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Abstract
Chronic kidney disease (CKD)–mineral bone disorder (MBD) is a complex clini-
cal syndrome that begins early during CKD and evolves into one of the deadli-
est complications of CKD through its effects on the cardiovascular and skeletal 
systems. Achievement of treatment goals to decrease the risk of accelerated car-
diovascular events and fractures has been challenging. We hypothesized that ap-
plication of quantitative systems pharmacology (QSP) modeling combined with 
artificial intelligence techniques could improve the management of CKD–MBD 
with the goal of improving outcomes for patients with CKD. We present the 
implementation of a reinforcement learning (RL) approach to achieve the pre-
scribed goals for serum calcium, phosphorus, and parathyroid hormone through 
concurrent dosing of phosphate binders, vitamin D analogs, and calcimimetics 
by simulation in 80 subjects in Matlab. In silico simulation results demonstrate 
that the application of a QSP model coupled with RL more effectively and quickly 
achieves treatment goals even in the setting of inferior simulated subject compli-
ance with medical therapy and identifies key decision variables for therapeutic 
recommendations.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The current knowledge on the topic of reinforcement learning combined with a 
systems pharmacology model is limited.
WHAT QUESTION DID THE STUDY ADDRESS?
By combining these techniques, can we improve patient outcomes by targeting 
the essential biochemical process without the ability to measure that process 
directly?
WHAT DOES THE STUDY ADD TO OUR KNOWLEDGE?
Combining traditional pharmacokinetics/pharmacodynamics with advances in 
artificial intelligence makes exploring the entire therapeutic space possible. This 
approach might be most advantageous in complex medical conditions where 
multiple agents are used.
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INTRODUCTION

The progression in sophistication of pharmacokinetic and 
pharmacodynamic models has mirrored the increase of 
computing power and the ability to handle large amounts 
of data with multiple complex relationships. This has led 
to the development of a new modeling technique called 
quantitative systems pharmacology (QSP).1 These models 
are being used to identify novel targets, efficacy, safety, 
dose optimization, and precision medicine. This approach 
has even been used in the regulatory process to evaluate 
the appropriateness of a proposed dosing regimen of a sin-
gle agent.2 We would like to expand that QSP approach in 
precision medicine by combining it with machine learn-
ing, specifically reinforcement learning (RL), to leverage 
the advantages of both techniques.

An ideal candidate disease to assess this approach is the 
treatment of a complex disease that accompanies chronic 
kidney disease, known as chronic kidney disease (CKD)–
mineral bone disorder (MBD). CKD–MBD results in 
accelerated skeletal and cardiovascular morbidities and pre-
mature death.3–8 Biochemical manifestations of CKD–MBD 
include hyperphosphatemia, hyperparathyroidism, and hy-
pocalcemia as well as changes in parameters that are not 
routinely monitored, such as decreased 1,25 dihydroxy vita-
min D, decreased klotho, and high fibroblast growth factor 
(FGF23). The pathophysiologic sequelae of CKD–MBD are 
bone disease, commonly called renal osteodystrophy, and 
life-limiting cardiovascular morbidities visibly manifested 
as vascular calcification and left ventricular hypertrophy. 
Although CKD–MBD is recognized as a major contributor 
to the high mortality associated with CKD, treatment of 
the disorder remains inadequate. The bone and cardiovas-
cular damage resulting from CKD–MBD is very modestly 
reversed by renal replacement therapy with dialysis and is 
just marginally better with kidney transplantation.9

The current standard of care for CKD–MBD is pub-
lished in the Kidney Disease: Improving Global Outcomes 
(KDIGO) clinical practice guidelines.10 The recommenda-
tions are based on both experimental data and opinion and 
target the attainment of ranges for calcium (Ca), phospho-
rus (P), and parathyroid hormone (PTH) using phosphate 
binders, vitamin D, and a calcimimetic. Patients with mild 
kidney failure are treated like the general population. Most 
of the patients who received treatment for CKD–MBD are 

dialysis patients, and the quality of dialysis is measured 
by moving patients to the recommended target ranges for 
Ca, P, and PTH. Clinical guidelines may not address the 
real processes underlying the morbidity and mortality 
of CKD–MBD such as fracture and cardiovascular event 
prefaced by the movement of Ca from the bone and into 
the tissue, and our proposed approach is one way to ad-
dress this process.

