by this

year. A short description of our findings is presented in

Supplementary File S3 for each gene.

All in all, we collected evidence that supports 226 genes (85%).

3.3 Patterns of interaction in the PPIN
The interaction between novel genes and seed genes in the PPIN is

presented in Figure 5, Supplementary Figures S9 and S11. We

mapped the results onto the PPIN and retrieved only the edges be-

tween prioritized genes. The graph for LDL-C shows well-known

genes for the lipid metabolism: LDLR, APOB, APOH and FADS1/

FADS2/FADS3. However, most of these genes appear isolated from

other prioritized genes, which are a consequence of using only the

first neighbours from the PPIN rather than the whole lipid pathways

in the input.

It is also clear in the network that Finnish and white Americans

have just a few prioritized genes in common (12% of the genes inter-

sect). Indeed, some of the interactions between novel loci and key

proteins were observed only in specific populations. For example,

SMARCA4-CARM1 is an interaction captured only in the Finnish

cohort (the tumour-suppressive gene CARM1, interacts with a gene

associated with abnormal LDL-C levels and required for tumour cell

growth, SMARCA4). Similarly, in the white Americans, we noted

the interaction HMGCR-INSIG1 (the regulator of lipogenesis

INSIG1 binds an enzyme controlling the production of cholesterol,

HMGCR). This specificity of results by population arise from vari-

able allele frequencies and the LD pattern (Deo et al., 2009).

4 Discussion and conclusions

We developed a data integration framework to address the problem

of SNV and loci prioritization. cNMTF extracts relevant patterns of

information from genotypes, phenotypes and molecular data via

dimensionality reduction, finds clustering patterns and scores the

associations with the phenotype. A key feature of cNMTF is per-

forming multiple-SNV analysis by means of the SNV–SNV network.

This strategy allows for the sharing of information between variants

depending on their network connectivity and the similarity of geno-

types across individuals.

Fig. 4. Benchmarking prioritized genes by cNMTF. Percentage of genes with

known functional implications in the lipid metabolism. The search for evi-

dence includes GWAS catalogue (the strongest benchmark for associations),

KEGG, Reactome, GO and finalizes in PubMed

Fig. 5. Prioritized PPI in LDL-C. This PPIN shows only interactions between pri-

oritized genes by cNMTF. A novel finding refers to a gene either not reported

or not significant in GWAS catalogue (P < 10�8)
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We have provided cNMTF with capabilities to capture gene-trait

associations that are not significant in the univariate studies due to

insufficient statistical power. The method also unveiled well-known

genes involved in lipid metabolism that have not been prioritized in

the Finnish and white American cohorts, thereby, complementing

current findings of LRMs.

Another relevant feature of cNMTF is the correction for detri-

mental effects of population stratification, which are particularly

problematic when using matrix factorization. In Supplementary File

S1 (Supplementary Sections S10–S12 and Figs S18–S21) we expand

the discussion on how the algorithm generates solutions regardless

the subjects’ ancestry, while minimizing the rate of spurious

findings.

Although our study shows an implementation of cNMTF with

SNV–SNV networks based on PPIs, the algorithm is suitable for

studying other omic datasets in future works. The input can be

modified to allow for the integration of genotypes with metabolic,

transcriptomic or proteomic data by means of weighted networks.

This would give insights on the genetic heterogeneity resulting from

pathways, where current methods treat all the genes as equivalent

and do not model their interactions (Leiserson et al., 2013). In add-

ition, cNMTF can be easily adapted to go beyond the case–control

design. For example, this can be used for patient stratification and

definition of tumour subtypes in cancer research, where a number of

clusters could be assessed simultaneously.

With regard to the computational features of the algorithm, our

research expands the field of NMTF-derived methods (non-negative

matrix tri-factorization). To date, regularizations of NMTF are

characterized by the use of graph Laplacian (Shang et al., 2012),

constrained clusters (Li, 2010), rules in matrix definition (Ding

et al., 2006; Gu and Zhou, 2009) and knowledge transference be-

tween input matrices (Gligorijevic et al., 2016a, c). Here, we showed

the regularization of NMTF via the combined use of kernels, and

stated principles for adequate data weighting and confounder cor-

rection. Future work can extent these principles for the study of con-

tinuous phenotypes or the formulation of SNV scores from multi-

layer omic networks.

This work has limitations in the algorithm implementation.

First, the method can only be evaluated on a subset of SNVs due to

the computational cost of matrix operations at the genome-wide

level. We limited the analyses to disease-associated genes reported in

GWAS catalogue (seeds) and the first neighbourhood of seed genes

in the PPIN. Genes outside these filtering rules are lost in our study

cases, so we have potentially lost disease-associated locus not inter-

acting with our seed genes. Nonetheless, the algorithm can be tail-

ored to explore larger sets of seed genes or indirect PPIs, depending

on the scope and the computational resources available to that aim.

Second, the inclusion of PPI data could bring bias to the results.

Hub genes in the protein interactome have a higher chance to inter-

act with our set of seed genes and they are more likely to be included

in the input (e.g. TP53 connects 11% of proteins in the BioGrid net-

work). Similarly, candidate SNVs in hub genes could be connected

to more damaging SNVs. When the algorithm is executed, the diffu-

sion of information through the network will favour the proximity

between candidate and damaging variants.

To address this limitation, we introduced the normalized graph

Laplacian in the objective function and analyzed the node degree of

prioritized genes/SNVs in their networks (Supplementary File S1,

Section S4.1 and Fig. S17). However, no significant differences in

the median node degree of prioritized genes/SNVs were observed be-

tween settings of the algorithm (basic Laplacian versus normalized

Laplacian, Wilcoxon test, P>0.24). Please note that we are already

performing a normalization in the edges of the SNV–SNV network

to remove bias for genes harbouring multiple variants. Therefore,

these results indicate that hub genes/SNVs could be prioritized be-

cause they may play a relevant role in the lipid processes and should

be integrated in the analyses (e.g. APOB is a key hub gene connect-

ing 12 proteins). We conclude that the connectivity of the network

itself cannot prioritize variants unless they show moderate associ-

ation signals in the genotype data.

Another limitation of cNMTF is that some genes associated with

the lipid trait (e.g. CELSR2, LPL) were not prioritized. This is due

to the clustering nature of the method, the different sources of infor-

mation contributing to the final results and our still limited know-

ledge of the human interactome. Particularly, the SNV–SNV

network leads to strong association signals boosting the weak var-

iants; however, the opposite can also occur (the strong association is

masked) if clustering patterns are not observed in the genotype data,

or the network is saturated of very poor associations. Consequently,

we see our method as a complementary tool for single-SNV studies

because its performance depends on the clusters and the connectivity

of weak–strong variants.

In conclusion, we have presented cNMTF as an alternative ap-

proach to prioritize variants and genes for follow-up studies. Given

the satisfactory results with lipid traits and the flexibility of cNMTF

to handle interrelated but disparate sources of data, this study pro-

vides valuable guidelines for future integrative approaches in the

field.
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