To help address the challenges in treating CKD–MBD, 
we use a QSP model of Ca and P metabolism developed by 
Peterson and Riggs11 that we modified.12 We believe that 
the QSP approach will be useful in modeling this com-
plex disease, which typically involves combination ther-
apy. Furthermore, incorporating the biological variance 
in response to therapies can help arrive at individualized 
treatment decisions. In this work, we demonstrate the ap-
plication of this model as a simulation (in silico) platform 
to discover a CKD–MBD treatment regimen for achieving 
the clinical goals for Ca, P, and PTH in CKD-5D stage pa-
tients using an artificial intelligence (AI) technique called 
reinforcement learning (RL).

METHODS

Description of the QSP model

In a previous publication,12 we introduced a QSP model of 
CKD–MBD progression based on the open-source frame-
work proposed by Peterson and Riggs.11 The model is 
based on 31 nonlinear ordinary differential equations de-
scribing the movement of Ca and P between various com-
partments of the body. Importantly, the model represents 
the following two major pathologies of CKD–MBD: bone 
resorption, represented as excess Ca and P movement 
out of the bone compartment; and vascular calcification, 
represented as excess Ca and P deposition in the vascular 
smooth muscle cell (VSMC) tissue (Figure 1). The model 
was validated against more than 33,000 data samples from 
the Chronic Renal Insufficiency Cohort study.12

The expanded model incorporates the following three 
main pharmacologic interventions used for the treatment 
of CKD-MBD: phosphate binders, active vitamin D, and 
calcimimetics. For demonstration purposes, these inter-
ventions are applied at 6-month intervals in this study. At 

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Quantitative system pharmacology models have been noted to provide insight 
into drug action and can be used in drug discovery. Combining these models with 
artificial intelligence in the form of reinforcement learning will allow us to attain 
therapeutic end points quicker and optimally target the desired outcome.
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first, dialysis initiation lowers P and PTH and raises Ca. 
Phosphate binders are typically used as the first line of 
attack to lower P and PTH. Active vitamin D is the next 
preferred treatment. Vitamin D increases intestinal Ca 
and phosphate absorption and decreases PTH secretion. 
As predicted by the model, the vitamin D–stimulated in-
crease in serum phosphate is transient as the increased 
Ca availability and the combined effect of higher Ca and 
vitamin D to decrease PTH secretion ultimately result in 
the decreased release of Ca and P from the bone. The net 
long-term effect is a further lowering of P. Calcimimetics 
are used if a further decrease in PTH is required. The use 
of a calcimimetic results in an instantaneous drop in PTH 
accompanied by a drop in Ca with no marked effect on P.

Complex interaction of drugs used to treat 
CKD–MBD

Shown in Figure 2 is the complex relationship between the 
drugs used in the treatment of CKD–MBD and their effects 
on the measured biochemical parameters (serum Ca, P, and 
PTH). These effects change over time as the downstream 
unmeasured processes are affected, and ultimately those 
unmeasurable processes change (Ca flux out of bone and 
into tissue; Figure 1). This is an important relationship to 
model because physicians are reluctant to modify agents 
simultaneously and their therapeutic decisions are gener-
ally driven by the relatively short-term weekly to monthly 
changes in these biochemical parameters. These clinical 
considerations delay the achievement of practice guidelines.

Reinforcement learning

Reinforcement Learning is an AI approach that represents 
a family of psychology-inspired learning methods.13 In the 
context of medical decision making, RL resembles the way 
a physician makes therapeutic decisions to maximize a pa-
tient's probability of positive outcome and to minimize ad-
verse effects of the treatment. Compared with supervised 
learning (SL) methods, which presently form the main-
stream of AI applications and focus on replicating knowl-
edge encoded in large data stores, RL's major strength is 
in the ability to discover new knowledge, which was dem-
onstrated by outperforming human experts in the game of 
Go.14,15 This algorithm (AlphaGo) famously defeated the 
world champion in Go.

In this work, we demonstrate how RL methods, in 
combination with a QSP model, can be used to improve 
an empirical approach to the treatment of CKD–MBD. 
We first train an AI Agent to replicate human knowledge 
using SL (behavioral cloning16). We then let the Agent im-
prove on the trained knowledge by interacting with the 
QSP model using RL to achieve the physician-specified 
treatment goals.

Reinforcement Learning is based on the concept of the 
Markov decision process13 in which an Agent observes the 
“state” of its “environment” and performs “actions” for 
which it receives “rewards.” The objective of the Agent is 
to perform actions that achieve a certain goal that is math-
ematically represented as the maximization of the cumu-
lative long-term reward. The mapping between states and 
the actions is referred to as “policy.”

F I G U R E  1   (a) Diagram of the CKD–MBD quantitative systems pharmacology model used in the simulations. (b) Diagram of the effects 
of the administration of the agents used to treat CKD–MBD on the serum concentrations of Ca, P, and PTH as well as the impact on the 
complications of CKD–MBD, vascular calcification, and bone resorption. The direction of the effect is shown by the arrow, and positive 
effects are shown as the solid line, negative effects as the dotted line, and unknown effects as the dashed line. Ca, calcium; CaSR, calcium 
sensing receptor; CKD, chronic kidney disease; FGF23, fibroblast growth factor 23; MBD, mineral bone disorder; OB, osteoblast; OC, 
osteoclast; P, phosphorus; PO4, phosphate; PTH, parathyroid hormone.
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In our application, the environment is represented by 
the QSP model of CKD–MBD.12 For this simulation, the 
model is configured as follows:

•	 Inputs (Actions):

•	 Phosphate binder dose
•	 Calcitriol dose
•	 Calcimimetic dose

•	 Outputs (State):

•	 Ca
•	 P
•	 PTH

The model sampling time was set to 1 month, consis-
tent with the frequency of measurement of the biochemi-
cal parameters of interest and the dose adjustment for the 
three therapeutics. In addition to the State measurements, 
we observed model estimated levels of calcitriol, FGF23, 
Ca flux between serum and bone, and Ca flux between 

serum and soft tissue. These quantities were not visible to 
the RL Agent as part of the state measurement and were 
used in data analysis phase only. We represented the Actor 
(Policy) in the RL Agent as a deep neural network (DNN) 
with the following structure:

1.	 Input Layer—13 features—Ca, P, PTH levels 3 months 
(9 features), difference between current Ca and the 
lower and upper limits of the Ca target range (2 
features), difference between current PTH and the 
lower and the upper limits of the PTH target range 
(2 features).

2.	 Hidden Layer 1—100 fully connected neurons with ra-
dial basis (exp[−x2]) activation function.

3.	 Hidden Layer 2—100 fully connected neurons with ra-
dial basis activation function.

4.	 Output Layer—2 outputs—calcitriol dose adjustment 
(−2/−1/0/+1/+2) and calcimimetic dose adjustment 
(−1/0/1), where the “−” sign represents the dose de-
crease and the “+” sign represents the dose increase; 
the numerical value represents the dose-adjustment 
steps with “0” meaning “maintain current dose.”

F I G U R E  2   Chronic kidney disease–mineral bone disorder model simulation of different treatment interventions applied in serial order 
(dialysis, phosphate binder, calcitriol, and calcimimetic) for (a) Ca, (b) P, and (c) PTH serum concentrations. (d) Model-predicted typically 
unmeasured concentrations of fibroblast groath factor (FGF23). (e) Model-predicted and practically unmeasurable activity of osteoclasts and 
osteoblasts. (f) Model-predicted and practically unmeasurable net flux of Ca out of the bone and into the tissue. Ca, calcium; P, phosphorus; 
PTH, parathyroid hormone.
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Dosing of P binders is typically driven by serum P level 
alone and is independent of the other two drugs and, be-
cause P binders are taken at home, strongly affected by 
the patient adherence. For this reason, in our present ap-
proach we chose not to train the Agent to dose P binder. 
Instead, we simulated P binder dosing using a simple rule-
based approach with 100% patient adherence in the train-
ing phase:

	 I	 IF serum P > upper limit of target range THEN 
Increase P binder by one dose step

	II	 IF serum P < lower limit of target range THEN 
Decrease P binder by one dose step

The target range for P was set to 3.5–5.5 mg/dl.
The Reward function was defined to achieve the fol-

lowing goals:

1.	 Maintain Ca 8.8–9.9  mg/dl
2.	 Avoid Ca < 7.0 mg/dl
3.	 Avoid Ca > 10.2 mg/dl
4.	 Maintain PTH 200–600 pg/ml
5.	 Avoid PTH < 100 pg/ml
6.	 Maintain Ca × P < 55 mg2/dl2

Reward shaping was used to increase the training effi-
ciency and prevent numerical issues attributed to sparse 
rewards. Reward shaping augments the training signal 
by rewarding the Agent for making progress toward the 
goal.17

We performed behavioral cloning of the Actor DNN 
using human expert knowledge:

1.	 We created 128,061 training instances by simulating 
expert physician dosing of P binder/calcitriol/calcimi-
metic in response to P, Ca, PTH levels. The levels 
of Ca, P, and PTH were drawn uniformly from the 
following ranges: 6–11 mg/dl (Ca), 2–10  mg/dl (P), 
and 0–1500 pg/ml (PTH). The simulated expert dosing 
was governed by the following rules:

P binder:
IF P > 5.5 THEN Increase P binder by one dose step.
IF P < 3.5 THEN Decrease P binder by one dose step.
Calcitriol and Calcimimetic:
IF PTH > 600 AND Ca < 8.8 THEN Increase calcitriol 
by one dose step.
IF PTH > 600 AND Ca > 9.9 THEN Increase calcimi-
metic by one dose step.
IF PTH < 200 AND Ca > 9.9 THEN Decrease calcitriol 
by one dose step.
IF PTH < 200 AND Ca < 8.8 THEN Decrease calcimi-
metic by one dose step.

2.	 We used SL to pretrain the Actor DNN to repli-
cate expert physician actions. We used the adaptive 
moment estimation SL method18 with the following 
hyperparameters:

•	 Maximum training epochs: 1000
•	 Mini-batch size: 64 samples
•	 Initial learning rate: 10e−4
•	 Training data/validation data: 90%/10%

The SL-trained Actor DNN achieved 99% agreement with 
expert physician's decisions and was further trained with 
the deep deterministic policy gradient (DDPG) RL method 
using the QSP model of CKD–MBD12 to simulate a patient's 
response to treatment. The DDPG hyperparameters were set 
as follows:

•	 Maximum training episodes: 10,000
•	 Training episode length: 4 years
•	 Mini-batch size: 64
•	 Discount factor: 0.99
•	 Experience buffer size: 106 samples
•	 Critic learning rate: 1e−3
•	 Actor learning rate: 1e−6

The Critic was implemented as a DNN with two hidden 
layers containing 200 and 100 fully connected neurons 
with radial basis activation functions. In each training ep-
isode, the initial model states were drawn uniformly from 
the following ranges: 5–8 mg/dl (P), 7–9 mg/dl (Ca), and 
100–1500 pg/ml (PTH) to encompass all possible observa-
tions at the onset of hemodialysis and to emulate individ-
ual patient characteristics.

Validation

To evaluate the efficacy of the RL-trained Agent, we com-
pared its performance with that of the initial SL-trained 
Agent. We simulated a cohort of virtual CKD-5D patients 
by varying oral P intake, parathyroid gland Ca sensing re-
ceptor sensitivity, and P threshold for vascular calcifica-
tion resulting in initial p values between 5.0 and 8.0 mg/
dl, Ca between 6.9 and 9.0 mg/dl, and PTH between 100 
and 1330 pg/ml. The exhaustive sampling of this param-
eter space resulted in 80 virtual subjects. The simulation 
follow-up time was 24 months. To mimic the real-world 
adherence problem with phosphate binders, we tested the 
following four levels of subject adherence: 100%, 75%, 50%, 
25%. We used the achieved percent in range for P, Ca, PTH 
as the primary evaluation criteria. In addition, we com-
pared the effect of treatment on the levels of serum calci-
triol and FGF23, the reduction in Ca efflux from the bone 
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compartment, and the reduction of Ca influx into the soft 
tissue. Finally, we compared the drug usage by both Agents.

Because the Agent is represented by a DNN, it lacks 
the ability to explain its actions. To enable interpretation 
of the Agent's actions and verify the dosing policy, we per-
formed a decision tree analysis. We generated dosing rec-
ommendations for all possible input combinations for Ca, 
P, and PTH within the following ranges: Ca 7–11 mg/dl, P 
3.5–9.5 mg/dl, PTH 100–1200 pg/ml. Using this new data 
set (23 million data points), we applied a classification and 
tree regression approach19 to generate a classification tree 
replicating the policy of the trained RL Agent. We also 
performed importance analysis of the input variables. All 
simulations were performed in Matlab/Simulink2021b 
(The Mathworks) with the Reinforcement Learning and 
Deep Learning Toolbox.

Simulation results were compared for the dose titration 
and the maintenance (steady-state) period of treatment 
using regression analysis of the dependent variable (Ca, 
P, PTH, calcitriol (CTL), fibroblast growth factor (InFGF), 
bone calcium flux (bC), or vascular calcium flux (vCa)) 
over time with the factors RL (RL vs. SL) and P binder 
adherence. The titration period consisted of Months 1–8, 
and the steady-state period consisted of Months 13–20. A 
difference between the Agents during the titration period 
would indicate that one of the Agents reaches the target 
faster and that the steady state was achieved in the sec-
ond year of treatment. Differences in drug use were tested 

using analysis of variance. Statistical analysis was per-
formed using SPSS Version 27 (IBM).

RESULTS

Phosphate binder adherence

A widely prevalent challenge in the treatment of CKD–
MBD is varying adherence to phosphate binders taken by 
patients with CKD to blunt the gastrointestinal absorption 
of dietary phosphate. Therefore, the effect of differing de-
grees of phosphate binder adherence on the performance 
of the model, that is, the ability to achieve the desired lev-
els of the CKD–MBD parameters, was tested. Simulation 
results are shown in Tables  1 and 2 for the SL-trained 
(simulated physician) and the RL-trained (virtual trained 
physician) Agent, respectively. Values are reported as the 
percentage in range, mean and standard deviation, me-
dian, and the average dose amount per subject. Changes 
in Ca movement between the bone, serum, and the soft 
tissue are shown as the percent reduction from the model-
predicted baseline. Results are reported for each level of 
phosphate binder adherence. Uniformly for both Agents, 
as binder adherence decreased, the percent of observa-
tions in range for Ca and P fell. The effect on PTH varied 
with adherence, but in general PTH levels increased as 
phosphate binder adherence decreased. FGF23 increased 

T A B L E  1   Results of the simulations for each level of P binder adherence for the SL- and RL-trained Agent

Phosphate binder adherence percentage

100% 75% 50% 25%

SL RL SL RL SL RL SL RL

P 3.5–5.5, % 77 91.2 67.5 75.0 49.9 59.6 35 47

P, mg/dl (mean ± SD) 5.8 ± 0.4 5.2 ± 0.0 5.5 ± 0.0 5.3 ± 0.0 5.7 ± 0.0 5.5 ± 0.0 6.1 ± 0.0 5.8 ± 0.0

Ca 8.5–9.9, % 82 87 79 86 77 84 67 78

Ca, mg/dl (mean ± SD) 8.9 ± 0.04 9.1 ± 0.05 8.9 ± 0.03 9.1 ± 0.05 8.8 ± 0.03 9.1 ± 0.05 8.7 ± 0.03 9.0 ± 0.04

PTH 200–600, % 75 56 81 57 85 59 87 54

PTH, pg/ml (median) 290 249 303 263 330 273 379 296

Calcitriol level, pg/ml (mean ± SD) 33.8 ± 0.0 56.2 ± 1.5 30.2 ± 7.5 59.1 ± 1.4 39.7 ± 0.03 62.1 ± 1.7 44.3 ± 0.2 65.8 ± 1.2

c-term FGF23 level, RU/ml (median) 5710 4547 9306 6329 16,499 11,350 35,059 22,937

Reduction in Ca bone efflux, % 28.9 38.8 27.2 37.7 25.7 35.6 22.5 33.0

Reduction in Ca vascular influx, % 15.8 17.2 12.6 14.8 8.5 10.5 4.5 6.5

Average recommended P binder 
dose, mg/day per patient

5253 4500 5970 5284 6610 5768 7190 6415

Average recommended calcitriol 
dose, ug/day per patient

1.14 1.90 1.22 2.00 1.35 2.10 1.50 2.23

Average recommended calcimimetic 
dose, mg/day per patient

4.5 1.1 4.5 0.3 4.5 1.2 4.5 0.4

Abbreviations: Ca, calcium; P, phosphorus; PTH, parathyroid hormone; RL, reinforcement learning; SL, supervised learning.
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with decreased phosphate binder adherence, as expected. 
The effectiveness of therapy on the net Ca bone efflux re-
duction slightly decreased, whereas the reduction of Ca 
influx into soft tissue did not change.

Comparison of SL and RL on 
measurable parameters

Statistical analysis of the data is shown in Table  3 with 
the regression coefficient for each factor. The RL-trained 
Agent attained steady state faster in all cases and with 
lower predicted concentrations of P, PTH, and FGF23 and 
higher concentrations of Ca and CTL. The time effect on 
FGF23 between the SL- and RL-trained Agents showed 
statistically significant but less impressive superiority of 
the latter (Figure 3).

Comparison of SL and RL on 
unmeasurable parameters

The model incorporates two depot compartments for Ca 
in the bone and in the soft tissue. This allows us to sepa-
rately investigate the movement of Ca between the bone, 
serum, and soft tissue. The RL-trained Agent more rap-
idly reduced the net bone Ca efflux and Ca influx into 
soft tissue compared with the SL-trained Agent (Table 3, 
Figure 3).

Comparison of SL and RL on drug usage

The RL-trained Agent used less P binder and calcimi-
metic and more vitamin D than the SL-trained Agent. 
A summary of all administered drugs over two 8-month 
periods, one during titration and one at steady state, are 
shown in Table 1. Despite using more vitamin D, which 
would be expected to increase serum P concentration, 
the RL-trained Agent achieved lower serum P concen-
trations in the long run compared with the SL-trained 
Agent.

Evaluation of importance of temporal 
measurements in RL

Current Ca and PTH concentrations were the most impor-
tant decision variables (57%) followed by PTH measured 
at 2 months (22%). P levels over time appear to not affect 
the dosing policy of the RL-trained Agent. This finding 
can be attributed to the fact that P binder dosing was not 
performed by the Agent.

DISCUSSION

MBD of CKD is a complex medical condition that presents 
significant treatment challenges. In this article, we dem-
onstrate how a combination of modern computational 

T A B L E  2   Regression coefficients shown as the 95% confidence interval for the effect of the trained agent (Agent), effect of time (Rate of 
change), and Binder adherence (25%, 50%, 75%, and 100%)

RL (p) Rate of change (p) Binder adherence (p)

Titration period

P −0.19, −0.10 (<0.001) −0.14, −0.13 (<0.001) −0.48, −0.32 (<0.001)

Ca 0.19, 0.24 (<0.001) 0.15, 0.16 (<0.001) 0.09, 0.17 (<0.001)

PTH −60, −31 (<0.001) −60, −54 (<0.001) −99, −47 (<0.001)

CTL 16, 17 (<0.001) 6.2, 6.5 (<0.001) −3.7, −0.6 (0.058)

ln fibroblast growth factor −0.33, −0.18 (<0.001) −0.23, −0.20 (<0.001) −0.75, −0.49 (<0.001)

vCa −0.23, −0.01 (0.032) −0.14, −0.010 (<0.001) −0.86, −0.047 (<0.001)

bCa −0.10, −0.08 (<0.001) −0.057, −0.053 (<0.001) −0.075, −0.038 (<0.001)

Steady-state period

P −0.22, −0.16 (<0.001) −0.004, 0.008 (1.00) −0.86, −0.76 (<0.001)

Ca 0.24, 0.28 (<0.001) −0.006, 0.002 (0.997) 0.14, 0.22 (<0.001)

PTH −69, −55 (<0.001) −5.5, −2.7 (<0.001) −102, −78 (<0.001)

CTL 21, 24 (<0.001) −0.47, 0.083 (0.997) −16, −11 (<0.001)

ln fibroblast growth factor −0.38, −0.28 (<0.001) −0.006, 0.014 (1.00) −1.4, −1.2 (<0.001)

vCa −0.032, −0.013 (<0.001) −0.001, 0.002 (1.00) −0.19, −0.15 (<0.001)

bCa −0.15, −0.14 (<0.001) 0.00, 0.003 (0.85) −0.12, −0.088 (<0.001)

Abbreviations: bCa, net flux of Ca out of the bone; Ca, calcium; CTL, calcitriol; P, phosphorus; PTH, parathyroid hormone; RL, reinforcement learning; vCa, 
net flux of Ca into the soft tissue.
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tools, QSP and AI, can be useful in individualizing and 
refining the treatment of CKD–MBD to achieve clinically 
relevant outcomes. Our major findings include (1) the 
ability to improve pharmacologic treatment of disease, (2) 
the superiority of the application of RL in the achievement 
of treatment goals for complex clinical conditions, and (3) 
the identification of the variables most important in thera-
peutic decision analysis.

We address the gaps in knowledge of the complex 
pharmacology of CKD–MBD by comparing the achieve-
ment of KDIGO goals, Ca flux, and drug usage between 
a simulated physician approach and the AI. The AI ap-
proach is robust, demonstrating more rapid achieve-
ment of KDIGO goals. This approach can be used to 
individualize therapy and assess deep bone and tissue 
compartments and can be expanded to incorporate new 
therapeutic agents as they are developed. Specifically, 
we can access how the clinical guideline goals for Ca, 
P, and PTH influence the model-predicted fluxes of Ca 
from the bone and into the soft tissue. This work rep-
resents a first step in developing a decision support tool 
for the medical management of CKD–MBD and is not 
intended for clinical use. The goals of applying AI to 
clinical medicine are to allow providers to incorporate a 
broad range of clinical data into their decision-making 
processes, uncover previously unrecognized patterns in 
clinical disease, and tailor therapy to the individual pa-
tient. A significant barrier to the adoption of AI in clin-
ical medicine is the impression on the part of providers 
that their training, understanding of pathophysiology, 

and clinical experience is being abandoned. However, 
this approach is grounded in the underlying physiology 
of CKD–MBD with insights into the unobserved pro-
cesses for which the measurements of Ca, P, and PTH 
are merely surrogates.

Most AI methods applied in medicine are founded on 
the SL paradigm. In SL, large amounts of existing data are 
used to train an AI Agent to replicate the information en-
coded in those data. Our approach uses an AI paradigm 
called RL, which is focused on discovering new informa-
tion using a model of the environment. We prime the AI 
Agent with human expert knowledge before training and 
verify the recommendations generated by the AI Agent 
after training to ensure that dosing recommendations by 
the Agent are acceptable to a human expert.

We have demonstrated that RL improved on the simu-
lated standard-of-care approach in achieving the KDIGO 
guidelines. Decreased P binder adherence, mimicking 
real life, had a similar effect on both the SL- and the RL-
trained Agents, resulting in higher P and PTH concentra-
tions as well as lower Ca levels. However, the outcomes 
achieved by the RL-trained Agent were superior to those 
achieved by the SL-trained Agent at all levels of P binder 
adherence. Furthermore, the decreased adherence to P 
binder was accompanied by a smaller reduction in bone 
resorption or soft tissue calcification. However, the RL-
trained Agent still demonstrated greater efficacy in this 
regard. These results underscore the overwhelming im-
portance of phosphate control in the management of 
CKD–MBD.

Trained agent Rate of change
Binder 
adherence

Titration period

P −0.19, −0.10 −0.14, −0.13 −0.48, −0.32

Ca 0.19, 0.24 0.15, 0.16 0.09, 0.17

PTH −60, −31 −60, −54 −99, −47

CTL 16, 17 6.2, 6.5 −3.7, −0.6

ln fibroblast growth factor −0.33, −0.18 −0.23, −0.20 −0.75, −0.49

vCa −0.23, −0.01 −0.14, −0.010 −0.86, −0.047

bCa −0.10, −0.08 −0.057, −0.053 −0.075, −0.038

Steady-state period

P −0.22, −0.16 −0.004, 0.008 −0.86, −0.76

Ca 0.24, 0.28 −0.006, 0.002 0.14, 0.22

PTH −69, −55 −5.5, −2.7 −102, −78

CTL 21, 24 −0.47, 0.083 −16, −11

ln fibroblast growth factor −0.38, −0.28 −0.006, 0.014 −1.4, −1.2

vCa −0.032, −0.013 −0.001, 0.002 −0.19, −0.15

bCa −0.15, −0.14 0.00, 0.003 −0.12, −0.088

Abbreviations: bCa, net flux of Ca out of bone; Ca, calcium; CTL, calcitriol; P, phosphorus; PTH, 
parathyroid hormone; vCa, net flux of Ca into tissue.

T A B L E  3   Regression coefficients 
shown as the 95% confidence interval for 
the effect of the trained agent (Agent), 
effect of time (Rate of change), and Binder 
adherence (25%, 50%, 75%, and 100%)
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The model-based predictions generated using the RL-
trained Agent warrant further discussion and confirma-
tion before implementation. The greater use of vitamin D 
analog and the higher levels of serum calcitriol result in 
a greater reduction in bone demineralization compared 
with the SL-trained Agent. This finding suggests that 
the achievement of elevated calcitriol levels is critical for 
the maintenance of bone mineral in the setting of CKD. 
Another effect of higher calcitriol level achieved by the 
trained Agent is a greater reduction in PTH leading to 
lesser bone demineralization that, coupled with enhanced 
intestinal uptake of Ca and phosphate, may lead to pre-
served bone mineral content.

It is notable that the superior efficacy in decreasing 
bone resorption was accompanied by a lesser although 

still significant decrease in soft tissue mineralization, an 
outcome that persisted even in the presence of lesser de-
grees of phosphate binder adherence. This observation 
suggests that the reluctance to use vitamin D analogs 
in the setting of hyperphosphatemia out of concern for 
worsening vascular calcification may not be justified. The 
reasons for the greater reduction in soft tissue calcifica-
tion cannot be stated with certainty; however, this result 
correlates with greater reductions in PTH, FGF23, and P 
and a greater reduction in bone demineralization. A sug-
gested explanation is that the decrease in bone resorption 
diminishes the available mineral to be deposited in the 
soft tissue. Bone tissue has mechanisms for both the in-
flux and efflux of mineral through the activation of osteo-
blasts and osteoclasts, respectively. In contrast, vascular 

F I G U R E  3   Box plot of the initial 
concentrations of Ca, P, PTH, and ln 
fibroblast growth factor (FGF23) and 
the net flux of Ca into the soft tissue 
(vCa) and out of the bone (bCa) followed 
by the final achieved values following 
supervised learning and RL. Horizontal 
lines represent the target range for Ca, P, 
and PTH. Ca, calcium; KDIGO, Kidney 
Disease: Improving Global Outcomes; 
P, phosphorus; PTH, parathyroid 
hormone; RL, reinforcement learning.
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smooth muscle cells take on characteristics of osteoblasts 
in advanced CKD, permitting the deposition of mineral.20 
However, mechanisms for endogenous reversal of vascu-
lar calcification are poorly studied or understood.21

Alternative approaches could be used in addressing this 
problem of discovery of innovative methods to simultane-
ously derive proper dosing for multiple drugs for a mul-
tifactorial medical issue. A traditional approach such as 
maximum a posteriori estimation, although appropriate for 
parameter estimation, could be applied to the QSP model, 
but that is not the innovation we present in this work. 
Other optimal control approaches could be applied, and 
we have investigated some of those in other work, particu-
larly model-predictive control in anemia management.22,23 
RL can be viewed as an extension to a direct optimal con-
trol method, where human learning–inspired methods are 
used to optimize the objective function (maximize the re-
ward). Although traditional optimal control methods tend 
to be “black box” in nature, the policy trained by RL can be 
represented in a transparent form. RL offers more flexibil-
ity in defining the objective function. Furthermore, we be-
lieve that the human-inspired nature of RL makes it more 
tractable to the clinical user compared with traditional 
math-heavy control design methods.

In summary, we have demonstrated the ability of an 
AI technique called RL in connection with a quantita-
tive systems biology model of CKD-MBD to improve on a 
simulated human expert in achieving the measurable bio-
chemical goals of CKD–MBD treatment even in the pres-
ence of decreased adherence to therapy. Coincidentally, 
our approach results in the improvement of mineral me-
tabolism parameters that are not routinely measured but 
impact clinical outcomes. The goal of therapy for CKD–
MBD is to prevent fractures and major cardiovascular 
events, both causes of the accelerated mortality of CKD. 
The current focus of our guidelines on biochemical tar-
gets is clearly limited in efficacy, as the incidence of frac-
tures and the rate of cardiovascular mortality of patients 
with CKD remain unacceptably high. Our in silico results 
describing the unmeasured parameters of mineral metab-
olism highlight the validity of this approach to innovate 
therapy in CKD–MBD through targeting therapy to clin-
ically meaningful end points. Furthermore, the ability to 
incorporate additional modulating parameters into the 
model underscores the flexibility and relevance of this ap-
proach as it allows for the generation of testable hypothe-
ses regarding the pathogenesis and therapy of CKD–MBD.
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